AN ESSENTIAL INTEGRAL DOMAIN WITH A NON-ESSENTIAL LOCALIZATION

WILLIAM HEINZER

An integral domain D is said to be an *essential domain* if D is an intersection of valuation rings that are localizations of D. D is called a ν -multiplication ring if the finite divisorial ideals of D form a group. Griffin has shown [2, pp. 717–718] that every ν -multiplication ring is an essential domain, and that an essential domain having a defining family of valuation rings $\{V_{\alpha}\}$ which is of finite character (i.e., every nonzero element of D is a non-unit in at most finitely many V_{α}) is necessarily a ν -multiplication ring. It is noted in [4, p. 860] that any localization of a ν -multiplication ring is again a ν -multiplication ring. In this vein, Joe Mott has asked whether a localization of an essential domain must again be an essential domain. An example of an essential domain that is not a ν -multiplication ring is given in [4], however it can be seen for this example that each localization is again an essential domain [6]. Our purpose here is to construct an essential integral domain D having a prime ideal P such that D_P is not essential.

In constructing the example we will use some properties of Kronecker function rings that we briefly review, see for example [1]. If A is an integrally closed domain with quotient field F, t is an indeterminate over F, and $\{B_{\alpha}\}$ is the set of valuation rings of F that contain A, then for each $B \in \{B_{\alpha}\}$ the ring B(t) gotten by localizing the polynomial ring B[t] with respect to the multiplication system of polynomials having a unit coefficient is a valuation ring of F(t) extending B, and the ring $C = \bigcap_{\alpha} B_{\alpha}(t)$ is called *the Kronecker function ring of A with respect to t*. It is well-known that C is a Bezout domain, so in particular, each localization of C at a prime ideal is a valuation ring. Moreover, each such valuation ring has the form B(t) where $B \in \{B_{\alpha}\}$. We note that this implies that each nonzero prime ideal of C has a nonzero contraction to A. We also have $C \cap F = A$, and t is a unit in C.

The idea in our construction is as follows: We begin with a 1-dimensional quasi-local integrally closed domain V such that V is not a valuation ring. Then V is certainly not an essential domain. We obtain such a V on a field K such that there exists an integral domain $D \subset V$ with V having center a maximal ideal P of D, $D_P = V$, and such that for each prime $Q \neq P$ of D, D_Q is a valuation ring. In order that D be

Received August 10, 1979. This research was supported by NSF Grant MCS 78-00798.

essential we then also want D to have the property that

$$D = \bigcap \{ D_Q | Q \neq P, Q \text{ a prime of } D \}.$$

We obtain this last property in stages, making use of Kronecker function rings, and expressing D as an infinite union of subrings.

Construction of the example. Let k be a field, let y, z, x_1, x_2, \ldots be indeterminates over k, and let K denote the field $k(y, z, x_1, x_2, \ldots)$. Let W be the rank one discrete valuation ring $k(z, x_1, x_2, \ldots)$ $[y]_{(y)}$, and let M denote the maximal ideal of W. Then $W = k(z, x_1, x_2, \ldots) + M$, and $V = k(x_1, x_2, \ldots) + M$ is a 1-dimensional quasi-local integrally closed domain with quotient field K such that W is the unique rank one valuation ring on K that contains V. Let K_n denote the subfield $k(y, z, x_1, \ldots, x_n)$ of K, and let $V_n = V \cap K_n$. We note that $V_n = k(x_1, \ldots, x_n) + (M \cap K_n)$ is a 1-dimensional quasi-local integrally closed domain with quotient field K_n , and that $W_n = W \cap K_n$ is the unique rank one valuation ring of the field K_n that contains V_n . To begin the construction we wish to define on K_2 an appropriate Kronecker function ring extension of V_1 . Let

$$t_2 = (1 + yx_2)/y,$$

and note that

$$K_1(t_2) = K_1(x_2) = K_2.$$

We set R_2 to be the Kronecker function ring of V_1 defined with respect to t_2 , and let $D_2 = R_2 \cap V_2$. Since $1 + yx_2$ is a unit of V_2 and y is in the maximal ideal of V_2 , $1/t_2$ is a unit of R_2 that is in the maximal ideal of V_2 . Hence $1/t_2 \in D_2$, and $D_2[t_2] = R_2$, so that R_2 is a localization of D_2 . Moreover, y is in the maximal ideal of V_1 implies that yt_2 is in every nonzero prime of R_2 . Since $yt_2 = 1 + yx_2$ is a unit of V_2 , we see that

$$D_2[1/yt_2] = V_2$$

cf. [5, Lemma 1.1, p. 292]. Also from the fact that yt_2 is in every nonzero prime ideal of R_2 and $1 - yt_2$ is in the center P_2 of V_2 on D_2 , we have that P_2 is a maximal ideal of D_2 [3, Corollary 1.20, p. 113]. It follows that if Q is any prime ideal of D_2 other than P_2 then $R_2 \subset (D_2)_Q$. Hence each such $(D_2)_Q$ is a valuation ring, and we have

 $R_2 = \bigcap \{ (D_2)_Q | Q \text{ is a prime of } D_2 \text{ distinct from } P_2 \}.$

We define R_3 to be the Kronecker function ring of D_2 with respect to

$$t_3 = (1 + yx_3)/y$$

on the field

$$K_2(t_3) = K_2(x_3) = K_3.$$

We set $D_3 = R_3 \cap V_3$. Since y is in every nonzero prime of D_2 , yt_3 is in every nonzero prime of R_3 . Moreover, $yt_3 = 1 + yx_3$ is a unit of V_3 , so as above we have that R_3 and V_3 are both localizations of D_3 , the center P_3 of V_3 on D_3 is a maximal ideal, and

$$R_3 = \bigcap \{ (D_3)_q | Q \text{ is a prime of } D_3 \text{ distinct from } P_3 \}.$$

An easy induction argument yields for each integer n > 2 integral domains R_n and $D_n = R_n \cap V_n$ on the field K_n such that

(i) R_n is the Kronecker function ring of D_{n-1} with respect to $t_n = (1 + yx_n)/y$, and $D_{n-1} \subset D_n$.

(ii) R_n and V_n are both localizations of D_n , the center P_n of V_n on D_n is a maximal ideal of D_n , and $P_n \cap D_{n-1} = P_{n-1}$.

(iii) $R_n = \bigcap \{ (D_n)_Q | Q \text{ is a prime of } D_n \text{ distinct from } P_n \}.$

Moreover, between D_{n-1} and D_n we have the following

(iv) For each prime $Q' \neq P_{n-1}$ of D_{n-1} there is a unique prime Q of D_n such that $Q \cap D_{n-1} = Q'$. This prime Q is such that

 $(D_n)_Q = (D_{n-1})_{Q'} (t_n).$

Proof. By (iii), $R_{n-1} \subset (D_{n-1})_{Q'}$ so $(D_{n-1})_{Q'}$ is a valuation ring of K_{n-1} containing D_{n-1} . Since R_n is the Kronecker function ring of D_{n-1} , $(D_{n-1})_{Q'}$ has a unique extension $(D_{n-1})_{Q'}$ (t_n) to a valuation ring of K_n containing R_n . In view of (iii), the center Q of $(D_{n-1})_{Q'}$ (t_n) on D_n is the unique prime of D_n lying over Q' in D_{n-1} , and

 $(D_n)_Q = (D_{n-1})_{Q'} (t_n).$

We set $D = \bigcup_{n=2}^{\infty} D_n$ and $P = \bigcup_{n=2}^{\infty} P_n$. Since $V = \bigcup_{n=2}^{\infty} V_n$, and $(D_n)_{P_n} = V_n$ for each *n*, we have $V = D_P$. Moreover, if *Q* is a prime of *D* distinct from *P*, then $Q \cap D_n = Q_n \neq P_n$ for some *n*. Hence $R_n \subset (D_n)_{Q_n}$ and $(D_n)_{Q_n}$ is a valuation ring on K_n . Condition (iv) implies that

 $D_Q = (D_n)_{Q_n} (t_{n+1}, t_{n+2}, \ldots),$

so that D_Q is a valuation ring. Finally we wish to show that

 $D = \bigcap \{D_Q | Q \text{ is a prime of } D \text{ distinct from } P\}.$

Let $\theta \in K$, $\theta \notin D$. We wish to show that $\theta \notin D_q$ for some prime $Q \neq P$ of D. Since $K = \bigcup_{n=2}^{\infty} K_n$, $\theta \in K_{n-1}$ for some integer n > 2. Since $R_n \cap K_{n-1} = D_{n-1}$, we have that $\theta \notin R_n$. Hence, by condition (iii), $\theta \notin (D_n)_{q_n}$ for some prime $Q_n \neq P_n$ of D_n . It follows from condition (iv) that there exists a prime Q of D such that

$$Q \cap D_n = Q_n$$
 and $D_Q = (D_n)_{Q_n} (t_{n+1}, t_{n+2}, \ldots).$

Since $\theta \notin (D_n)_{Q_{n'}}$ we have that $\theta \notin D_Q$. This completes our verification of the example.

Remark. It would be interesting to know if there exists a 1-dimensional essential domain with a non-essential localization. Since the 1-dimensional quasi-local domains V_n in the above construction have valuative dimension 2, the Kronecker function rings R_n have dimension 2, and it can be seen that D is 2-dimensional.

Acknowledgement. I would like to thank Joe Mott for several helpful conversations on essential domains and the question of when localizations of such domains are again essential.

References

- 1. R. Gilmer, *Multiplicative ideal theory* (Marcel Dekker, New York, 1972).
- 2. M. Griffin, Some results on v-multiplication rings, Can. J. Math. 19 (1967), 710-722.
- 3. W. Heinzer, Noetherien intersections of integral domains, II, Lecture Notes in Mathematics 311 (1972), 107-119.
- W. Heinzer and J. Ohm, An essential ring which is not a v-multiplication ring, Can. J. Math. 21 (1972), 856-861.
- 5. —— Noetherien intersections of integral domains, Trans. Amer. Math. Soc. 167 (1972), 291–308.
- 6. J. Mott and M. Zafrullah, On Prüfer v-multiplication domains, to appear.

Purdue University, W. Lafayette, Indiana