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Abstract. The physical properties of NEOs and other asteroids are mostly obtained with pho-
tometry. The resulting models describe the shapes, spin states, scattering properties and surface
structure of the targets, and are the solutions of inverse problems involving comprehensive
mathematical analysis. We review what can and cannot be obtained from photometric (and
complementary) data, and how all this is done in practice. The role of photometry will become
completely dominating with the advent of large-scale surveys capable of producing calibrated
brightness data. Due to their quickly changing geometries with respect to the Earth, NEOs are
the population that can be mapped the fastest.
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1. Introduction
Photometry is the main source of information on the NEO population and the other

asteroids as a whole. Traditional dense lightcurves have been obtained for a large number
of targets over several decades, and this mode of observation will continue in the future.
However, a real paradigm change will be brought about by surveys such as Pan-STARRS
and LSST that will produce colossal photometric databases that, though sparse in time,
can readily be used for obtaining the physical characteristics of asteroids everywhere
(Kaasalainen 2004; Ďurech et al. 2006, 2007). This is a unique opportunity to map NEOs
(and other asteroids) both as individual targets and as a population: no other observing
mode can reach such a vast number of targets. The survey datasets are efficiently enriched
by any additional dense photometric or other observations.

The analysis of sparse photometric datasets will very soon become an automated in-
dustry, resulting in tens of thousands of asteroid models, a large portion of them NEOs.
The computational effort in this is considerable in both computer and human time, which
means that most of the targets will not be analyzed with close scrutiny: we will have to
trust the computer. This, again, means that we have to have a good understanding of
the reliability of our models, and this is impossible without a thorough understanding
of the mathematical nature of the inverse problem(s) involved. Indeed, the inversion of
photometric data involves some profound mathematical truths, and the effect of these
theorems is quite visible in all parts of the inversion process. Very important concepts are
the uniqueness and stability of the solution, the parameter spaces, the so-called inverse
crimes in simulations and error prediction, and the domination of systematic errors over
random ones.
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This paper is organized as follows. In §2 we summarize and discuss some main facts
about photometric inversion from both theoretical and practical points of view, and
investigate the role of systematic errors. Some particular properties of NEO (and other
asteroid) observations and modelling are discussed in §3, where we also introduce a
convenient way of producing synthetic asteroids and a useful method for initial period
scanning of sparse datasets. In §4 we discuss the sparse observation mode in combination
with dense lightcurves and/or other data such as thermal infrared or radar. We sum up
and discuss future observations in §5.

2. Inversion of photometric data
Asteroid lightcurve observations and their analysis have perhaps three main compo-

nents. In historical order these are:
I. Period analysis for almost 2000 asteroids, including the detection of many binary

systems.
II. Full physical (spin, shape and scattering) modelling from combined datasets, also

with data other than photometric (including, e.g., radar, stellar occultations, thermal
infrared, and adaptive optics).

III. A vast quantity of physical models using accurately calibrated photometry from
large surveys (Pan-STARRS, LSST, etc.) as the main database.

Item I has resulted in statistically important catalogues by Pravec, Harris and others
(Pravec et al. 2007; Harris, private communication): despite the inevitable observational
selection effects, we are beginning to have some idea of the period distribution of aster-
oids. Item II has produced the first reasonably large (more than 100 objects) catalogue
giving us some idea what asteroids are really like: how their spin axes are distributed in
space, what kinds of shapes and irregularities they exhibit, what their actual (spin/shape
corrected) solar phase curves are like, what we can say about their surface properties, etc.
We now have several ground truths from space missions, laboratory studies, etc. from
which we know that photometric modelling gives a good global portrait of the target. For
example, the Keck adaptive optics images of several asteroids coincide, within uncertain-
ties of the two methods, with the predicted plane-of-sky images from photometry-based
models determined earlier (Marchis et al. 2006; the same level of correspondence is also
obtained between the Hubble Space Telescope images of Storrs et al. (1999) and the
photometry-based predictions). Similar shape and pole agreement is also obtained with
the laboratory model of Kaasalainen et al. (2005), or the radar and fly-by target models
in Kaasalainen et al. (2001). Indeed, we can say that a good set of photometric data
essentially enables us to image an asteroid crudely.

Similarly, we know that combining thermal infrared observations with these models
yields, e.g., accurate estimates of surface regolith properties (Mueller et al. 2005). The
models can even be used for getting a colour map of the surface using data at different
wavelengths and thus gain some insight on mineral distributions (Nathues et al. 2005).
The spin properties can reveal evolutionary surprises, in particular in connection with
the YORP effect from thermal radiation (Vokrouhlický et al. 2004; Bottke et al. 2006 and
references therein). While the level of detail from groundbased observations cannot reach
that of in situ space missions, the latter are going to remain few in number. Photometry
alone has the chance to give us a well representative and statistically significant coverage
of the physical properties of asteroids and asteroid populations such as NEOs. Photo-
metric inversion is now a routine process, so obtaining the models is straightforward. We
should also like to note that, from the mathematical point of view, lightcurve inversion
is of considerable interest as it is one of the rather few difficult inverse problems that
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now have rigorous uniqueness and stability results and a robust, well-converging practical
numerical procedure.

2.1. Fundamentals of the problem
There are a few fundamental theorems on lightcurve inversion that we review here in a
nutshell as they are the key to understanding the potential and limitations of photometric
inversion. For details, see Kaasalainen et al. (2001, 2003) and Kaasalainen & Lamberg
(2006) and references therein. With ω and ω0 we denote the viewing and illumination
directions on S2 (unit sphere), and L is the measured brightness (intensity).

Theorem 2.1 (uniqueness theorem). L(ω0, ω)-data on S2×S2 uniquely determine
the curvature of a convex surface. In other words, different viewing and illumination
geometries break the Russell degeneracy ω = ω0, i.e., the ambiguity in modelling a target
from the areas of its simple projections.

In fact, many asteroid observations such as photometric, radar, interferometric, or
adaptive optics ones, are mathematically close cousins: they are essentially representa-
tions of generalized projection operators. This is why the inverse problems of these data
modes are closely related and can be studied with a common approach (Kaasalainen &
Lamberg 2006). Uniqueness theorems can also be shown for, e.g., radar analysis.

It can also be shown that the curvature function of a convex surface B uniquely deter-
mines its shape xB (up to a translation of x), and that the shape construction converges
(the so-called Minkowski problem, see Lamberg & Kaasalainen 2001).

Corollary 1. S2 × S2-data uniquely determine the shape of a convex surface: the
mapping L(ω0, ω) → xB is unique.

Theorem 2.2 (stability theorem). The mapping L(ω0, ω) → xB is continuous for
convex bodies in usual topologies (the inverse problem is conditionally well-posed in the
sense of Tikhonov).

We call this Minkowski stability; its role is now understood to be important in pro-
tecting the solution not only from random noise, but also from systematic errors in both
data and modelling.

It should be noted here that the above theorems assume that the intrinsic darkness
(albedo) of the surface is uniform. So far, probe data from asteroids have shown no
striking albedo contrasts over large areas. Also, noticeable violation of the convexity
condition can be used as an indicator of albedo asymmetry in inversion, and so far only
a couple of asteroids have displayed moderate asymmetry in this sense (Kaasalainen
et al. 2003). Significant albedo variegation without asymmetry would be physically rather
implausible, so albedo uniformity is apparently quite well satisfied on global resolution
level. Furthermore, Minkowski stability applies to shape determination, not to attributing
brightness variations to albedo variegation on the surface, so the former is much safer
than the latter. In other words, visible instability in the inferred albedo map is replaced
by minor changes in the inferred shape (one can imagine a polyhedron modification where
the facet areas are changed here and there, but the overall shape changes little due to
the basic nature of the Minkowski problem).

There is a fundamental difference between the stability and reliability of convex and
nonconvex modelling, and between the parameter spaces the two employ. The convex
modelling is performed in the parameter space describing the Gaussian image of a shape,
and this image is then transformed into shape information in radius space (Kaasalainen
& Lamberg 2006 and references therein). Nonconvex inversion is performed in the radius
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space (R3) directly, which makes the whole process much more vulnerable and ambigu-
ous. On conjectural level, it appears that the photometric L(ω0, ω) data of at least a
starlike nonconvex body (at least when observed at solar phase angles α sufficiently
high) determine its shape as robustly as with a convex body, but only if the scattering
function is known accurately and the noise level is low (Kaasalainen et al. 2001; Ďurech
& Kaasalainen 2003). In all such simulations we have carried out, a nonconvex model
efficiently converges towards the correct minimum of χ2 (with suitable regularization of
radius variation), faithfully displaying the same features as the target even with model
resolution (discretization of the problem) much lower than that of the simulation model.
This seems to be a mathematically interesting extension of the uniqueness theorem for
convex bodies. However, accurate photometry of real targets of known nonconvex shapes
but with inadequately known (and modelled) scattering functions does not yield similar
convergence (and the fit remains worse than with a convex model). This is an exam-
ple of how taking the numerical conjecture directly as a model of reality would be an
“inverse crime” (Kaipio & Somersalo 2005) leading to overoptimistic results: nonconvex
photometric inversion is sensitive to (systematic) errors and the insufficiency of the scat-
tering model, and in reality the scattering behaviour is never known well enough for this
purpose. On the other hand, due to Minkowski stability, convex inversion is quite stable
against the incorrectness of the scattering model (including slight albedo variegation) or
other systematic errors.

We discuss the pole longitude ambiguity theorem with some detail here as the con-
cepts are necessary in later discussion in the paper. Let x = (x, y, z) denote a vector
in a coordinate system fixed to the target (i.e., rotating with it, z-axis aligned with the
rotation axis), and x′ a vector in a nonrotating system (denoted by primes) where the
rotation vector points at the direction given by the spherical coordinates (θ′, ϕ′) (e.g.,
ecliptic or equatorial coordinates; rotation is in the positive direction around this vector,
with period P ). Then x′ and x are related by

x = Rx′, (2.1)

where
R = Rz(φ0 + Ω(t − t0))Ry(θ′)Rz(ϕ′), (2.2)

where t is the time, Ω = 2π/P , φ0 and the epoch t0 are some initial values, and Ri(φ) is
the rotation matrix corresponding to the rotation of the coordinate frame through angle
φ counterclockwise about the positive i-axis. In particular, Rz(φ) is

Rz(φ) =

⎛
⎝

cos φ sin φ 0
− sin φ cos φ 0

0 0 1

⎞
⎠ . (2.3)

Theorem 2.3 (ambiguity theorem). If the viewing and illumination directions ω′

and ω′
0 in a nonrotating frame remain in the same plane at all times of observation ti, the

infinite-distance observations of a body B, with surface points b = (x, y, z) and rotation
vector β′(θ′, ϕ′) given in a coordinate system whose x′y′-plane is the invariant plane, are
indistinguishable from those of a body B̂ with b̂ = (x, y,−z) and β̂′ = β′(θ′, ϕ′ + π). We
call this ecliptic degeneracy.

Proof: We choose the invariant plane defined by ω′ and ω′
0 as the x′y′-plane of the

nonrotating system, so the z′-coordinates of the viewer and the illumination source are
zero. From (2.3) we have

Rz(ϕ′ + π)x′|z′=0 = −Rz(ϕ′)x′|z′=0, (2.4)
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so (2.2) yields

x(ϕ′ + π,x′|z′=0) = −x(ϕ′,x′|z′=0). (2.5)

Since φ0 is arbitrary, we can set φ̂0 = φ0 + π (as (x, y) → (−x,−y) corresponds to a
trivial shape rotation of π in the xy-plane). Therefore a vertical mirror-image shape B̂
(z → −z) with a rotation direction changed by ϕ′ → ϕ′ + π has the same viewing and
illumination directions with respect to the body shape as B and thus yields exactly the
same observations as those of B. �

This ambiguity property affects all data that are not two-dimensionally resolved in a
plane projection, i.e., in this sense equivalent to observations made at infinity. Thus it
appears also with radar data in addition to photometric observations. The coplanarity
of ω′ and ω′

0 is often the approximate case as many asteroids move close to the plane
of the ecliptic. For such targets, only observations with resolved plane-of-sky projections
can properly remove the spin direction ambiguity.

Both Russell and ecliptic degeneracies break fast: asymmetric shapes can easily pro-
duce asymmetric lightcurves at solar phases less than 10◦ (i.e., asymmetry or nonzero
first Fourier harmonic of the lightcurve does not imply albedo variegation), and ecliptic
observation latitudes higher than 10 − 15◦ can already be sufficient for a unique pole
solution (depending on the dataset).

2.2. Surface scattering properties
The main signature of surface scattering properties is the asteroid’s phase curve, partic-
ularly its behaviour near zero phase angle. Proper definition of a phase curve necessarily
includes pole and shape modelling, as then we can plot both the disk-integrated phase
curve for the whole body (with equatorial viewing geometry for standard reference) and
the phase curve for the surface material alone as if it were measured from a sandbox
(Kaasalainen et al. 2001, 2004). If the size of the target is known, we obtain a scale
factor for the latter curve, automatically defining the intrinsic darkness of the material
(rather than use less well-defined concepts such as geometric albedo). Proper modelling
also automatically produces, e.g., the “amplitude-phase relationship” which is thus ac-
tually a redundant concept. Often the phase curves are not very well described by the
H-G system; usually it is better to take the phase curves as such (as they are readily
reproduced from a limited set of parameters) and derive from them any particular values
needed.

In this context, we should discuss the choice of the scattering model in some detail,
rather than take Hapke’s or other models for granted. From the general modelling point
of view, we actually should not use a ready-made scattering model: instead, we should let
it be constrained only by basic principles. Thus, the scattering model S should be of the
general form S(µ, µ0, α) (with the natural assumption that scattering from the surface
material is invariant in the rotation of the surface patches in the tangent plane) where
µ, µ0 are the customary normal cosines of the emergent and incident rays. (Using α here
is essentially equivalent to using the azimuthal angle between the two rays.) With some
physical guidance, a general form for such a model is

S = f(α)S0 = f(α)
µµ0

µ + µ0

∑
ijk

bijkµiµj
0 cos(kα), (2.6)

with b00k ≡ 0, bijk ≡ bjik due to ray reciprocality, and cos(kα) due to symmetry.
The Lommel-Seeliger and Lambert combination typically used in lightcurve inversion

(Kaasalainen et al. 2001) is thus equivalent to using only the lowest-order coefficients
b000 (set to unity) and b100 = b010. It does not have to have any particular physical
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justification: we just use a suitable truncated series of the general scattering form. As
it happens, it already mimicks “physical” scattering models very well, as discussed in
Kaasalainen et al. (2001). In particular, the separation of a phase function f(α) is phys-
ically consistent as by far the most of α-dependent variation of scattering is in this part.
From the inversion point of view, this is enhanced by Minkowski stability: the result is
not very dependent on the scattering model. Thus there is no practical necessity to carry
the scattering series expansion further; indeed, many further coefficients would cause
instability as the disk-integrated data do not contain proper information on them. How-
ever, it is interesting to note that just by including the next two coefficients, b001 and
b101 = b011, i.e.,

S0 = µµ0

[1 + c1 cos α

µ + µ0
+ c(1 + c2 cos α)

]
, (2.7)

we can already get a virtually exact match with the four-parameter Hapke model, and
by adding the next few orders we get the same for the five-parameter rough-surface
Hapke model (Helfenstein & Veverka 1989). This underlines the fact that any scattering
behaviour can be expected to be modellable with a short scattering series, even when
physical scattering models are not sufficient or are ambiguous. Disk-resolved data and
other additional information can be used in determining the coefficients. Also, solving
for bijk is essentially a linear problem, which is easier than, e.g., the determination of
Hapke parameters.

2.3. Systematic errors
The scattering behaviour of asteroid surfaces can be studied accurately with in situ
measurements; so far, only (433) Eros and possibly Itokawa have been studied extensively
enough for this purpose. Li et al. (2004) derived a set of Hapke parameters for Eros from
disk-resolved data. It is natural to ask whether the exactly known shape model (Konopliv
et al. 2002), combined with the determined Hapke model, can reproduce the observed
lightcurves (Lagerkvist et al. 2001) – in other words, can the whole of Eros’ surface
be described by a uniform scattering model? The answer is a conditional yes. Most
lightcurves are fitted perfectly; however, some show clear discrepancies. Upon closer
inspection, the discrepancies are due to systematic data errors. An example of this is
shown in Fig. 1. The first and last lightcurves are fitted exactly, whereas the middle
ones, essentially in the same geometries, are not. Thus the fit deviation is caused by
persistent systematic errors in the data, even though the random noise level is low. This
is a good example of the domination of systematic errors over random ones.

Another example of systematic (modelling) errors in inversion is presented by Ida and
Gaspra. As discussed in Simonelli (1995, 1996), no single scattering model over the surface
can be found that would fit the data with the known shape models (down to the noise
level and without any systematic offset etc. effects). Scattering apparently varies over the
surface. On the other hand, we get an excellent fit with our low-order scattering model
and convex shape. This underlines both the role of Minkowski stability and the fact that
local (nonconvex) shape details cannot be obtained from disk-integrated data. In short,
systematic errors in both data and the model set a resolution limit to our modelling.

How much can we expect our result to be off due to insufficiently well modelled (or
indeed not accurately modellable) scattering? While the effect of random noise is easy
to study, unknown systematic effects are much harder to predict. Thus, it is important
to search for ground truth whenever possible. In this respect, the laboratory study of
Kaasalainen et al. (2005) was particularly useful as there we modelled a target with a
decidedly incorrect scattering law. Even so, the shape obtained was surprisingly accurate,
and the worst pole estimate differed by less than ten degrees of arc from the correct pole
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Figure 1. Examples of simulated lightcurves of the probe-based Eros model against
observations: two lightcurves have systematic errors.

direction, while the best one was only a few degrees away. This seems to set an upper
“worst case” limit – again Minkowski stability comes to our rescue. Accuracy from the
ground truth by space probes is consistently good: the poles in Kaasalainen et al. (2001)
were only a few degrees away from the in-situ-determined ones, while the pole for Itokawa
(Kaasalainen et al. 2006) was only one degree away from the Hayabusa-determined one
(Demura et al. 2006). Thus we can usually safely set a standard error of five or ten
degrees of arc to pole estimates from lightcurve inversion.

Systematic errors can also muddle the details of asteroid models even with data sources
that are expected to be more informative than photometry. For example, delay-Doppler
radar techniques ostensibly provide an excellent chance of obtaining detailed shape in-
formation. However, ground truth from Itokawa shows that the shape inversion of the
apparently detailed high signal-to-noise radar plots did not yield the most obvious global
nonconvex feature (“otter’s head”) of the asteroid – an indication of the feature was
visible, but its actual nature was not revealed (compare the figures in Ostro et al. 2005
and Demura et al. 2006). In this case this was mostly due to the very limited observ-
ing geometries, but nevertheless Minkowski stability in convex inversion is apparently a
rather unique (and lucky) phenomenon as a guard against systematic errors in data and
the model. With partially disk-resolving data sources such as radar, there is the danger
of producing overdetailed models with features that are not actually there.

3. NEO observations and modelling
The foremost characteristic of NEOs is the quickly changing and wide-ranging observ-

ing geometry. The spin solution seldom has the ecliptic degeneracy as the observational
ecliptic latitudes are often sufficiently high; just one or two apparitions may already
offer suitably varying geometries for modelling, and the solar phase angle α reaches
large values. Typical NEO photometric observations and their modelling are presented
in Kaasalainen et al. (2004).
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3.1. The effect of solar phase angle
The larger the phase angle α, the further away the target is from the Russell degeneracy
S2 × S2 → S2, i.e., the larger the shading effects, the more information there is on the
shape (and spin). In principle, photometry at large phase angles obviously carries infor-
mation on nonconvex shape features. In practice, this information is seldom obtainable as
the phase angle should be unrealistically high, especially since the scattering properties
are not modellable accurately enough.

It is possible to express a rough relationship between the size of nonconvex features of
a body and the minimum solar phase angle αmin needed for the photometric detection of
those features (Ďurech & Kaasalainen 2003). A convenient measure of the nonconvexity
degree of a body is the dimensionless quantity of nonconvexity measure Vnc, 0 � Vnc < 1
defined as

Vnc = 1 − V

Vch
, (3.1)

where V is the volume of the body and Vch the volume of its convex hull. For example,
for Gaspra Vnc = 0.05, while for Castalia (radar), Eros, Ida, and Kleopatra (radar) the
corresponding values are, respectively, 0.08, 0.15, 0.18, and 0.36. For two ellipsoids in
contact with each other, Vnc = 0.2, while for two separated ellipsoids with an ellipsoid-
size gap Vnc = 0.5.

If a set of lightcurves can be explained with a convex shape down to the noise level,
this set obviously contains no information on nonconvexities; αmin is defined as the phase
angle at which a convex model no longer fits the data as well as a nonconvex one. A large
set of both synthetic and real shape models displays a clear correlation between αmin

and Vnc (Ďurech & Kaasalainen 2003); we roughly have

αmin = 120◦ − 220◦Vnc. (3.2)

Usually only small asteroids have Vnc > 0.2, so it is clear that very few MBAs can show
any photometric information on nonconvexities. Even strongly nonconvex NEOs seldom
have Vnc > 0.3, so photometry cannot detect nonconvexities on most NEOs either.

Surface undulation gives more pronounced shadowing effects at larger phase angles, as
is well known from, e.g., the role of the surface roughness parameter in the Hapke model.
However, simple crater simulations (Kaasalainen et al. 2004) show that statistical cra-
tering mostly yields the same correlation effect as αmin for separate nonconvex features.
Only datasets of very densely cratered surfaces at high solar phase angles (α > 90◦)
cannot be explained with a locally smooth surface (i.e., a matte-like surface containing
only small-scale roughness included in the scattering law).

3.2. Modelling considerations
More complex dynamical behaviour than constant-period principal-axis rotation is found
in some NEOs due to their small size. Any well-modellable dynamics is straightforward
to analyze in the lightcurve inversion scheme: we just modify the rotation equation (2.2)
suitably. Precessing motion (and its photometric distinguishability from binary motion)
is discussed in Kaasalainen (2001, et al. 2003) and Pravec et al. (2005, 2007). YORP
effect causes an essentially linear change in the angular speed Ω (for some range of time)
due to thermal torque (Vokrouhlický et al. 2004, Bottke et al. 2006):

Ω(t) = Ω(t0) + υ∆t, (3.3)

where the effect parameter is υ, and ∆t = t − t0. Thus the period change rate is

Ṗ = − υ

2π
P 2 [⇒ P (t) = (

υ

2π
∆t + P (t0)−1)−1]. (3.4)
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Figure 2. Offspring of Golevka and Eros (left), and Ida and Gaspra (right).

This causes a phase lag quadratic in time, described by just the one additional parameter
υ that can be directly included in inversion. To be detected, the phase lag δφ due to YORP
must be larger than the linear phase shift due to period uncertainty ∆P (estimated at
an epoch earlier than the comparison time ∆t) and the difference between YORP base
period P (t0) and the best-fit constant period Pc:

δφ =
1
2
|υ|(∆t)2 > ∆t

[ 2π

P 2
c

∆P +
∣∣∣Ω(t0) −

2π

Pc

∣∣∣
]
. (3.5)

The latter contribution to the linear shift occurs since the constant-period fit tries to
compensate for YORP effect by finding a period slightly different from P (t0) such that
the phase shifts are minimized over the timeline used for period determination. The phase
lag as such is basically just a visual effect. The ultimate test and measurement of YORP
effect is the inclusion of υ in (2.2) in inversion: if the resulting χ2 is clearly better with
a distinctly nonzero υ, the change in rotation is properly measurable.

As demonstrated by the colour map of Eunomia in Nathues et al. (2005), the use
of various filters can provide information on the global variegation of surface material.
Surveys such as Pan-STARRS will obtain data through a number of filters, so even sparse
datasets should be sufficient for at least indicating colour variegation.

Since even very small NEOs are observable, the target shapes can vary considerably, as
can be seen from the variety of models in Kaasalainen et al. (2004). In modelling synthetic
datasets, this should be taken into account. Arbitrary synthetic shapes can be produced
in many ways; here we introduce a rather natural means of obtaining quasiasteroidal
shapes. Rather than use random-generated realizations of statistical or fractal measures
for describing surface undulation and global shape variation, we can draw from the supply
of existing real shape models and modify these. The results look usually more realistic
than synthetic random models. For example, we can combine the shapes of two asteroids
in a genetic fashion; with such asteroid breeding from an initial population, we can obtain
as large and as varying an offspring population of models as desired. In Fig. 2 we show
two such examples from pairing Eros and Golevka (Konopliv et al. 2002; Hudson et al.
2000) or Ida and Gaspra (Thomas et al. 1994, 1996). These were generated by expressing
the original shapes (with the same volume and centroids at origin) as spherical harmonics
series, and then picking coefficients for a new series by randomly switching between the
two series. Coefficients can also be “mutated” randomly. Bodies generated in this manner
present typical-looking features – indeed, one can breed a series of varying shapes with
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some common main characteristics, if wanted. Morphological characteristics, such as the
“banana” shape of Eros, are easy to preserve in this way.

3.3. Sparse photometry and surveys as future basis

It is at first sight almost counterintuitive that sparse sequences are sufficient for asteroid
modelling as shown in Kaasalainen (2004) and Ďurech et al. (2006, 2007). After all, the
sampling interval is for most targets much longer than the sidereal period, so ordinary
time-series methods such as Fourier or power spectrum analysis (used for initial period
estimation of traditional lightcurves) are completely useless. The reason for the sufficiency
is that the underlying well-defined mathematical model is highly constraining: only a
certain type of an object can create a given sparse sequence as long as there are enough
points at various observing geometries. In fact, sparse sequences are handled just like the
ordinary lightcurve inversion problem: the mathematical model takes care of filling the
gaps. Now we just have to scan a wide range of potential periods as the rotation period
is not apparent in the data before the actual modelling.

The YORP effect can easily be included in the inversion just like for dense lightcurves.
For the latter, one can directly see the phase lag in plots; for sparse sets, there have
to be enough data points in different apparitions so that the lagged phases affect the
fit χ2 properly, i.e., the inclusion of the YORP parameter υ significantly improves the
fit. One may also see an indication of YORP if the constant-period fit is good for one
time interval while the deviations grow larger further away from it. For certain targets,
υ should possibly be included at the outset as otherwise the effect might go unnoticed
(there could still be a clearly best period for the dataset, and the increased deviation
would be taken for noise).

A typical requirement for a sparse dataset is some 100 well-distributed data points over
five years for main-belters, while for NEAs even less is sufficient (Kaasalainen 2004). The
calibration accuracy should be at least around 0.05 mag, so the new surveys can indeed
meet the requirements. The surveys can make use of data at smaller solar elongations
than those typical for ordinary lightcurves since only one point is needed at a time;
thus the geometry coverage is wider (i.e., the observational gaps between apparitions are
narrower). This is why the observation geometry range of groundbased surveys is not
really very much smaller than that of satellite-based ones.

3.3.1. Fast initial period scanning

The sparse datasets have to be scanned for all potential period ranges; in certain cases
there are some indications of the range (fast or slow rotators; see Ďurech et al. 2007),
but basically the sparse data do not show any period signatures prior to modelling.
Doing full modelling for each possible period “slot” roughly separated by the interval
∆P ≈ (1/2)P 2/T , where P is the trial period and T the timeline of the dataset, is
somewhat time-consuming. The period ranges can effectively be initially scanned by
using a simplified model to detect the most likely values or value ranges. Indeed, in
many cases even using just a brick to model the asteroid will highlight the best few
period locations. We have found that a practical model for initial scanning is simply
a geometrically scattering ellipsoid (Ostro and Connelly 1984) with linear-exponential
phase function f(α) (Kaasalainen et al. 2001). Thus the model reads (with an arbitrary
scaling factor absorbed in f(α) if desired)

L = f(α)
[√

eT Me +
eT Ms√
sT Ms

]
, (3.6)
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where

f(α) = A0 exp
(
− α

D

)
+ kα + 1, (3.7)

with A0,D, k as free parameters, and

M =

⎛
⎝

1/a2 0 0
0 1/b2 0
0 0 1/c2

⎞
⎠ , (3.8)

and

e = Re′, s = Rs′, (3.9)

where e′ and s′ are, respectively, the unit vectors of the Earth’s and the Sun’s positions
in an inertial coordinate system (equatorial or ecliptic), and R is given by (2.2). The
model has only nine parameters: three for f(α), two for semiaxes a, b (setting c = 1),
two for the pole direction, and P, φ0 for period and initial rotational phase (of a-axis).
These parameters are optimized very fast by the Levenberg-Marquardt algorithm (Press
et al. 1990) as both the model and the gradients w.r.t. parameters are very simple to
evaluate in the fully analytical form above. (Using a more realistic scattering model for
the ellipsoid would be useless as then the numerical computation of the surface integral
would take just as long as for the proper full model.) To ensure positive values for a, b
as well as realistic shapes (a, b > c = 1) it is useful to write the semiaxes in the form

a = 1 + exp(p), b = 1 + exp(q), (3.10)

where p, q are the parameters to be optimized. It is interesting to note that though the
best fit from this initial model is, of course, much worse than that obtained with a full
model, the fit for incorrect periods is also considerably worse than with a full model. In
other words, the level of the typical chi-square “thicket”, below which the best period
must stand out, increases, making it possible for the good period(s) to show even if their
actual fits (and the rest of the simplified model) are bad. Of course this does not apply
to all targets, but the majority can be initially scanned in this manner (Ďurech et al.
2007).

4. Combined datasets
4.1. Sparse and dense photometry

Of course one cannot expect to get too much out of a handful of data points, especially
if a number of these are noisier than expected (there are bound to be several outliers
no matter what the engineers say). The models from sparse photometry are rough and
in many cases (mildly) nonunique. This is where follow-up observations and observer
networks come in. Even just one additional dense lightcurve would be of great help in at
least the following cases:

1. There are more than one possible periods fitting the sparse data. This happens if
the number of sparse data points is subcritical. The number is a complicated function
of survey strategy and technical choices and can thus vary a lot. This may also happen
with faint targets for which data are noisy, or with very spheroidal targets. Also, since
the number of objects is so large, each target will only be given some standard computer
time for analysis. Most of this time is spent in period scanning, and some targets will run
out of the allocated pipeline time for period search as there will be both very fast and
very slow rotators. Such targets will thus be flagged with “period not found” and saved
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Figure 3. Sparse USNO dataset of (87) Sylvia from five apparitions (143 epochs). The
observed intensity is reduced to unit distance from the Earth and the Sun.

for later analysis. Additional lightcurves will help to determine what the actual period
region is.

2. Even if the period is known, there may be more than one independent pole solutions.
This, again, happens with slightly too small sparse datasets. Here one should note that
for objects moving close to the plane of the ecliptic, the ecliptic degeneracy cannot be
removed by photometric means, regardless of the method.

3. There are sparse data points that just cannot be fitted. This usually means that the
target is a binary (mutual events affect some data) or a tumbler (or otherwise somehow
strange and thus interesting), or the points are just outliers. A dense lightcurve can help
in clearing the matter. We expect several targets to be flagged for follow-up observations
in this manner.

4. Quality and reliability check. Even if everything seems to be fine with the sparse
data analysis and we get a full model, we must do random checks to make sure that
essentially the same model pops out from the combined sparse and dense datasets. If the
models are different, we have overlooked something.

5. More detail needed. If the object seems to be strangely shaped, we need more data
points to get additional details.

The following example well portrays the power of combined databases, even when the
survey data are very noisy. Even a limited additional dataset thus greatly boosts the
value of the survey set. In this case, it actually makes the inversion possible in the first
place as the sparse set alone is insufficient for modelling due to noise. The sparse set of
asteroid 87 Sylvia (Fig. 3) was extracted from the astrometric database available at the
Asteroids Dynamic Site (AstDys); the data were obtained at the U.S. Naval Observatory,
Flagstaff. The dense lightcurves of the same asteroid in Fig. 4 essentially correspond to
just one observation geometry, simulating a typical additional dataset for a target. These
were chosen from the Uppsala Asteroid Photometric Catalogue (Lagerkvist et al. 2001).
Lightcurve inversion of the full set of all available 40 lightcurves of Sylvia leads to the
shape model shown in Fig. 5, left. The model derived from only the four lightcurves
and sparse data (Fig. 5, right) is somewhat different as expected as the USNO data are
obviously very noisy, more than 0.1 mag on average. Nevertheless, the model portrays
many similar global characteristics. Above all, the pole directions of the two models are
only seven degrees of arc apart and the rotation periods are the same. The inversion
would not have been possible with either dataset alone.

There are currently almost 2000 asteroids for which one or more lightcurves have been
observed – thus we can expect that many of these can be modelled after only a few years
of survey photometry. For targets with limited datasets it will probably be useful to run
cross-check analyses by using the dataset geometries and a synthetic model; this will give
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Figure 4. Dense lightcurves of Sylvia as an additional dataset. The dashed curve is the fit
from the shape model.

Figure 5. Left: shape model (pole-on view) of 87 Sylvia from all dense lightcurves (Uppsala
catalogue), right: the model from the noisy sparse+dense data. The spin solutions are essentially
the same.

an indication of how much the result of the analysis might be off (even when the result
appears to be unique and well-behaving).

4.2. Multidatainversion with generalized projection operators
Multidatainversion is usually based on photometry combined with any other data sources.
Typically, photometry (sparse or dense) already provides a good estimate of the param-
eters, and the complementary source is employed to yield a detailed solution. Most often
the improvement lies in revealing nonconvex features of the body or in removing the
ecliptic degeneracy.

The general principle of multidatainversion is to form a joint goodness-of-fit χ2
tot that

combines the χ2 from the main source with the χ2
i of the complementary sources i,

multiplied by suitable weights λi. Thus we have

χ2
tot = χ2 +

∑
i

λiχ
2
i . (4.1)

The weights are adjusted in minimizing χ2
tot with the condition that each χ2

i as well as
χ2 be acceptable. This condition usually leads to a certain degree of nonuniqueness in
the solution as there may be several feasible sets of weights that fulfill the condition and

https://doi.org/10.1017/S1743921307003195 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307003195


164 M. Kaasalainen & J. Ďurech

Figure 6. Doppler spectrum of the target (asterisks), with fits from convex model based on
photometry alone (dot-dash) and the nonconvex model based on combined photometry and
radar (dashed line).

Figure 7. View of the target (left) and the nonconvex model (right) in the same direction in
which the Doppler spectrum was computed.

lead to virtually equal values of χ2
tot. Also, the exact values of the maximal allowed χ2

i

are usually not well defined in practice: these depend not only on the noise levels of the
individual sources, but also on systematic effects such as the expected reliability of a
source. Furthermore, insufficiency of the model affects fits for separate data sources dif-
ferently. In practice, the multidatainversion results from generalized projection operators
appear to be quite stable; one reason for this is the stability of the solution from the
main source, photometry.

Here we demonstrate the important role of even small datasets of complementary infor-
mation in multidatainversion. In Fig. 6 we show the simulated Doppler radar spectrum
(in arbitrary units) of the target on the left in Fig. 7. The viewing direction ω is the
same in both cases (note that the sign convention of the Doppler velocity makes the
spectrum look like a “mirror image”). The convex inversion of simulated photometric
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data produces a model close to the convex hull of the target, giving an excellent fit to the
data. Thus the data do not contain proper information on the sizable nonconvex features
of the target. However, the convex model gives a poor fit to the observed Doppler spec-
trum (dot-dash line), so even one spectrum already contains significant information when
added to other data. Using a spherical harmonics series for the radius of the (starlike)
model and Levenberg-Marquardt algorithm to minimize χ2

tot, we obtained the noncon-
vex model displayed on the right in Fig. 7. The generalized projection integrals were
computed with a densely tessellated polyhedral surface representation. While still giving
an excellent fit to photometric data, the model also fits the Doppler spectrum very well
(dashed line), and well reproduces the main features of the target (with lower resolution:
largest degree and order l,m for the function series are both 6).

As shown in Kaasalainen & Lamberg (2006), similar multidatainversion can be per-
formed with, e.g., interferometric data. For NEOs, radar is the most important addi-
tional data source. With survey photometry analysis, we can expect to detect interesting
targets (binaries, tumblers) that need radar (as well as dense lightcurve) observations
for complete analysis. Such synergy will make all observations much more time-efficient
than now. Another important additional data source is thermal infrared. Combining
photometry-based models with IR, we can get very good estimates of the sizes and re-
golith properties of NEOs, as Hayabusa ground truth from Itokawa well confirms (Mueller
et al. 2005, 2007).

5. Conclusions
Photometric datasets at well-covered observing geometries essentially allow us to im-

age asteroids and to obtain their spin states (including tumbling, YORP effect, etc.) and
scattering characteristics. Observations of NEOs offer widely ranging and quickly chang-
ing geometries, so data sufficient for modelling are usually obtained faster than for other
asteroids. The future of photometric observations and analysis lies in sparse datasets
obtained in surveys, and often also in their combination with other datasets. Systematic
errors dominate over random noise, which should be remembered in the analysis and
error estimation. The most time-consuming part of sparse data analysis is the period
determination, but it can often be greatly speeded up with a simplified model for initial
period scanning.

We will obtain thousands of good NEO models from surveys such as Pan-STARRS and
LSST. With such numbers, the selection effects and biases are smaller than hitherto as the
surveys simply record everything. Obtaining additional data (radar, dense lightcurves,
etc.) will also be more time-efficient as we know what to observe and when, and even
small amounts of additional data will improve sparse photometry considerably. This
makes observer networks very important in coordinating databases and follow-up work.

Software packages, manuals and links for lightcurve inversion (and links for download-
ing) can be found at www.rni.helsinki.fi/∼mjk. While the programs are straightfor-
ward to use, the user must have some knowledge of what they require and produce, and
how to interpret the result. This paper and some of the references here should be suffi-
cient for the purpose, but experience is the only good teacher. We hope that the open
software will be developed further by various users.

Acknowledgements

We thank Alan Harris, Robert Jedicke, Anna Marciniak and Brian Warner for useful
comments and discussions. This work was supported by the Academy of Finland.

https://doi.org/10.1017/S1743921307003195 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921307003195


166 M. Kaasalainen & J. Ďurech
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