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Linear Operators
on Matrix Algebras that Preserve
the Numerical Range,
Numerical Radius or the States

Chi-Kwong Li and Ahmed Ramzi Sourour

Abstract. Every norm ν on Cn induces two norm numerical ranges on the algebra Mn of all n × n

complex matrices, the spatial numerical range

W (A) = {x∗Ay : x, y ∈ Cn, νD(x) = ν(y) = x∗y = 1},

where νD is the norm dual to ν, and the algebra numerical range

V (A) = { f (A) : f ∈ S},

where S is the set of states on the normed algebra Mn under the operator norm induced by ν. For a

symmetric norm ν, we identify all linear maps on Mn that preserve either one of the two norm numer-

ical ranges or the set of states or vector states. We also identify the numerical radius isometries, i.e.,

linear maps that preserve the (one) numerical radius induced by either numerical range. In particular,

it is shown that if ν is not the `1, `2, or `∞ norms, then the linear maps that preserve either numerical

range or either set of states are “inner”, i.e., of the form A 7→ Q∗AQ, where Q is a product of a diagonal

unitary matrix and a permutation matrix and the numerical radius isometries are unimodular scalar

multiples of such inner maps. For the `1 and the `∞ norms, the results are quite different.

1 Introduction

Let Mn be the algebra of n × n complex matrices, and let ‖ · ‖ be the operator norm
on Mn induced by a norm ν on Cn, i.e.,

‖A‖ = max{ν(Ax) : x ∈ Cn, ν(x) ≤ 1}.

Suppose X and Y are complex matrices or vectors of the same size. Denote by
(X,Y ) = tr(XY ∗) the usual inner product on matrices, and denote by νD and ‖ · ‖D

the dual norms of ν and ‖ · ‖, respectively, i.e.,

νD(y) = max{|(y, x)| : ν(x) ≤ 1} and ‖B‖D
= {|(B,A)| : ‖A‖ ≤ 1}.
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We note that in our version of duality, the identification of (Cn, νD) with the dual
space of (Cn, ν), is conjugate-linear rather than linear, i.e., the linear functional fy on

(Cn, ν) induced by a vector y is given by fy(x) =
∑n

j=1 x j y j . This is at variance with
standard notation in classical Banach space theory, but consistent with Hilbert space
duality. Similarly the duality (X,Y ) between (Mn, ‖ · ‖) and (Mn, ‖ · ‖D) is variably
given in the literature as tr(XY ∗), as we do, and also tr(XY t ) or tr(XY ).

A state on a normed algebra A (with identity I of norm one) is a linear functional
f on A such that f (I) = ‖ f ‖ = 1. With the usual identification of Mn with its dual,
the set Σ of states is then identified with the set S ⊂ Mn described below, which we
shall also refer to as the set of states on Mn with respect to the norm ‖ · ‖.

(1.1) S = {B ∈ Mn : tr B = ‖B‖D
= 1}.

The following subset

(1.2) R = {xy∗ : x, y ∈ Cn, νD(x) = ν(y) = x∗y = 1}

is called the set of vector states. There are two norm numerical ranges of A ∈ Mn

associated with ν. The spatial numerical range

Wν(A) = {(A,Z) : Z ∈ R}

= {x∗Ay : x, y ∈ Cn, νD(x) = ν(y) = x∗y = 1},

(1.3)

and the algebra numerical range

(1.4) Vν(A) = {(A,Z) : Z ∈ S}.

When there is no ambiguity about the norm ν, we simply write

W (A) = Wν(A) and V (A) = Vν(A).

It is known (see [3, p. 84] and Corollary 2.2 below) that V (A) is the convex hull of
W (A), i.e.,

(1.5) V (A) = conv W (A).

In view of this, there is only one norm numerical radius associated with the numerical

ranges, namely,

rν(A) = max{|µ| : µ ∈ W (A)} = max{|µ| : µ ∈ V (A)}.

Again, when there is no ambiguity about ν, we simplify write

r(A) = rν(A).

The numerical radius is a norm on Mn and (see [3, p. 34])

(1.6) e−1‖A‖ ≤ r(A) ≤ ‖A‖,
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where e is the Euler constant. It is obvious that W (A) includes every eigenvalue of A
and hence

(1.7) ρ(A) ≤ r(A),

where ρ(A) is the spectral radius of A.
The standard reference for norm numerical ranges is [3]. See also [2, 17].
When ν is the `2 norm, S is the set of positive semidefinite matrices with trace 1

and W (A) = V (A) is the classical numerical range of A acting on the n-dimensional
Hilbert space Cn, which has been studied extensively; see [8, 9] for background. In
this case, the linear preservers of the numerical range are known. A result of Pellegrini
[18] implies that a linear operator φ on Mn satisfies V

(

φ(A)
)

= V (A) for all A ∈ Mn

if and only if its dual transformation φ∗ satisfies φ∗(S) = S. If ν is the `2 norm, then
one may use a result of Kadison [10] on state preserving maps to deduce that there is
a unitary U ∈ Mn such that φ has the form

A 7→ U∗AU or A 7→ U ∗AtU .

In this article, we consider linear maps on Mn that preserve numerical ranges and
radii induced by symmetric norms ν on Cn, i.e., norms ν that satisfy ν(Px) = ν(x)
for every P that is either a permutation matrix or a diagonal unitary matrix. (Some

authors refer to these norms as symmetric and absolute.) We give a complete charac-
terization of those linear operators φ on Mn satisfying

(1.8) F
(

φ(A)
)

= F(A) for all A ∈ Mn,

where F(A) = W (A), V (A) or r(A). A linear operator φ on Mn satisfying (1.8) is

called a linear preserver of the function F.
It is evident that if ν is any norm on Cn and if T is a linear isometry of (Cn, ν),

then the “inner” map A 7→ T−1AT preserves each of the two numerical ranges. The
main result of Section 3 is that the converse is also true when ν is a symmetric norm

other than multiples of the `1, `2 or `∞ norms. i.e., the numerical range preservers
are all inner. These results differ from the `2 results in as much as the transpose map
is no longer present and that the group of isometries of the underlying space (Cn, ν)
is much smaller. We also give in Section 5 a complete description for the preservers of

the numerical ranges when ν is the `1 or the `∞ norm. The preservers of the spatial
numerical range are also inner, but there are more linear preservers of the algebra
numerical range.

In Section 4, we identify the numerical radius isometries, i.e., the numerical radius

preservers. When ν is a symmetric norm other than multiples of the `1 or the `∞
norm, such maps are unimodular scalar multiples of the numerical range preservers.
This is again not true for the `1 or the `∞ norms and we characterize the numerical
radius preservers in these exceptional cases in Section 5.

We end this section by fixing notation and terminology.
By a complex unit, we mean a complex number of modulus one. Also the term

“unimodular complex number” is used synonymously. Vectors in Cn are always as-
sumed to be column vectors so that xy∗ is an n × n matrix, while y∗x is the inner
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product of x and y. We always assume that ‖ · ‖ is the operator norm on Mn induced
by a symmetric norm ν on Cn unless specified otherwise. Since one may replace ν
by γν for any γ > 0 without changing ‖ · ‖, W (A) and V (A), we often assume that
ν(e1) = 1.

Furthermore, we use the following notation and terminology.

– {e1, . . . , en}: the standard basis for Cn,

– e = e1 + · · · + en,
– (x, y) = y∗x: the usual inner product on Cn,
– `p(x): The `p norm of x ∈ Cn; (1 ≤ p ≤ ∞),
– {E11, E12, . . . , Enn}: the standard basis for Mn,

– (X,Y ) = tr(XY ∗): the usual inner product in Mn,
– conv S: the convex hull of a given set S,
– Ext S: the set of extreme points of a compact convex set S,
– E = Ext B, where B = {x ∈ Cn : ν(x) ≤ 1},

– ED
= Ext BD, where B = {x ∈ Cn : νD(x) ≤ 1},

– E‖·‖D = Ext B‖·‖D , where B‖·‖D = {X ∈ Mn : ‖X‖D ≤ 1}.
– GP(n): the group of generalized permutation matrices in Mn, i.e., the group gen-

erated by permutation matrices and diagonal unitary matrices.

For A ∈ Mn, the sets

– D(A) = {DAD∗ : D is a diagonal unitary},
– P(A) = {PAPt : P is a permutation}, and
– GP(A) = {QAQ∗ : Q ∈ GP(n)}

will be called the diagonal-unitary orbit of A, the permutation orbit of A and the gen-
eralized permutation orbit of A (or the GP-orbit of A) respectively.

2 Auxiliary Results

We begin with some general results on operator norms not necessarily induced by

symmetric norms on Cn. Some of them are well known. We will mention some con-
venient references or give short proofs for completeness. We start with the following
proposition, whose proof may be found in [15, Proposition 4.1].

Proposition 2.1 Let ν be a norm on Cn. Then

E‖·‖D = {xy∗ : x ∈ ED, y ∈ E},

and

B‖·‖D = conv{xy∗ : x ∈ ED, y ∈ E} = conv{xy∗ : νD(x) = ν(y) = 1}.

We use Proposition 2.1 to give a proof for the following known result. We men-
tion, in passing, that the extreme points of the set S of states are called pure states.
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Corollary 2.2 Let ν be a norm on Cn and let S and R be the corresponding set of states
and set of vector states respectively. Then

(2.1) conv R = S, V (A) = conv W (A), and Ext S = R ∩ E‖·‖D .

Proof It is easy to verify the well-known fact that S is convex. Indeed, it is the inter-
section of the unit ball B‖·‖D and the set T of matrices of trace 1 since 1 = tr S =

(S, I) implies that ‖S‖D ≥ 1. The convexity of each of B‖·‖D and T is quite easy to
see.

It is obvious that R ⊆ S and hence conv R ⊆ S To prove the reverse inclu-
sion, let B ∈ S. Since S ⊆ B‖·‖D , then by Proposition 2.1, B is a convex combi-

nation of elements of the form xy∗ with νD(x) = ν(y) = 1. Since | tr(xy∗)| =

|y∗x| ≤ νD(x)ν(y) = 1, each matrix xy∗ in the convex combination must satisfy
1 = tr(xy∗) = y∗x to ensure that tr B = 1. We conclude that B ∈ conv R.

For the second equality in the corollary, we have

conv W (A) = conv{(A,Z) : Z ∈ R}
= {(A,Z) : Z ∈ conv R}
= {(A,Z) : Z ∈ S}
= V (A).

Finally, we consider the third equality. Since S = conv R and S ⊆ B‖·‖D , then
Ext S ⊆ R and Ext S ⊆ E‖·‖D . Thus, Ext S ⊆ R ∩ E‖·‖D . For the reverse inclusion, if
X ∈ Ext R ∩ E‖·‖D , then X ∈ S and X cannot be written as the convex combination

of two different matrices in S ⊆ E‖·‖D . Hence, X ∈ Ext S.

In the following proposition, we use the notation S̄ = {µ̄ : µ ∈ S} for S ⊆ C. The
first assertion of the proposition can be found (with different notation) in [3, p. 85].

Proposition 2.3 Let Wν(A) or Vν(A) be the numerical ranges associated with a norm

ν on Cn. For Fν(A) = Wν(A) or Vν(A), we have

Fν(A) = FνD (A∗) and rν(A) = rνD (A∗).

If, in addition, ν(x) = ν(x̄) for all x ∈ Cn, which is true for a symmetric norm ν, then

Fν(A) = FνD (At ) and rν(A) = rνD (At ).

Proof Observe that

Wν(A) = {x∗Ay : νD(x) = ν(y) = x∗y = 1}

= {(x∗Ay)∗ : νD(x) = ν(y) = x∗y = 1}

= {y∗A∗x : νD(x) = ν(y) = x∗y = 1}
= WνD (A∗).
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The first assertion on Fν and rν follows. If ν(y) = ν( ȳ) for all y ∈ Cn, then νD(x) =

νD(x̄) for all x ∈ Cn. It follows that

Wν(A) = {(x∗Ay)t : νD(x) = ν(y) = x∗y = 1}

= { ȳ∗At x̄ : νD(x) = ν(y) = x∗y = 1}
= WνD (At ).

The second assertion follows.

Corollary 2.4 Suppose Fν(A) = Wν(A), Vν(A) or rν(A). A mapping φ : Mn → Mn

satisfies

(2.2) Fν
(

φ(A)
)

= Fν(A) for all A ∈ Mn

if and only if the mapping φ̃ : Mn → Mn defined by φ̃(A) = φ(A∗)∗ satisfies

(2.3) FνD

(

φ̃(A)
)

= FνD (A) for all A ∈ Mn.

If, in addition, ν(x) = ν(x̄) for all x ∈ Cn, in particular if ν is a symmetric, then (2.2)
holds if and only if the mapping φ̃ : Mn → Mn defined by φ̃(A) = φ(At )t satisfies (2.3).

Here is another well known result needed in our discussion.

Lemma 2.5 Let Wν and Vν be the numerical ranges associated with a norm ν on Cn.
Then a matrix A ∈ Mn is such that any one (or both) of the sets Wν(A) or Vν(A) equals
{µ} if and only if A = µI.

The rest of the results in this section concern operator norms on Mn induced by
symmetric norms ν on Cn.

Lemma 2.6 Suppose ‖ · ‖ is the operator norm on Mn induced by a symmetric norm
ν on Cn. Let S and R be the set of states and the set of vector states corresponding to ν,
respectively. If xy∗ ∈ R, then there exists a generalized permutation Q ∈ GP(n) such
that both Qx and Qy have nonnegative entries in descending order. Consequently, all

matrices in R and S have nonnegative diagonal entries.

Proof Suppose Q is the generalized permutation matrix satisfying Qx = (x1, . . . , xn)t

with x1 ≥ · · · ≥ xn ≥ 0. If Qy = (y1, . . . , yn)t is not a nonnegative vector, then there
exists a diagonal unitary matrix D such that DQxy∗Q∗D∗ ∈ R has positive trace
larger than tr(xy∗) = 1. Thus ν(y)νD(x) = ν(DQy)νD(DQx) ≥ tr(DQxy∗Q∗D∗) >
1, a contradiction. This establishes that Qy is a nonnegative vector. Furthermore, if

y j < y j+1, then we claim that x j = x j+1; otherwise, we can let P be the permuta-
tion matrix obtained from I be interchanging the j-th and ( j + 1)-st rows so that
PQxy∗Q∗P∗ ∈ R has trace larger than tr(xy∗) = 1. We may replace Q by PQ. After
at most n − 1 of such modifications, the resulting matrix Q will satisfy the asserted

property.

The following is a key lemma in this paper and will be extensively used in the
sequel.
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Lemma 2.7 Let ν be a symmetric norm on Cn, and ‖ ·‖ be the corresponding operator
norm on Mn.

(a) If c = ν(e1) then c`∞(x) ≤ ν(x) ≤ c `1(x) for every x ∈ Cn.

(b) At least one of the vectors e/ν(e) and e/νD(e) belongs to the set of extreme points E

or ED of the corresponding unit ball respectively.
(c) ν(e)νD(e) = n.
(d) If e/ν(e) ∈ E then

(i) for every nonnegative x ∈ BD, the unit ball of νD, we have etx ≤ ν(e);

(ii) for every nonnegative y ∈ B, the unit ball of ν, we have et y ≤ n/ν(e) and
equality holds if and only if y = e/ν(e);

(iii) there exists u = (u1, . . . , un)t with u1 ≥ · · · ≥ un ≥ 0 and u1 + · · ·+ un = 1

such that uet ∈ Ext S, and so the QP-orbit D1 of uet satisfies

(2.4) D1 = {Q∗uet Q : Q ∈ GP(n)} ⊆ Ext S.

Furthermore u = e1 if and only if ν is a multiple of the `∞ norm.

(e) If e/νD(e) ∈ ED then

(i) for every nonnegative y ∈ B, we have et y ≤ νD(e);

(ii) for every nonnegative x ∈ BD, we have et x ≤ n/νD(e) and equality holds if
and only if x = e/νD(e);

(iii) there exists v = (v1, . . . , vn)t with v1 ≥ · · · ≥ vn ≥ 0 and v1 + · · · + vn = 1
such that evt ∈ Ext S, and so the QP-orbit D2 of evt satisfies

(2.5) D2 = {Q∗evt Q : Q ∈ GP(n)} ⊆ Ext S.

Furthermore v = e1 if and only if ν is a multiple of the `1 norm.

(f) The following conditions are equivalent to each other:

(i) there exist vectors u and v in Cn such that both uet and evt belong to Ext S;

(ii) e/ν(e) ∈ E and e/νD(e) ∈ ED;

(iii) eet/n ∈ Ext S.

Proof The inequality ν(x) ≤ c `1(x) follows easily from the triangle inequality. The
other inequality in part (a) follows by duality.

To prove part (b), let γ = ν(e). If e/γ /∈ E, then it is a convex combination of a

finite set Z ⊆ E. Let w be a vector in ED such that wt e/γ = 1. We shall show that w is
scalar multiple of e. By Lemma 2.6, we have that w is a nonnegative vector. For every
z ∈ Z we have (w, |z|) ≤ 1, but 1 = (w, e/γ) is a convex combination of the numbers
(w, z) for z ∈ Z. It follows that (w, z) = (w, |z|) = 1. Since we may replace w by Pw

for any permutation P, we get that (Pw, z) = (Pw, |z|) = 1 for every permutation P.
This easily implies that z is nonnegative and that either z or w is a multiple of e. By
assumption z cannot be, so w is. In other words e/νD(e) ∈ ED. This proves part (b).

Part (c) will be proved after parts (d) and (e).

https://doi.org/10.4153/CJM-2004-007-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-007-4


Linear Operators on Matrix Algebras 141

To prove part (d), we again let γ = ν(e). There exists a vector w = (w1, . . . ,wn)t ∈
ED such that w∗e = γ. By Lemma 2.6, the vector w is nonnegative. We may,

with no loss of generality, assume that w1 ≥ · · · ≥ wn. Now let u = w/γ. Then
uet

= wet/γ ∈ E‖·‖D by Proposition 2.1. By Corollary 2.2, we conclude that D1 ⊆
R ∩ E‖·‖D = Ext S. This proves the set inclusion part of (d).

If x is a nonnegative vector in BD, then

n
∑

j=1

x j = (x, e) ≤ νD(x)ν(e) = ν(e).

If y is a nonnegative vector in B, let z be the average of Py as P runs through all
permutations. Therefore ν(z) ≤ 1. But z = (et y)e/n. It follows that et y ≤ n/ν(e). If

equality holds, then z = e/ν(e) is an extreme point of the unit ball of ν and is at the
same time a convex combinations of the vectors Py in the unit ball. It follows that
y = e/ν(e).

Next, we turn our attention to the last assertion of the last part of (d). It is obvious

that if ν is a multiple of the `∞ norm, then Q∗e1etQ ∈ Ext S for every Q ∈ GP(n).
Conversely, if e1et ∈ Ext S, then by Proposition 2.1 and Corollary 2.2, we have that
(after normalisation) e1 ∈ ED and e ∈ E. In particular ν(e) = 1. The set of extreme
points of the unit ball of the `∞ norm is precisely the set {Qe : Q ∈ GP(n)}. Thus

every vector in the unit ball of the `∞ norm belongs to conv{Qe : Q ∈ GP(n)} ⊆ B.
This shows that ν(x) ≤ `∞(x) for every x ∈ Cn. The reverse inequality follows from
part (a) and so the normalised ν is the `∞ norm.

The proof of part (e) follows by duality.

Finally, we consider part (f). The implication (iii) ⇒ (i) is clear and the implica-
tion (i) ⇒ (ii) follows from Proposition 2.1 and Corollary 2.2. If (ii) is satisfied, then
using the same two results together with part (c), we get that

eet

n
=

e

ν(e)

et

νD(e)
∈ R ∩ E‖·‖D = Ext S.

Lemma 2.8 Suppose ν is a symmetric norm on Cn not equal to a multiple of the `2-
norm.

(a) For every k ∈ {1, . . . , n}, and for every Q ∈ GP(n), we have

Q(e1 + · · · + ek)(e1 + · · · + ek)t Q∗/k ∈ S,

in particular eet/n ∈ S and E j j ∈ S for every j.
(b) There exists an element of the form xy∗ ∈ Ext S such that x, y ∈ Cn are not

multiples of each other.

(c) St 6= S 6= S∗ and Rt 6= R 6= R∗.
(d) There exists a matrix of the form S = aE12+bE21+

∑n
j=1 d jE j j in S with a > b ≥ 0.

Proof To prove (a), suppose y = (e1 + · · · + ek) and ν(y) = γ. Then there exists
x = (x1, . . . , xn)t ∈ ED such that (x, y)/γ = 1, and hence x1 + · · · + xk = γ. Let
x̃ = (x1, . . . , xk, 0, . . . , 0)t , where the zeros are absent if k = n. Note that

x̃ =
(

x + (Ik ⊕−In−k)x
)/

2 ∈ BD.
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Let P be the permutation matrix E12 + · · · + Ek−1,k + Ek,1 +
∑

j>k E j j . Then

u =

(

k
∑

j=1

P j x̃
)/

k = γ(e1 + · · · + ek)/k ∈ BD.

Thus,

uyt/γ = (e1 + · · · + ek)(e1 + · · · + ek)t/k ∈ conv R = S.

Clearly, for any Q ∈ GP(n), we have Q(uyt/γ)Q∗ ∈ S.

To prove part (b) assume, to the contrary, that every element in Ext S has the
form xx∗ for some vector x ∈ Cn. It follows that every element of S is self-adjoint.

Therefore every element of R has the form xx∗ for some vector x ∈ Cn. If x ∈ Cn

satisfies ν(x) = 1, then there exists y ∈ Cn such that 1 = νD(y) = (x, y). By our
assumption, we have y = x and hence 1 = (x, x) = `2(x)2. It follows that ν is the `2

norm, a contradiction.

For part (c) we will only prove the first inequality; the second inequality may be
proved by a similar argument and the last two follow from the first two. So assume
that S = St . It follows that Ext S = (Ext S)t . By part (b) there exist linearly indepen-

dent vectors x ∈ ED and y ∈ E such that the matrix A = xy∗ ∈ Ext S. By Lemma 2.6,
we may assume that x and y have nonnegative entries. Now, yxt

= At ∈ Ext S. Hence
there is a positive number r such that ry ∈ ED and x/r ∈ E. But then

1 ≥ (x, x/r)(y, ry) = (x, x)(y, y) ≥ (x, y)(x, y) = (tr A)2
= 1

implies that x and y are multiples of each other, a contradiction.

For part (d), we again choose linearly independent nonnegative vectors x and y
such that xyt ∈ S. Since the matrix xyt is not symmetric, there exists a permutation
matrix P such that Pxyt Pt has its (1, 2) and (2, 1) entries equal to a and b with a >
b ≥ 0. Let A = Pxyt Pt and D = −I2 ⊕ In−2. By the convexity of S, the matrix
A0 = (DAD + A)/2 belongs to S. But A0 = B ⊕C where B ∈ M2 is the top left 2 × 2
corner of A. Now, set

S =

∑

D

(DA0D)/2n−2 ∈ S,

where D ranges over all diagonal orthogonal matrices whose (1, 1) and (2, 2) entries
are equal to 1. Then S has the form described in (d).

Let ν be a norm on Cn. Then A ∈ Mn is said to be ν-hermitian if Wν(A) (or equiv-
alently Vν(A)) is contained in R. If ν is the `2 norm, this reduces to the usual notion
of hermitian (or self-adjoint) matrices. (ν-positive definite or semi-definite matrices

may be defined analogously.) The ν-hermitian matrices associated with an absolute
norm have been characterized in [21]. Specializing their results to symmetric norms,
we have the following corollary, which can also be derived from our previous lemmas
as we presently show.
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Corollary 2.9 Let ν be a symmetric norm on Cn not equal to a multiple of the `2-
norm. Then a matrix A ∈ Mn is ν-hermitian if and only if A is a diagonal matrix and

the diagonal entries are real. If D is such a diagonal hermitian with diagonal entries d j j ,
then Vν(D) = Wν(D) = conv{d j j : 1 ≤ j ≤ n}

Proof Note that every state S in S satisfies tr S = 1 and, by Lemma 2.6, has nonneg-

ative diagonal entries. If A is a diagonal matrix with real diagonal entries, then (A, S)
is real. Thus V (A) = {(A, S) : S ∈ S} is a subset of R.

Conversely, suppose V (A) is a subset of R. Since E j j ∈ S, we have (A, E j j) is real
for all j = 1, . . . , n. Thus A has real diagonal entries. Suppose A has a nonzero ( j, k)

entry a jk for some j 6= k. By Lemma 2.8(d), there exists a matrix B =
∑n

j=1 d jE j j +
aE12 + bE21 with a > b ≥ 0 in S. For every s ∈ [0, 2π) there exists a Qs ∈ GP(n)
such that QsBQ∗

s has ( j, k) entry eisa and (k, j) entry e−isb. Let DA and Ds denote the
diagonal part of A an QsBQ∗

s , respectively. Then both of them are real matrices and

thus tr(DADs) ∈ R. But then for all s ∈ [0, 2π), we have

(A,QsBQt
s) = tr(DADs) + a jkae−is + ak jbeis ∈ R.

Thus a jka and ak jb are complex conjugates. It follows that |a jk| < |ak j |.
On the other hand for every permutation P, we have that PtSP = S, which implies

that Pt AP is also a ν-hermitian matrix. If we take P to be the transposition that
transposes e j and ek, we conclude also that |a jk| > |ak j |, which is impossible. Hence

A cannot have non-zero off-diagonal entries.
If D is a diagonal hermitian and S is a state, then it is obvious that (D, S) is a

convex combination of the diagonal entries of D. On the other hand, every eigenvalue
d j j of D evidently belongs to the spatial numerical range and hence to the algebra

numerical range of D. The convexity of the algebra numerical range now implies
that Vν(D) = conv{d j j : 1 ≤ j ≤ n}. Since the spatial numerical range is always
connected [3, p. 102], we also conclude that Wν(D) = conv{d j j : 1 ≤ j ≤ n}.

The isometries of the space (Cn, ν) for a symmetric norm ν are known (see [20]).
As we now have all the ingredients needed for a short proof, we take this opportunity
to present it.

Corollary 2.10 Let ν be a symmetric norm on Cn not equal to a multiple of the `2-
norm. Then a matrix U ∈ Mn is an isometry of (Cn, ν) if and only if U is a generalized
permutation.

Proof The fact that a generalized permutation is an isometry is nothing more than
the definition of a symmetric norm. To prove the converse, assume that U is an
isometry. It follows that U HU−1 is ν-hermitian for every ν-hermitian matrix H.
In particular U E j jU

−1 is a rank-one ν-hermitian matrix for every j. Therefore

U E j jU
−1 is a scalar multiple of Ekk for an index k depending on j. This implies

that U e j = λ jeπ( j), for unimodular complex numbers λ j , and a permutation π of
the set {1, . . . , n}, i.e., U is a product of a permutation matrix and a diagonal unitary
matrix as required.
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3 States and Numerical Range Preservers

In this section, we characterize linear operators on Mn that preserve the states or the
vector states or any of the two norm numerical ranges arising from a symmetric norm
which is not a multiple of the `1, `2 or `∞ norm.

Theorem 3.1 Let ν be a symmetric norm not equal to a multiple of the `q norm with

q ∈ {1, 2,∞}. The following conditions are equivalent for a linear operator φ on Mn.

(a) φ preserves the spatial numerical range, i.e., W
(

φ(A)
)

= W (A) for all A ∈ Mn.

(b) φ preserves the algebra numerical range, i.e., V
(

φ(A)
)

= V (A) for all A ∈ Mn.
(c) There exists a generalized permutation Q ∈ GP(n) such that

φ(A) = Q∗AQ ∀A ∈ Mn,

or equivalently,

φ∗(A) = QAQ∗ ∀A ∈ Mn.

(d) φ∗(R) = R.
(e) φ∗(S) = S.

Proof The equivalence of the form for φ and the form for φ∗ in part (c) follows from

(Q∗AQ,B) = tr(Q∗AQB∗) = tr(AQB∗Q∗) = (A,QBQ∗).

Next, we consider the following chain of implications: (c) ⇒ (d) ⇒ (a) ⇒ (b) ⇒ (e)

The implications (c) ⇒ (d) and (d) ⇒ (a) are readily verified. The implication
(a) ⇒ (b) follows the fact that V (A) = conv W (A) and the implication (b) ⇒ (e)
follows from the result in [18].

It remains to establish (e) ⇒ (c). We divide the proof into several lemmas. In the

rest of this section, we always assume that S ⊆ Mn is the set of states arising from a
symmetric norm ν on Cn, and ψ = φ∗ is a linear operator on Mn satisfying ψ(S) = S.

Lemma 3.2 Let ψ be a linear map on Mn such that ψ(S) = S, where S is the set of
states induced by a symmetric norm ν which is not a multiple of the `2 norm. Then

(a) ψ preserves the algebra numerical range;

(b) ψ maps the set of diagonal matrices onto itself;
(c) If Ẽ = {E j j : 1 ≤ j ≤ n} then ψ(Ẽ) = Ẽ.

Furthermore, there exists a permutation matrix P such that the operator ψ̃ defined

by X 7→ P∗ψ(X)P

(i) preserves the usual inner product on Mn,
(ii) fixes every diagonal matrix in Mn, and
(iii) maps the set of matrices with zero diagonal onto itself.
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Proof Let G be the set of all linear operators on Mn that map S onto itself. Since S

is a compact set that spans Mn, it is easy to see that G is a compact group of invert-

ible linear operators on Mn. Viewing Mn as a Hilbert space under the Frobenius (or
Hilbert-Schmidt) norm, then using a result in [1] (see also [7]), we get that there
exists a positive definite linear operator ξ on Mn such that ξGξ−1 is a subgroup of the
group of unitary operators on Mn.

Note that for any Q ∈ GP(n) the linear operator ψQ defined by A 7→ Q∗AQ is
a member of G. Thus ξψQξ

−1 is a unitary operator, i.e., (ξψQξ
−1)∗(ξψQξ

−1) is the

identity operator. It follows that ξ2ψQ = ψQξ
2 for all Q ∈ GP(n).

Let G0 be the group of operators ψQ, where Q ∈ GP(n). Then G0 has three ir-

reducible subspaces on Mn, namely, the span of I, the space of trace zero diagonal
matrices, and the spaces of matrices with zero diagonal. If n > 2, the three subspaces
have different dimensions, namely, 1, n − 1, n2 − n. By Schur’s lemma, (see, e.g.

[6, p. 182]), these are also reducing subspaces of ξ2, and ξ2 acts as a scalar operator
on each of them. If n = 2, the dimensions of the first two irreducible subspaces are
equal and so ξ2 may apparently interchange them. But then the matrix of ξ2 with
respect to the orthonormal basis {I2, E11 − E22, E12, E21} will then be of the form

(

0 ∗
∗ 0

)

⊕ γI2,

which contradicts the fact that ξ2 is the square of a positive definite operator on M2.
Thus, we conclude that ξ2 acts as scalar operators on the three irreducible subspaces

of G0, and so does ξ. Therefore ξ(I) = λI for a scalar λ and ξ(D) = D, where D is
the space of diagonal matrices.

For every matrix A ∈ Mn, we have

V
(

ξ−2ψξ2(A)
)

= {(ξ−2ψξ2(A),Z) : Z ∈ S}

=
{(

ξ−2ψξ2(A), ψ(Z)
)

: Z ∈ S
}

as ψ(S) = S

=
{(

ξ−1ψξ2(A), ξ−1ψ(Z)
)

: Z ∈ S
}

as ξ is self-adjoint

=
{(

ξ(A), ξ−1(Z)
)

: Z ∈ S
}

as ξ−1ψξ is unitary on Mn

= {(A,Z) : Z ∈ S} = V (A).

That is, ξ−2ψξ2 preserves the algebra numerical range. From this, we conclude that:

1. ξ−2ψξ2(I) = (I)
2. ξ−2ψξ2(H) = H, where H is the set of ν-hermitian elements.
3. i ξ−2ψξ2(D) = D, where D is the set of all diagonal matrices, since D = span H.

However ξ(I) = λI for a scalar λ and ξ(D) = D, and so items 1 and 3 above imply
that:

4. ψ(I) = (I), and ψ(D) = D,
5. ξ−1ψξ(I) = I, and ξ−1ψξ(D) = D.
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Since ξ−1ψξ is a unitary operator on Mn, we also conclude that

6. ξ−1ψξ maps the set of zero-diagonal matrices onto itself since the set of zero-

diagonal matrices is the orthogonal complement of D.
7. ξ−1ψξ maps the set of trace zero diagonal matrices onto itself since this set is the

orthogonal complement of {I} in D.

Thus ξ−1ψξ leaves invariant every one of the three eigenspaces of ξ, and so it

commutes with ξ, i.e., ξ−2ψξ2
= ξ−1ψξ = ψ. We conclude that ψ itself preserves the

algebra numerical range, leaves invariant the identity, the set of trace zero diagonal
matrices and set of zero-diagonal matrices. Consequently, ψ also preserves the trace.
In particular if H1 is the set of matrices whose algebra numerical range is in the

interval [0, 1] and whose trace is 1, then ψ(H1) = H1. By Corollary 2.9, H1 consists
of all diagonal matrices with trace 1 and whose entries are in [0, 1]. It is evident that
Ẽ is the set of extreme points of H1 and hence ψ(Ẽ) = Ẽ. This proves assertions
(a)–(c) of the lemma.

Since ψ(Ẽ) = Ẽ, there exists a permutation matrix P such that the map ψ̃ defined
by X 7→ P∗ψ(X)P satisfies ψ̃(E j j ) = E j j for j = 1, . . . , n. It then follows that ψ̃
satisfies the asserted properties (i)–(iii).

Lemma 3.3 Let ψ be as in the preceding lemma. Assume also that ν is not a multi-
ple of the `1 or the `∞ norms and let F = {Dee∗D∗ : D is diagonal unitary}. Then

ψ(F) = F.

Proof By Lemma 3.2, we may assume thatψ acts as the identity on diagonal matrices,

preserves the usual inner product on Mn, and maps the set of matrices with zero
diagonal onto itself.

Recall that E and ED denote the sets of extreme points of the unit ball of ν and νD,
respectively and that E‖·‖D denotes the set of extreme points of the unit ball of ‖ · ‖D.

By Lemma 2.7, at least one of E and ED contains a multiple of e. We shall assume the
former as the latter may be treated by a similar argument. So by Lemma 2.7, there is
a vector u = (u1, . . . , un)t with u1 ≥ · · · ≥ un = 1 and u1 + · · · + un = 1 such that
Ext S contains a subset of the form D1 defined in (2.4). We use this fact to show that

ψ(F) = F.
First, we claim that

ψ(D1) = D1.

Note that elements in D1 are extreme points of S. Thus, ψ(D1) ⊆ Ext S = R∩E‖·‖D .
Suppose ψ(ue∗) = xy∗, where x = (x1, . . . , xn)t and y = (y1, . . . , yn)t . Since ψ fixes
the diagonal entries, we have

(3.1) u j = x j y j for j = 1, . . . , n.

By Lemma 2.6, there exists S ∈ GP(n) such that Sx and Sy has nonnegative entries
arranged in descending order. Since the diagonal entries u1, . . . , un of the matrix xy∗

are already in descending order, the matrix S must be a diagonal unitary. Hence

(3.2) |x1| ≥ · · · ≥ |xn| and |y1| ≥ · · · ≥ |yn|.
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Let Q0 = En1 +
∑n−1

j=1 E j, j+1 be the basic circulant matrix. By (3.1) and (3.2), we have

(3.3)

n
∑

j=1

u2
j ≥

(

|x1|2, . . . , |xn|2
)

Qk
0

(

|y1|2, . . . , |yn|2
) t
, k = 1, . . . , n.

Now,

n

n
∑

j=1

u2
j = (ue∗, ue∗)

=
(

ψ(ue∗), ψ(ue∗)
)

= (xy∗, xy∗)

=

(

n
∑

j=1

|x j |2
)(

n
∑

j=1

|y j |2
)

=

n
∑

j=1

(

|x1|2, . . . , |xn|2
)

Q
j
0

(

|y1|2, . . . , |yn|2
) t
.

Hence, all the inequalities in (3.3) become equalities. It follows that |x1| = |xn| or

|y1| = |yn|. If |y1| = |yn| then xy∗ = P∗ue∗P ∈ D1. If |x1| = |xn|, by Lemma 2.7(f),
we see that ue∗ = xy∗ = ee∗/n. Again we have ψ(ue∗) ∈ D1. Similarly, we can show
that for any R ∈ GP(n), ψ(Rue∗R∗) ∈ D1. So, we have ψ(D1) ⊆ D1. Applying the
same argument to ψ−1, we conclude that ψ(D1) = D1 as asserted.

Next, we shall prove that ψ leaves invariant certain subsets of D1. These are the
sets D1 j , (1 ≤ j ≤ n) defined as

D1 j = {DQ
j
0uet (Q

j
0)t D∗ : D is diagonal unitary}

where Q0 is the basic circulant matrix En1 +
∑n−1

j=1 E j, j+1. In other words D1 j is

the diagonal-unitary orbit of the matrix (u j+1, . . . , un, u1, . . . , u j)
t et , while D1 is the

unions of the diagonal-unitary orbits of all the matrices (uπ(1), . . . , uπ(n))
t et for all

permutations π of the set of indices {1, 2, . . . , n}. It is clear that a matrix X belongs
to D1 j if and only if X ∈ D1 and the diagonal entries of X are u j+1, . . . , un, u1, . . . , u j .
Now ψ maps D1 onto itself and fixes the diagonal of every matrix. Thus is X ∈ D1 j ,
then X ∈ D1 and so ψ(X) ∈ D1. Also

diag
(

ψ(X)
)

= diag(X) = (u j+1, . . . , un, u1, . . . , u j).

Therefore ψ(X) ∈ D1 j . Applying the same reasoning to ψ−1, we conclude that

(3.4) ψ(D1 j) = D1 j , j = 1, . . . , n.

If u is a scalar multiple of e, then ue∗ = ee∗/n, and D1 j = D1 = F for all
j = 1, . . . , n, and the assertion of the lemma is already established.
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We now assume that u is not a scalar multiple of e, i.e., u1 > un. In this case, the
sets D1 j are all distinct. We claim that A ∈ F if and only if (A,A) = n2 and

(3.5) A = A1 + · · · + An with A j ∈ D1 j for j = 1, . . . , n.

Suppose A = Dee∗D∗ ∈ F, where D is a diagonal unitary matrix. Then (A,A) = n2

and (3.5) holds with A j = DQ
j
0ue∗(Q

j
0)∗D∗ ∈ D1 j for j = 1, . . . , n. Conversely,

suppose A = (ai j) ∈ Mn is such that

A =

n
∑

j=1

D jQ
j
0ue∗(Q

j
0)∗D∗

j ,

where D j is a diagonal unitary matrix for j = 1, . . . , n. Let d j1, . . . , d jn be the diag-

onal entries of D j . Then app =
∑n

j=1 u j = 1 for all j = 1, . . . , n, while if p 6= q,

then apq =
∑n

j=1 d j pd jqup+ j , with addition p + j taken to be addition modulo n.
Thus apq is a linear combination of u1, u2, . . . , un, with unimodular coefficients and

hence |ai j | ≤ 1 and (A,A) ≤ n2. If we also assume that (A,A) = n2, then we must
have |apq| = 1, for every p, q. Since ν is not the `∞, we have u1 ≥ u2 > 0 by
Lemma 2.7(a). It follows that |apq| = 1, for every p, q if and only if all D j are the
same up to multiplication by a complex unit. Thus

A = D1

(

n
∑

j=1

Q
j
0ue∗(Q

j
0)∗

)

D∗
1 = D1eetD∗

1 ∈ F.

Since ψ satisfies (3.4), preserves the inner product on Mn, and the set D1 j for each
j, we see that ψ maps the set of matrices A satisfying (3.5) onto itself. So, we have

ψ(F) = F as asserted.

We are now ready to finish the proof of our theorem by establishing the following.

Lemma 3.4 The implication (e) ⇒ (c) in Theorem 3.1 holds.

Proof By the result in Lemma 3.2, there exists a permutation matrix P1 such that the
map ψ1 defined by ψ1(X) = P∗

1ψ(X)P1 fixes every diagonal matrix. By Lemma 3.3,
ψ1(F) = F. By the result in [14], there exists Q ∈ GP(n) such that

(i) ψ1(X) = QXQ∗ for all X with zero diagonal, or
(ii) ψ1(X) = QXt Q∗ for all X with zero diagonal.

Define ψ2 by ψ2(X) = Q∗ψ1(X)Q, then

(iii) ψ2(X) = X for all X with zero diagonal, or
(iv) ψ2(X) = Xt for all X with zero diagonal.
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Since ψ1(D) = D for every diagonal matrix D, there exists a permutation matrix P
such that

(3.6) ψ2(D) = PDPt for every diagonal matrix D.

We will show that ψ2 is the identity or (in the case n = 2 only) a mapping of the

form of Theorem 3.1(c). This would then imply that ψ itself is of the form of Theo-
rem 3.1(c).

For n = 2, the forms (i) and (ii) coincide since if P0 = E12 + E21, then the off-
diagonal entries of Xt are the same as the off-diagonal entries of P0XP∗

0 . So we may

assume that ψ2 satisfies (iii). If P 6= I then P = E12 + E21 and ψ2(X) = PXt P for all
X ∈ M2. It follows that St

= S, which contradicts Lemma 2.8. Therefore P = I and
ψ2 is the identity mapping.

Suppose n ≥ 3. Then every rank one matrix is completely determined by its off-

diagonal entries with the exception of those matrices that are “essentially 2 × 2”, i.e.,
matrices of the form uvt where u, v ∈ span {ei , e j} for some indices i and j. In
particular a vector state S is completely determined by its off-diagonal entries except
when S takes the following form:

(3.7) S = tEii + si jEi j + s jiE ji + (1 − t)E j j .

where i 6= j, 0 ≤ t ≤ 1 and si js ji = t(1 − t). Furthermore in this exceptional case

the only other vector state that has the same off-diagonal entries as S is

(3.8) T = (1 − t)Eii + si jEi j + s jiE ji + tE j j ,

unless S = Eii , in which case, T can be any of the matrices E j j . (The case S = Eii will
be excluded presently, as we consider only nonsymmetric states.) We use the above
to prove that (iv) is not possible and that P = I.

Since ψ2(S) = S, we have ψ2(Ext S) = Ext S, which is a set of rank one matrices

by Corollary 2.2. By Lemma 2.8(c), there exist nonnegative vector x, y ∈ Cn such
that Z = xyt ∈ Ext(S) but Zt

= yxt /∈ Ext(S). If (iv) holds and if xyt is not one of
the exceptional states of (3.7) then the off-diagonal entries of ψ2(xyt ) ∈ Ext(S) are
the same as those of yxt , and thus ψ(xyt ) = yxt ∈ Ext(S), which is a contradiction.

If xyt is one of the exceptional states of (3.7), then either we reach a contradiction as
before or the permutation P in (3.6) satisfies Pei = e j or Pe j = ei or both according as
t = 1 or t = 0 or neither. Since this may be applied to U xytU t for any permutation
U , we get that Pe1 = e2 = e3 which is absurd. This proves that (iii) is satisfied.

The diagonal of the state Z = xyt considered in the previous paragraph is not
constant. Indeed it follows from Lemma 2.8 that the only possible nonnegative vector
state with constant diagonal is eet/n, which is symmetric. We now consider the image
ψ2(U ZU t ) for every permutation matrix U . If Z is not one of the exceptional states

of (3.7), then the permutation P in (3.6) leaves diag(Z) and every permutation of
it invariant. This implies that P = I. If Z is one of the exceptional states in (3.7)
and if 0 < t < 1, then by (3.7) and (3.8), we see that P leaves the span of {ei , e j}
invariant. This is true for every pair of distinct indices and again we get P = I. The

https://doi.org/10.4153/CJM-2004-007-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-007-4


150 Chi-Kwong Li and Ahmed Ramzi Sourour

only remaining cases are when (after possible relabelling of indices) Z = Eii + sEi j

or Z = Eii + sEi j ; s 6= 0. In the former case, we get that if Pei 6= ei , then Pei = e j

and that would be true for every j 6= i, which is absurd. Again we get P = I. The
remaining case follow similarly. Thus ψ2 is the identity and hence ψ(A) = QAQ∗ for
a generalized permutation Q.

The extremal cases where ν is the `1 or the `∞ norm will be considered in Sec-
tion 5.

4 Numerical Radius Isometries

The main result of this section is the following theorem. The result is known when ν
is a multiple of the `2 norm [12] (see also [4, 5])

Theorem 4.1 Suppose r = rν is the norm numerical radius associated with a sym-
metric norm ν on Cn, where ν is not a multiple of the `1 norm or the `∞ norm. Then a
linear operator φ on Mn is a ν-numerical radius isometry, i.e., satisfies

r
(

φ(A)
)

= r(A) for all A ∈ Mn

if and only if there is a complex number µ of modulus 1 such that

W
(

µφ(A)
)

= W (A) for all A ∈ Mn.

In other words, φ preserves the numerical radius if and only if it is a unit multiple of a
numerical range preserver.

If we exclude the `2 norm and use Theorem 3.1, we obtain the following.

Corollary 4.2 Suppose ν is a symmetric norm on Cn and that ν is not a multiple of
the `1, `2 or the `∞ norm. Then a linear operator φ on Mn is a ν-numerical radius

isometry if and only if there exists a complex number λ of modulus 1 and a generalized
permutation Q ∈ GP(n) such that

φ(A) = λQ∗AQ for all A ∈ Mn,

To prove Theorem 4.1, we need the following characterization of scalar matrices
in terms of the numerical radius, which may be of independent interest.

Proposition 4.3 Suppose ν is a symmetric norm on Cn not equal to a multiple of `q

norm with q ∈ {1,∞}, and r = rν is the corresponding norm numerical radius. Let L

be the set of matrices A ∈ Mn such that for every Y ∈ Mn there exists a complex unit η
such that

(4.1) r(ηA + Y ) = 1 + r(Y ).

Then A ∈ L if and only if A = µI for some µ ∈ C with |µ| = 1.
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The “if” part is clear. The converse will be proved by establishing a sequence of
lemmas. In all that follows, the set L will be the set of matrices defined by (4.1)

for initially an arbitrary symmetric norm. Restrictions on the norm (to exclude the
extremal norms) will be required when first needed.

Lemma 4.4 If A ∈ L, then r(A) = 1.

Proof Take Y = 0 in (4.1).

Lemma 4.5 If A ∈ L, then so does δQ∗AQ for every generalized permutation Q and

every complex unit δ.

Proof Let Y ∈ Mn. Then there exists a complex unit η such that

1 + r(Y ) = 1 + r(PY P∗) = r(ηA + PY P∗) = r
(

(ηδ̄)δP∗AP + Y
)

.

This proves the lemma.

Lemma 4.6 Let B ∈ Mn, let m be a positive integer and A1,A2, . . . ,Am ∈ L. Then
there exists a state S ∈ Ext S such that

(4.2) |(B, S)| = r(B) and |(A j , S)| = 1 for j = 1, 2, . . . , n.

Proof By applying equation (4.1) repeatedly, or by induction, we see that there exist
complex numbers η j ; (1 ≤ j ≤ n) of modulus one such that

r(η1A1 + · · · + ηmAm + B) = m + r(b).

Therefore there exists a state S ∈ S, such that |(η1A1 + · · ·+ηmAm + B, S)| = m + r(B).
But |(A j , S)| ≤ 1 and |(B, S)| ≤ r(B). This implies that S satisfies (4.2). If S is not an
extreme point of S, then S is a convex combination of states in Ext S, each of which

must also satisfy (4.2).

We next prove a generalization of the above lemma.

Lemma 4.7 Let B ∈ Mn. Then there exists a state S ∈ Ext S such that

(4.3) |(B, S)| = r(B) and |(A, S)| = 1 for every A ∈ L.

Proof For every A ∈ L, let

SA = {X ∈ S : |(A,X)| = 1 and |(B,X)| = r(B)}.

Each SA is evidently a closed subset of S. Furthermore, by Lemma 4.6, the intersec-
tion of any finite number of the sets SA is nonempty. Since S is compact, it follows
that the intersection

⋂

A∈L

SA
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is nonempty, i.e., there exists a state X satisfying (4.3). As in the proof of Lemma 4.6,
if X is not in Ext S, then there exists an S ∈ Ext S that satisfy the same equations

(4.3).

To effectively exploit the above lemma, we shall choose one particular matrix B
for which the corresponding set of numerical radius norming states, i.e., the states S

that satisfy |(B, S)| = r(B), can be determined.
Recall that by Lemma 2.7, there exists a nonnegative vector u such that uet or eut

belong to Ext S. We shall henceforth assume the latter case as the former case would
then follow by duality. In other words, we are assuming that e/νD(e) belongs to ED,

the set of extreme points of the unit ball of νD. We recall also that we must have that
u1 + · · · + un = 1.

Let k be the smallest positive integer such that the set

(4.4) U = {e(u1, . . . , uk, 0, . . . , 0) ∈ S : u1, . . . , uk > 0, u1 + · · · + uk = 1}

is non-empty. Now, we set

(4.5) B = e(e1 + · · · + ek)t .

The set U is convex. Indeed if S is a convex combination of elements of U, then S is
evidently a state of the form e(v1, . . . , vk, 0, . . . , 0). Furthermore, by the minimality
of k, we must have v1, . . . , vk > 0, that is, S is a member of U. We also note that by

Lemma 2.7, k = 1 if and only if ν is the `1 norm.

Lemma 4.8 Let B be the matrix defined by equation (4.5) and let U be the subset of
S described in (4.4). A state S ∈ S is numerical radius norming for the matrix B, i.e.,
|(B, S)| = r(B), if and only if S ∈ U.

Proof Let γ = νD(e). First we consider extremal states vw∗ ∈ Ext S. By Lem-
ma 2.7(e), for every vw∗ ∈ Ext(S) such that v = (v1, . . . , vn)t ∈ ED and w =

(w1, . . . ,wn)t ∈ E, we have

n
∑

j=1

|v j | ≤ n/γ and

n
∑

j=1

|wk| ≤ γ,

and the first equality holds if and only if (|v1|, . . . , |vn|)t
= e/γ. Therefore, for every

vw∗ ∈ Ext S, we have

|(B, vw∗)| = |(e, v)(e1 + · · · + ek,w)| ≤ (n/γ)γ = n.

Thus r(B) = n, and if |(B, uv∗)| = n, then all the inequalities above become equalities

and this occurs only if v1 = v2 = · · · = vn and w j = 0 for j > k. This means that
vw∗

= eu∗ for some u ∈ Cn. Since eu∗ is a state, the vector u must be nonnegative
and since u = (u1, . . . , uk, 0, . . . , 0)t then by the minimality of k in (4.4), we must
have that u j > 0 for j = 1, . . . , k. Thus xw∗

= eu∗ ∈ U.
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Now let S be any state that satisfies |(B, S)| = r(B) = n. The state S is a convex
combination of extremal states X1,X2, . . . ,Xm. Each of these extremal states X j must

then satisfy |(B,X j)| = n. Therefore every X j ∈ U and it then follows that S ∈ U

since U is convex.

The converse is easily verified as direct calculation shows that (B,U ) = n = r(B)
for every U ∈ U.

Corollary 4.9 There exists a state U ∈ U such that |(A,U )| = 1 for every A ∈ L.

Proof This follows immediately from Lemma 4.7 and Lemma 4.8.

In the following, we need to partition matrices. If A = (ai j), we also write

A =

(

a11 A12

A21 A22

)

.

So A12 is a 1×(n−1) matrix, A21 is an (n−1)×1 matrix and A22 is an (n−1)×(n−1)
matrix.

Lemma 4.10 Let

U =

(

u11 U12

U21 U22

)

∈ S and A =

(

a11 A12

A21 A22

)

and assume that |(DAD∗,U )| = 1 for every diagonal unitary matrix D. Assume further
that (A21,U21) 6= 0. Then

1 = |(A21,U21)| and 0 = (A12,U12) = a11ū11 + (A22,U22).

Proof Let Dθ = eiθ⊕In−1, and let Aθ = DθAD∗
θ . By assumption, we have |(Aθ,U )| =

1, i.e.,

(4.6) 1 = |a11ū11 + (A22,U22) + eiθ(A12,U12) + e−iθ(A21,U21)|

for every θ. It is not hard to see that if a, b, and c are complex numbers, such that
|a + beiθ + ce−iθ| = 1 for every θ, then two of a, b, or c must be 0. Indeed if f (θ) =

a + beiθ + ce−iθ, then we have f (θ) f (θ) − 1 = 0. Upon equating the coefficients of

every power of eiθ to zero, we reach the above conclusion.

Since (A21,U21) 6= 0, then the other coefficients in equation (4.6) must be zero,
i.e., a11ū11 + (A22,U22) = 0 and (A12,U12) = 0. It then follows that |(A21,U21)| = 1.

Lemma 4.11 Let A ∈ L. Then each column of A has at most one nonzero off-diagonal
entry.
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Proof If the assertion is not true, then there exists Q ∈ GP(n) and a complex unit
δ such that δQAQ∗ has nonnegative first column and such that the (2, 1) and (3, 1)

entries are positive. We may now replace A by δQAQ∗, i.e., we assume that A itself
has a nonnegative first column and that a21 > 0 and a31 > 0. By Corollary 4.9, there
exists a state U ∈ U such that |(C,U )| = 1 for every C ∈ L. We conclude that the
results of Lemma 4.10 hold for the matrix A as well as a certain perturbation of A

introduced below.

First applying Lemma 4.10 to A, we get that |(A21,U21)| = 1, i.e.,

(4.7) u1

n
∑

j=2

a j1 = 1

Next we describe the perturbation Ã of A alluded to above. Towards this, let

(4.8) R = diag(1, eiε, ei2ε, . . . , ei(n−1)ε),

and Ã = RAR∗. Then

Ã =

(

ã11 Ã12

Ã21 Ã22

)

where Ã21 = (a21eiε, a31e2iε, . . . , an1ei(n−1)ε)t . This matrix Ã is in the diagonal-
unitary orbit of A and for sufficiently small ε > 0, the inner product (Ã21,U ) is
close enough to (A21,U ) so that it is not zero. But by assumption |(Ã,U )| = 1, so,
by Lemma 4.10, |(Ã21,U )| = 1, i.e.,

(4.9) u1

∣

∣

∣

n
∑

j=2

e( j−1)iεa j1

∣

∣

∣ = 1.

However, equations (4.7) and (4.9) are not simultaneously possible as eiεa21u1 and
e2iεa31u1 are nonzero and have different arguments.

We note that all of the preceding lemmas in Section 4 are still true when ν is the
`1 norm. (Recall that the `∞ norm is excluded by our assumption that eut is a state

in Ext S.) For most of the remainder of this Section, we must exclude the `1 norm
as well. But we pause momentarily to state the characterization of the set L for these
extremal norms.

Lemma 4.12 When ν is the `1 norm (respectively, `∞ norm), A ∈ L if and only if
every column (respectively, row) of A has exactly one nonzero entry, and every such entry
has modulus 1.

Proof For the `1 norm, we have already seen that if A ∈ L then every column of A
has at most one off-diagonal nonzero entry. If a21 6= 0, then using Lemma 4.10 and
noting that k = 1, we get that a11 = 0 and |a21| = 1. If there are no off-diagonal
nonzero entries in the first column, then by Corollary 4.9 and the fact that U = {eet

1},
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we get that |a11| = 1. The same argument applies to any column, thus very column
of A has exactly one nonzero entry, and every such entry is of modulus 1. For the

converse assume every column of A has exactly one nonzero entry and every such
entry is of modulus 1. Let Y = (yi j) ∈ Mn. The numerical radius of Y is assumed at
an extremal state S = Qeet

1Q∗ for some Q ∈ GP(N), i.e., r(Y ) = |(Y, S)|. But from
the structure of A we easily see that |(A, S)| = 1 = r(A) for every such S. If η is a

complex unit chosen so that the complex numbers (Y, S) and η(A, S) have the same
argument then |(ηA + Y, S)| = |(A, S)| + |(Y, S)| = 1 + r(Y ), proving that A ∈ L.

The `∞ result follows by duality.

For the remainder of this Section we shall assume that ν is not the `1 or the `∞
norm.

Lemma 4.13 If A ∈ L, then each row of A has at most one nonzero off-diagonal entry.

Proof The proof is similar to the proof of Lemma 4.11. We must however make sure
that U12 has at least two nonzero entries. Recall that U = eut . Since ν is not the `1

norm, by Lemma 2.7(e)(iii), the vector u has at least two nonzero entries. Also since
the set L is invariant under permutations, i.e., PLPt

= L, for every permutation P,
then the same holds for the states that are simultaneously numerical radius norming
for L. We choose a permutation P so that if v = Pu, then v2 and v3 are both nonzero.

By Corollary 4.9 and the observations above, the state V = evt
= Peut Pt satisfies

|(C,V )| = 1 for ever C ∈ L. We now follow the same argument as in the proof
of Lemma 4.11, first reducing to the case A having nonnegative first row and finally
reaching

(4.10)

n
∑

j=2

a1 jv j = 1

and

(4.11)
∣

∣

∣

n
∑

j=2

e−( j−1)iεa1 jv j

∣

∣

∣
= 1.

and the result follows as before.

Lemma 4.14 If A ∈ L has a nonzero off-diagonal entry in the j-th column, then all

the off-diagonal entries in the j-th row are all zero.

Proof We may replace A by a matrix in its GP-orbit, and so we may assume that
j = 1, i.e., A21 6= 0 and we may also assume by Lemma 4.13 that a1 j = 0 for j ≥ 3.

We must then show that a12 = 0 and hence A12 = 0. By Corollary 4.9, there exists a
state U ∈ U such that |(C,U )| = 1 for every C in the GP-orbit of A. By Lemma 4.10,
we get that a12u2 = (A12,U12) = 0. Since ν is not the `1 norm, u2 6= 0 and so
a12 = 0.
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Lemma 4.15 If A ∈ L, then A has at most one nonzero off-diagonal entry.

Proof Assume to the contrary that A has two nonzero off-diagonal entries ai j and
apq. By the above assertion, the indices i, j, p, q must all be different from each other.

We may replace A by a matrix in its permutation orbit and so we may assume that
a31 and a42 are nonzero. By Lemma 4.14, the matrix A must now be of the form









∗ 0 0 0
0 ∗ 0 0
∗ 0 ∗ 0

0 ∗ 0 ∗









⊕C.

As before we get a state U ∈ U that is numerical radius norming for the GP-orbit
of A, and we conclude by Lemma 4.10 that

(4.12) a11u1 + (A22,U22) = 0.

This equation is also satisfied when A is replaced by any matrix Ã in its diagonal-
unitary orbit, i.e.,

(4.13) a11u11 + (Ã22,U22) = 0.

In particular, if we take D = diag(1,−1, 1, . . . , 1) and Ã = DAD∗, then the entries
(ãi j) of Ã are the same as ai j except for the (4, 2) entry, where ã4,2 = −a4,2. Now
subtracting equation (4.13) form equation (4.12), we get 2a42u2 = 0. But a42 6= 0 by
assumption and u2 6= 0 since ν is not the `1 norm. The contradiction establishes the

lemma.

Lemma 4.16 If A = (ai j) ∈ L and a21 6= 0, then

(a) The integer k in (4.4) equals 2 and the set U = {e( 1
2
, 1

2
, 0, . . . , 0)}.

(b) |a21| = 2 and |a j j | = 1 for every j.
(c) a11 = −a j j for every j ≥ 2.

Proof Let U = eut ∈ U be a numerical radius norming state for all matrices in L.

Using |(A,U )| = 1 and Lemma 4.10, we have u1|a21| = 1. Using other matrices in
the permutation orbit of A, we get that u j |a21| = 1 for j = 1, 2, . . . , k. Therefore
u1 = u2 = · · · = uk =

1
k

and |a21| = k. We recall that ‖A‖ ≤ er(A) where e is the
Euler constant. Thus

k = |a21| ≤ ‖A‖ ≤ er(A) = e < 3.

Also k ≥ 2 as ν is not the `1 norm. Thus k = 2, u1 = u2 =
1
2

and |a21| = 2. This
proves (a) and the first assertion of (b). Furthermore, we get from Lemma 4.10 that
a11u1 + a22u2 = 0, which implies that a11 + a22 = 0. Since we may also replace A
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by Pt AP for any permutation P that fixes e1, we also conclude that a11 + a j j = 0 for
2 ≤ j ≤ n. This proves (c). In particular, we have

a22 = a33 = · · · = ann.

It remains only to show that every diagonal entry of A has modulus 1.
If n ≥ 3, we use a permutation P so that the first column of PU Pt is zero and the

second and third columns are not zero. Each of these columns must then equal e/2
and we get

1 = |(Pt AP,U )| = |(A, PAPt )| = |(a22 + a33)|/2 = |a22|.

We then have |a11| = 1 since a11 + a22 = 0, and consequently |a j j | = 1 for other
indices j since a j j = −a11.

If n = 2, we apply Lemma 4.7 with B = E11. Any extremal state X that is numerical

radius norming for E11 is either of the form X = e1xt with x = (1, ξ)t or of the form
X = yet

1 with y = (1, η)t . In the former case, we get |a11| = |(A,X)| = 1. In the
latter case, we take P to be the permutation

(

0 1
1 0

)

, then |a22| = |(PAPt ,X)| = 1.
Since a11 = −a22, then in each case we get |a11| = |a22| = 1.

Lemma 4.17 Every matrix in L is a diagonal unitary matrix.

Proof If A ∈ L is not diagonal, then by Lemma 4.15, it has only one off-diagonal
entry, which we may assume, without loss of generality, to be a21. By Lemma 4.16
and Lemma 4.5, we must also have the following matrix A1 in L.

A1 =

(

−1 0
2 1

)

⊕ In−2.

It follows also that the matrix

A2 =

(

1 −2
0 −1

)

⊕ In−2

also belongs to L since A2 = PDA1D∗P∗ for D = (−1)⊕ In−1 and P =
(

0 1
1 0

)

⊕ In−2.
Therefore

r(A1 − A2) ≤ r(A1) + r(A2) = 2.

On the other hand,

A1 − A2 =

(

−2 2

2 2

)

⊕ 0

has eigenvalues ±2
√

2 and n − 2 zeros. Therefore its spectral radius is larger than its
numerical radius, which is impossible. This proves that A is diagonal.

Next, we use Lemma 4.7 with B = Emm. Any state S = (si j) that satisfies |(Emm, S)|
= 1 = r(Emm) must have smm = 1 and all other diagonal entries zero. Therefore
|dm| = |(A, S)| = 1. This proves that A is a diagonal unitary.

Finally, we are ready to prove Proposition 4.3.
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Lemma 4.18 Every matrix in L is a unimodular scalar multiple of the identity.

Proof Let A ∈ L. We have now shown that A = diag(d1, d2, . . . , dn) with |d j | = 1

for every j. By Corollary 4.9, there exits U ∈ U such that |(PAPt ,U )| = 1 for every
permutation P. Thus 1 = |(d1, . . . , dn)P(u1, . . . , uk, 0, . . . , 0)t | for every permuta-
tion matrix P. Since ν is not the `1 norm, k ≥ 2, and we conclude that d1 = · · · = dn.

We remark that our proof of Proposition 4.3 is computational and quite long. It
would be of interest to have a short conceptual proof. Since the result is not valid

for rν if ν is a multiple of the `1 or `∞ norm, any proof must use the fact that these
two norms behave differently from other symmetric norms. In our proof, the set U

defined in (4.4) allows us to make the distinction.

We establish another general result which is useful in proving Theorem 4.1.

Proposition 4.19 Let K(C) be the set of all compact convex subsets of C and let M be
a linear subspace of Mn such that I ∈ M. Suppose F : M → K(C) is a function that
satisfies

F(A + βI) = F(A) + β, for every β ∈ C,

and define f : M → R by f (A) = max{|z| : z ∈ F(A)}. If φ is a linear operator from
M into M satisfying φ(I) = I and f

(

φ(A)
)

= f (A) for all A ∈ M, then F
(

φ(A)
)

=

F(A) for all A ∈ M.

Proof Assume that F
(

φ(A)
)

6= F(A) for some A ∈ M. If there is µ ∈ F
(

φ(A)
)

\
F(A), then by a standard separation theorem for convex sets, there exists η ∈ C such
that

f
(

φ(A − ηI)
)

= f
(

φ(A) − ηI
)

≥ |µ− η| > max
z∈F(A)

|z − η| = f (A − ηI),

which is a contradiction. Similarly, if there is µ ∈ F(A) \ F
(

φ(A)
)

, then there exists
η ∈ C such that

f
(

φ(A − ηI)
)

= f
(

φ(A) − ηI
)

= max
z∈F(φ(A))

|z − η| < |µ− η| ≤ f (A − ηI),

which is a contradiction.

Now, we are ready to complete the proof of the main theorem in this section.

Proof of Theorem 4.1 First, we show that a linear numerical radius isometry φ sat-

isfies φ(I) = µI for some complex unit µ. Suppose φ(I) = C . Since the numerical
radius is a norm, φ is invertible. Then for every Y ∈ Mn there exists X ∈ Mn such
that φ(X) = Y . By Proposition 4.3 there exists a complex unit η such that

1 + r(Y ) = 1 + r
(

φ(X)
)

= 1 + r(X) = r(ηI + X) = r
(

ηφ(I) + φ(X)
)

= r(ηC + Y ).
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Since this is true for every Y ∈ Mn, by Proposition 4.3 we conclude that C = µI for
some complex unit µ.

We may now replace φ by the mapping A 7→ µ̄φ(A) and assume that φ(I) = I.
Applying Proposition 4.19 with M = Mn and F(A) = V (A), we see that V

(

φ(A)
)

=

V (A) for all A ∈ Mn, and the conclusion follows.

5 The Extremal `1 and `∞ Norms

In this section, we assume that the norm ν on Cn is the `1 or the `∞ norm and
we characterize the linear operators on Mn that preserve the corresponding states

or vector states or any of the two norm numerical ranges or the induced numerical
radius. For the most part, we shall state and prove the results only for the `1 norm
as the `∞ norm may then be treated using duality. First, the preservers of the spatial
numerical range are the same as those of the other (non Hilbert space) symmetric

norms. The labels of the parts of the following theorems conform with the labels in
Theorem 3.1.

Theorem 5.1 Let ν be the `1 or the `∞ norm on Cn, and let W (A) denote the induced

spatial numerical range on Mn. Let φ be a linear operator on Mn. Then the following
conditions are equivalent.

(a) φ preserves the spatial numerical range, i.e., W
(

φ(A)
)

= W (A) for all A ∈ Mn.
(c) There exists a generalized permutation Q ∈ GP(n) such that

φ(A) = Q∗AQ ∀A ∈ Mn,

or equivalently,

φ∗(A) = QAQ∗ ∀A ∈ Mn.

(d) φ∗(R) = R.

The next result shows that the group of algebra numerical range preservers is
much larger. When we write A = [A1| · · · |An], we mean that the columns of A
are the column vectors A1, . . . ,An.

Theorem 5.2 Let ν be the `1 norm on Cn, and let V (A) denote the induced algebra
numerical range on Mn. Let φ be a linear operator on Mn. Then the following conditions
are equivalent.

(b) φ preserves the algebra numerical range, i.e., V
(

φ(A)
)

= V (A) for all A ∈ Mn.
(c)† There exist a permutation matrix P and generalized permutations Q1, . . . ,Qn ∈

GP(n) with Q je j = e j for j ∈ {1, . . . , n} such that

φ([A1| · · · |An]) = P∗[Q1A1| · · · |QnAn]P for all A = [A1| · · · |An] ∈ Mn,

or equivalently

φ∗([A1| · · · |An]) = P[Q̃1A1| · · · |Q̃nAn]P∗ for all A = [A1| · · · |An] ∈ Mn,

with Q̃ j = P∗Qπ( j)P where π is the permutation determined by Pe j = eπ( j)
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(e) φ∗(S) = S.

The analogous result for `∞ is similar but with columns replaced by rows.

Remarks 1. We note that P in Theorem 5.2 is taken to be a permutation rather
than a generalized permutation since the action of any diagonal unitary may be ab-
sorbed in the action of the generalized permutations Q j .

2. The group of operators appearing in Theorems 3.1 and 5.1 is ubiquitous in the
theory of linear preservers. This is the group GP(n)/Z

(

GP(n)
)

, where Z
(

GP(n)
)

is the centre of GP(n), i. e., the group of scalar matrices. On the other hand, the
group appearing in Theorem 5.2 does not seem to appear anywhere else. This is the

semidirect product of Sn and
(

GP(n − 1)
) n

.

The next result shows that the group of numerical radius isometries are much
larger than the unit multiples of the numerical range preservers. This is a deviation
from all the known results on linear preservers of generalized numerical ranges and
radii; see [13].

Theorem 5.3 Suppose r = r1 is the norm numerical radius associated with the `1

norm on Cn. Then a linear operator φ on Mn is an `1-numerical radius isometry, i.e.,
satisfies

r
(

φ(A)
)

= r(A) for all A ∈ Mn

if and only if there exists a permutation P and generalized permutations Q1, . . . ,Qn ∈
GP(n) such that φ has the form

[A1| · · · |An] 7→ [Q1A1| · · · |QnAn]P;

Again, a similar result holds for the `∞ norm with columns replaced by rows.

Remarks 1. We note that the action of the permutation P is a (one-sided) right
multiplication and not the usual “conjugation” A 7→ Pt AP. This is due to the fact

that a left multiplication by a permutation may be absorbed in the action of the gen-
eralized permutations Q j .

2. The group of operators in Theorem 5.3, i.e., the semidirect product of Sn and
GP(n)n, is also a rare group among the groups of linear preservers or the groups of
isometries of a normed space.

Before proving our theorems, we present some general observations, some of
which are well known, about norms and numerical ranges induced by these extremal
norms.

Proposition 5.4 Let A = (ai j) ∈ Mn. The operator norm ‖A‖, its dual ‖A‖D and the

algebra numerical range V (A) induced by the `1 norm satisfy the following.

(i) ‖A‖ = max j(
∑n

i=1 |ai j |), i.e., the maximum of the `1 norms of the columns of A.
(ii) ‖A‖D

=
∑n

j=1(maxi |ai j |), i.e., the sum of the `∞ norms of the columns of A.
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(iii) A matrix S = (si j) is a state if and only if s j j ≥ 0 for every j, tr(S) = 1 and

s j j = max
1≤i≤n

|si j | for every j

(iv) V (A) = conv(
⋃n

j=1 Ω j), where Ω j is the disk with centre a j j and radius ρ j =
∑

i 6= j |ai j |, in other words, V (A) is the convex hull of the (column-)Gershgorin
disks of A.

(v) W (A) includes the union of the Gershgorin disks Ω j .

(vi) r(A) = ‖A‖ for every A.

Proof The first assertion is well known in both the finite and infinite dimensional

cases. The second assertion follow easily. Also assertion (iii) is an easy consequence
of (ii).

To prove (v), consider the following subset of vector states.

S j = {xe j : `∞(x) ≤ 1, x j = 1}

It is not too hard to see that {(A,Z) : Z ∈ Sk} = Ω j and hence Ω j ⊆ W (A).
By the convexity of V (A), we get conv{Ω j : 1 ≤ j ≤ n} ⊆ V (A). As to the reverse

inclusion, we notice that the extreme points of the set of states are precisely the states
in

⋃

j S j , so that (A, S) ∈ conv{Ω j : 1 ≤ j ≤ n} for every state S. This proves (iv).

Finally (vi) follows easily from (iv) and (ii).

In the following we use the notation [z1, z2] for the closed line segment joining
the two complex numbers z1 and z2, i.e., [z1, z2] = conv{z1, z2}.

Lemma 5.5 Let m < n, and let Ã = A⊕0m−n where A ∈ Mm. The spatial numerical

ranges W (A) and W (Ã) induced by the `1 norm are related by

W (Ã) =

⋃

0≤t≤1

tW (A)

i.e., W (Ã) is the union of the line segments [0,w] for w ∈ W (A).

Proof From the description of the states in Lemma 5.4, we see that if R =
(

R11 R12
R21 R22

)

∈
R with R11 ∈ Mm and if R11 6= 0 then R11/ tr R11 is a vector state in Mm. There-
fore, (Ã,R) = (A,R11) ∈ tW (A), where t = tr R11. Conversely, if z ∈ W (A), and
1 ≤ t ≤ 1, then z = (A,Z) for a vector state Z = yx∗ in Mm with x, y ∈ Cm such
that `1(x) = `∞(y) = x∗y = 1. We define x̃ and ỹ ∈ Cn by

x̃ = (tx1, . . . , txm, 1 − t, 0, . . . , 0)t , ỹ = (y1, . . . , ym, 1, 1, . . . , 1)t .

Then ỹx̃∗ is a vector state in Mn, and (Ã, ỹx̃∗) = t(A, yx∗) ∈ tW (A).

Next we give some examples of spatial numerical range calculations. In addition
to being illuminating, these examples will be used to show that certain maps on Mn,
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which preserve the algebra numerical range, nevertheless fail to preserve the spatial
numerical range.

Example 1 Let

Aθ =

(

2 −1

eiθ −2

)

⊕ 0n−2, θ ∈ [0, 2π);

in particular

A = A0 =

(

2 −1
1 −2

)

⊕ 0n−2, B = Aπ =

(

2 −1
−1 −2

)

⊕ 0n−2.

The numerical ranges of these matrices with respect to the `1 norm satisfy the
following.

(i) W (A) = V (A) = conv
(

D(2; 1) ∪ D(−2; 1)
)

, where D(z; ρ) denotes the disk
with centre z and radius ρ

(ii) If θ 6= 0, then W (Aθ) contains the endpoints but none of the interior points of

the line segment [−2 + i, 2 + i].
(iii) W (Aθ) is convex for θ = 0 but not convex for 0 < θ < 2π.

First the assertion about V (A) is a direct consequence of Proposition 5.4. For the
spatial numerical range, we first calculate W (Cθ) for the 2×2 matrices Cθ =

( 2 −1

eiθ −2

)

which are the top left 2×2 compressions of Aθ . The vector states Uz = (1, z)t (1, 0) for
|z| ≤ 1 give rise to points (Cθ,Uz) in W (Cθ). These points are precisely the points in

the disk D(2; 1). Similarly the states (z, 1)t (0, 1) give us the disk D(−2, 1) ⊆ W (Bθ).
The remaining vector states are

(

s (1 − s)eiα

se−iα 1 − s

)

; 0 < s < 1, 0 ≤ α < 2π.

Such a state is a convex combination of states R1 = (1, e−iα)t et
1 and R2 = (eiα, 1)tet

2.
Furthermore (C0,R1) = 2 + eiα and (C0,R2) = −2 − e−iα and so W (C0) include
the horizontal line segment [−2 − e−iα, 2 + eiα]. The union of all these segments is
exactly the convex hull of D(2; 1)∪D(−2; 1). Using Lemma 5.5, we see that W (A) =

conv
(

D(1; 1) ∪ D(−1; 1)
)

. This proves (i).

We note that the only convex combinations of extreme points in V (Aθ) that gives
an interior point in the line segment [−2 + i, 2 + i] are just the convex combinations
of −2 + i and 2 + i. Furthermore if X and Y are states that satisfy (Aθ,X) = 2 + i and
(Aθ,Y ) = −2 + i, then the top left 2 × 2 compressions of X and Y must be

X0 =

(

1 0

−ieiθ 0

)

and Y0 =

(

0 i

0 1

)

.

But then any proper convex combination sX + (1 − s)Y , (0 < s < 1), has rank one
(i.e., is a vector state) if and only if θ = 0. This proves (ii) and (iii).
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The matrices in the next example are obtained from the matrices in the previous
example by applying generalized permutations to the columns.

Example 2 Let

F =





2 µ 0
0 −2 0

λ 0 0



 ⊕ 0n−3, G =





2 0 0
0 −2 0

λ µ 0



 ⊕ 0n−3,

H =









2 0 0 0
0 −2 0 0

λ 0 0 0
0 µ 0 0









⊕ 0n−4,

where λ and µ are arbitrary complex numbers of modulus 1. Then

W (F) = W (G) = W (H) = conv
(

D(2; 1) ∪ D(−2; 1)
)

,

To verify this, we note that the two indicated disks together with {0} are the Ger-
shgorin disks for each of the given matrices. By Proposition 5.4, each of W (F), W (G)
and W (H) includes each of the two disks and is included in their convex hull. Every

point in the convex hull of these two disks which is not already in their union is evi-
dently a convex combination of a point z1 in ∂D(2; 1), the boundary of D(2; 1) and a
point z2 in ∂D(−2; 1), the boundary of D(−2; 1). Now z1 = (F,Z1) and z2 = (F,Z2)
where Z1 = uet

1, Z2 = vet
2,

u =
(

1, ∗, λ(z1 − 2), 0, . . . , 0
) t

and v =
(

µ(z2 + 2), 1, ∗, 0, . . . , 0
) t
,

and where ∗ indicates an arbitrary complex number of modulus at most 1. It clear
that those arbitrary entries may be chosen so that the vectors u and v are linearly
dependent and so every convex combination of the vector states Z1 and Z2 is thus a
vector state. This shows that every convex combination of z1 and z2 belongs to W (F).

A similar calculation establishes the same for G and H.

Example 3 Let

Aθ =





4 1 0

1 −4 0

1 ieiθ 0



 ⊕ 0n−3, θ ∈ [0, 2π).

Then 2i ∈ W (Aθ) if and only if θ = 0.

This is established by similar methods to the methods used in the previous two
examples. The Gershgorin disks are D(4; 2) and D(−4; 2) together with {0}. For
2i to belong to the spatial numerical range, we must have a vector state S such that
(Aθ, S) = 2i. But this occurs if and only if the vector state S satisfies S = (X + Y )/2

where X and Y are states that satisfy (Aθ,X) = 4 + 2i and (Aθ,Y ) = −4 + 2i. The
states that satisfy the later two equations are

X = (1, i, i, ∗, . . . , ∗)t et
1 and Y = (−i, 1, eiθ, ∗, . . . , ∗)et

2.
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But if θ 6= 0, then (X + Y )/2 has rank two and so is not a vector state. While if θ = 0,
then by taking all the undetermined entries in X and Y to be zero, we get a vector

state (X + Y )/2.

We are now ready to prove Theorems 5.1, 5.2, and 5.3. We start with second one.

Proof of Theorem 5.2 From the description of the algebra numerical range in Prop-
osition 5.4, it is clear that (c)† implies (b). The implication (b) ⇒ (e) follows, as
before, from [18]. It remains to prove that (e) ⇒ (c)†. As in Section 3, we let ψ = φ∗

and so assume that ψ is a linear operator on Mn satisfying ψ(S) = S. By Lemma 3.2,
there exists Q ∈ GP(n) such that the mapping ψ̃(X) = Qψ(X)Q∗ preserves the
usual inner product on Mn, fixes all diagonal matrices, and maps the set of matrices
with zero diagonal onto itself. Furthermore, the set of extreme points of S is the

generalized permutation orbit of eet
1. This set must also be mapped onto itself by ψ̃.

The set
Ck = {D∗eet

kD : D is diagonal unitary}, k = 1, . . . , n,

is the intersection of Ext S and the set of matrices with diagonal equal diag Ekk. Con-
sequently, ψ̃(Ck) = Ck. One easily checks that the restriction of ψ̃ on the span of Ck

(identified with Cn) is a linear operator preserving the dual norm ball of the `1 norm
and maps ek to itself; thus, it is of the form v 7→ Q̃kv for some Q̃k ∈ GP(n) satisfying

Q̃kek = ek. This proves the form of φ∗ in (c)†. It is straightforward to establish the
equivalence of the form for φ and the form of φ∗ given in (c)†.

Proof of Theorem 5.1 It is clear that (c) ⇒ (d). To show that (d) ⇒ (a), assume that
φ∗(R) = R. Then

W
(

φ(A)
)

=
{(

φ(A),R
)

: R ∈ R
}

=
{(

A, φ∗(R)
)

: R ∈ R
}

= {(A, S) : S ∈ φ∗(R)} = {(A, S) : S ∈ R}
= W (A).

It remains to prove the implication (a) ⇒ (c). Assume that φ satisfies (a). Since
V (A) = conv W (A), then φ preserves the algebra numerical range and so is of the
form (c)† of Theorem 5.2. Replacing φ by the mapping A 7→ Pφ(A)Pt for a permu-

tation P, we may assume that

(5.1) φ([A1| · · · |An]) = [Q1A1| · · · |QnAn] for all A = [A1| · · · |An] ∈ Mn,

where Q1, . . . ,Qn ∈ GP(n) are generalized permutations in GP satisfying Q je j = e j

for j ∈ {1, . . . , n}. We must then show that φ(A) = DAD∗ for a diagonal unitary D.
We start by showing that Q1 is a diagonal unitary. If not, then there exist j 6= k

such that Q1e j = −λek for a complex unit λ. Without loss of generality, we may

assume that j = 2 and k = 3. Furthermore Q2(e1) = µep for a complex unit µ and
an index p which may be 1 or 3 or p ≥ 4. The latter case may be reduced to p = 4 as
follows. Let P be the permutation matrix obtained from the identity by interchanging
the 4-th and the p-th rows, and consider φ̂1 defined by A 7→ Pφ(Pt AP)Pt . This
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new map also preserves the spatial numerical range and is of the form (5.1) with
generalized permutations Q̂ j acting on the columns such that Q̂1(e2) = −λe3 and

Q̂2(e1) = e4.
Now consider the matrix

B =





2 −1 0

−1 −2 0
0 0 0



 ⊕ 0n−3

of Example 1. Then φ(B) is one of the matrices F, G or H of Example 2 according
as Q2(e1) is µe1, µe3 or µe4 respectively. From the calculations in Examples 1 and 2,

we have that W
(

φ(B)
)

is convex while W (B) is not. This is a contradiction, proving
that Q1 is a diagonal unitary. This argument may be used on any column and so we
have that Q j is a diagonal unitary for every j.

Next, we replace φ by the map A 7→ D∗φ(A)D, where D is the matrix Q1. Thus

we may assume that φ is of the form (5.1) with Q1 = I. We will then show that every
Q j = I and thus φ is the identity. We shall prove this only for j = 2 as it can be seen
that the same argument applies to any index j. Let Q2 = diag(d1, 1, d3, . . . , dn). First
consider the matrix A =

(

2 −1
1 −2

)

⊕ 0n−2, of Example 1. Thenφ(A) =
(

2 −d1
1 −2

)

⊕0n−2.

This is diagonal-unitary equivalent to the matrix C =
( 2 −1

d∗

1 −2

)

⊕0n−2. By Example 1,

we see that W
(

φ(A)
)

= W (A) if and only if d1 = 1.
Next we consider the matrix

T =





4 1 0

1 −4 0
1 i 0



 ⊕ 0n−3,

of Example 3. Then

φ(T) =





4 1 0
1 −4 0
1 id3 0



 ⊕ 0n−3.

By Example 3, we see that W (φ(A) = W (A) if and only if d3 = 1. Using PTPt for a
permutation P that fixes e1 and e2, we get in the same way that d j = 1 for j ≥ 3. This
proves that Q2 = I and ends the proof.

Proof of Theorem 5.3 By Proposition 5.4, the norm numerical radius coincides

with the operator norm. Thus, numerical radius isometries are just the isometries
of the operator norm, whose structure is known to be as given in the statement of
Theorem 5.3; see [11, 22].

We present another proof. Assume ν is the `1 norm. Let use denote by G the group

of operators φ on Mn of the form

[A1| · · · |An] 7→ [Q1A1| · · · |QnAn]P;

for a permutation P and generalized permutations Q1, . . . ,Qn ∈ GP(n). From the
description of the norm and numerical radius given in Proposition 5.4, it follows eas-
ily that every φ ∈ G is indeed a numerical radius isometry. For the converse, we have
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already seen that A belongs to the set L defined by (4.1) if and only if every column
has exactly one nonzero entry and that this entry has modulus 1, i.e., A belongs to

the orbit of I under the action of the group G. Now if φ is a spectral radius isometry,
then φ(I) ∈ L. Therefore, we may compose φ with a member of the group G to get a
map φ̂ which preserves the numerical radius and maps I to I. By Proposition 4.19, φ̂
is a unimodular scalar multiple of a map that preserve the algebra numerical range.

By Theorem 5.2, every such map belong to G, so the original operator φ ∈ G.
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