Canad. Math. Bull. Vol. 49 (1), 2006 pp. 144-151

Scattering Length and the Spectrum of $-\Delta + V$

Michael Taylor

Abstract. Given a non-negative, locally integrable function V on \mathbb{R}^n , we give a necessary and sufficient condition that $-\Delta + V$ have purely discrete spectrum, in terms of the scattering length of V restricted to boxes.

1 Introduction

It is a classical result of K. Friedrichs [F] that if $V \in L^1_{loc}(\mathbb{R}^n)$ and $V \ge 0$, then $-\Delta + V$ yields a positive self-adjoint operator on $L^2(\mathbb{R}^n)$, and its spectrum is discrete if $V(x) \to +\infty$ as $|x| \to \infty$. A. Molchanov [Mol] produced a necessary and sufficient condition for such an operator to have discrete spectrum. His condition takes the form

(1.1)
$$\inf_{F} \int_{Q_{b,\xi} \setminus F} V(x) \, dx \to \infty, \quad \text{as } |\xi| \to \infty,$$

for each $b \in (0, 1]$, where $Q_{b,\xi}$ is the *n*-dimensional cube of the form

(1.2)
$$Q_{b,\xi} = \left\{ x \in \mathbb{R}^n : \xi_j - \frac{b}{2} \le x_j \le \xi_j + \frac{b}{2} \right\}.$$

(We henceforth say $Q_{b,\xi}$ is the cube with sidelength *b* and center ξ .) In (1.1), *F* runs over the "negligible" subsets of $Q_{b,\xi}$, defined by the condition cap $F \leq \gamma$ cap $Q_{b,\xi}$. In [Mol], γ was taken to be a particular (small) constant γ_n .

Recent important work of V. Maz'ya and M. Shubin [MS] provides a cleaner form for the necessary and sufficient condition. In particular, γ can be given any value in (0, 1). Furthermore, they allow $\gamma = \gamma(b)$, possibly decaying to 0 as $b \to 0$, as long as $b^{-2}\gamma(b) \to \infty$.

Our purpose here is to produce an alternative formulation of a necessary and sufficient condition that $-\Delta + V$ have discrete spectrum (given $V \ge 0$, $V \in L^1_{loc}(\mathbb{R}^n)$). Our result is phrased in terms of "scattering length," a quantity $\Gamma(v)$ associated to integrable $v \ge 0$ that is somewhat parallel to the notion of capacity of a set. In fact, if *K* is a compact set satisfying a mild regularity condition,

(1.3)
$$\operatorname{cap} K = \lim_{r \to +\infty} \Gamma(r\chi_K),$$

where χ_K denotes the characteristic function of *K*. We will recall the definition of $\Gamma(\nu)$ in §2. Our main result is the following.

Received by the editors April 21, 2004. Supported by NSF grant DMS-0139726 AMS subject classification: 35J10. (c)Canadian Mathematical Society 2006.

Scattering Length and the Spectrum of $-\Delta + V$

Theorem 1.1 Given $V \ge 0$, $V \in L^1_{loc}(\mathbb{R}^n)$, the following three conditions are equivalent.

- (1) $-\Delta + V$ has purely discrete spectrum on $L^2(\mathbb{R}^n)$.
- (2) Given $A \in (0, \infty)$, there exists $b = b(A) \in (0, 1]$ and $R \in (0, \infty)$ such that

$$\Gamma(b^2 V_{b,\xi}) \ge Ab^2, \quad for |\xi| \ge R.$$

(3) Given $A \in (0, \infty)$, there exists $b_0 = b_0(A) \in (0, 1]$ and $R: (0, b_0] \rightarrow (0, \infty)$ such that

 $\Gamma(b^2 V_{b,\xi}) \ge Ab^2$, for $b \in (0, b_0], |\xi| \ge R(b)$.

Here $V_{b,\xi}$ is a positive function supported on the unit cube $Q = Q_{1,0}$, given by

(1.4)
$$V_{h,\xi}(x) = V(bx+\xi), \quad x \in Q$$

The rest of this paper is structured as follows. In §2 we define $\Gamma(\nu)$ for positive, integrable ν and review some of its crucial properties. In §3 we prove that $(2) \Rightarrow (1)$ in Theorem 1.1, and in §4 we prove that $(1) \Rightarrow (3)$. Clearly $(3) \Rightarrow (2)$, so this will prove Theorem 1.1. There is one result in §4, Lemma 4.2, whose proof is presented in §5.

Remark In the formal limit $V = +\infty$ on $K = \mathbb{R}^n \setminus \Omega$, where one considers $-\Delta$ on $L^2(\Omega)$, with the Dirichlet boundary condition on $\partial\Omega$, the condition (3) of Theorem 1.1 becomes that for each $A \in (0, \infty)$, there exists $b_0 = b_0(A) \in (0, 1]$ and $R: (0, b_0] \to (0, \infty)$ such that

(1.5)
$$\operatorname{cap} K_{b,\xi} \ge Ab^2(\operatorname{cap} Q_{b,\xi}), \quad \forall \ b \in (0, b_0], \ |\xi| \ge R(b),$$

where $K_{b,\xi} = K \cap Q_{b,\xi}$. This coincides with one of the criteria (necessary and sufficient) for discreteness presented in [MS, Remark 2.7].

2 Scattering Length

Here we define the scattering length $\Gamma(v)$ of a positive integrable potential v and review some of its properties. Our material is taken from [T], which in turn was influenced by results on scattering length presented in [K, KL]. For simplicity we take $n \ge 3$.

To such ν we associate the capacitory potential U_{ν} and the scattering length $\Gamma(\nu)$ as follows. First assume that $\nu \in L^2(\mathbb{R}^n)$ and has support in a compact set K, as well as $\nu \geq 0$. We define U_{ν} by

(2.1)
$$U_{\nu}(x) = \lim_{\varepsilon \searrow 0} (\varepsilon + \nu - \Delta)^{-1} \nu(x).$$

It is shown that this limit exists in $L^2_{loc}(\mathbb{R}^n)$ and satisfies

(2.2)
$$0 \le U_{\nu} \le 1, \quad \nu \le w \Rightarrow U_{\nu} \le U_{w}.$$

M. Taylor

The existence proof in [K, KL] involves producing the formula

(2.3)
$$U_{\nu}(x) = E_x \left\{ 1 - \exp\left(-\int_0^\infty \nu(b(\tau)) \, d\tau\right) \right\},$$

where E_x is expectation with respect to Wiener measure on Brownian paths *b* starting at *x*; see also [T, p. 292] for a derivation of this formula.

The function U_{ν} solves the PDE

$$\Delta U_{\nu} = -\nu(1 - U_{\nu}).$$

It follows that $-\Delta U_{\nu} = \mu_{\nu}$ is a positive measure on \mathbb{R}^{n} . We set

(2.5)
$$\Gamma(\nu) = \int d\mu_{\nu}(x).$$

Some basic results on $\Gamma(\nu)$ include:

(2.6)

$$\begin{aligned}
v \leq w \Longrightarrow \Gamma(v) \leq \Gamma(w), \\
\Gamma(v+w) \leq \Gamma(v) + \Gamma(w), \\
v_n \nearrow v \Longrightarrow \Gamma(v_n) \nearrow \Gamma(v), \\
\Gamma(v) \leq \|v\|_{L^1}.
\end{aligned}$$

We also have

(2.7)
$$\|\nabla U_{\nu}\|_{L^{2}(\mathbb{R}^{n})}^{2} = \int_{\mathbb{R}^{n}} U_{\nu}(x) \, d\mu_{\nu}(x) \leq \Gamma(\nu).$$

and, for any ball $B \subset \mathbb{R}^n$,

$$||U_{\nu}||_{L^{1}(B)} \leq \alpha(B)\Gamma(\nu).$$

These results are established in [T, Propositions 1.2–1.6]. They allow us to define U_{ν} and $\Gamma(\nu)$ for positive $\nu \in L^1(\mathbb{R}^n)$, having

(2.9)
$$v_n \nearrow v, \ v_n \in L^2_{\text{comp}}(\mathbb{R}^n) \Longrightarrow U_{v_n} \nearrow U_v, \ \Gamma(v_n) \nearrow \Gamma(v)$$

We now give two key estimates, established in [T], which connect scattering length to eigenvalue estimates. Suppose $v \ge 0$ is an integrable function supported on Q, the cube of sidelength 1 centered at 0. Let $\lambda_1(v) \in [0, \infty)$ denote the smallest eigenvalue of $-\Delta + v$, with the Neumann boundary condition, on $L^2(Q)$. The following result summarizes [T, Propositions 2.2–2.3].

Proposition 2.1 There exists $C_n \in (0, \infty)$ such that

(2.10)
$$\lambda_1(\nu) \ge C_n \Gamma(\nu).$$

Furthermore, there exist $E_n, \widetilde{C}_n \in (0, \infty)$ *such that*

(2.11)
$$\Gamma(\nu) \leq E_n \Longrightarrow \lambda_1(\nu) \leq C_n \Gamma(\nu).$$

We refer to [T, pp. 295–297] for proofs of these results. We mention that (2.11) is proven by an apt choice of test function in the variational characterization of $\lambda_1(\nu)$, while (2.10) is proven by examining the decay rate for e^{-tL_N} , where L_N denotes $-\Delta + \nu$, with the Neumann boundary condition, on $L^2(Q)$.

Scattering Length and the Spectrum of $-\Delta + V$

3 Sufficient Condition for Discrete Spectrum

The following result yields the implication $(2) \Rightarrow (1)$ in Theorem 1.1.

Proposition 3.1 Take $A \in (0, \infty)$ and let C_n be as in (2.10). Assume that there exists $b = b(A) \in (0, 1]$ and $R = R(A) \in (0, \infty)$ such that

(3.1)
$$C_n \Gamma(b^2 V_{b,\xi}) \ge Ab^2, \quad \text{for } |\xi| \ge R.$$

Then

$$(3.2) \qquad \qquad \text{ess spec}(-\Delta + V) \subset [A, \infty).$$

Proof Let $Q_{b,\xi}$ denote the cube of edge *b*, center ξ , as in (1.2), and let $L_{b,\xi}$ denote the operator $-\Delta + V$ on $L^2(Q_{b,\xi})$, with the Neumann boundary condition. A standard argument involving Rellich's theorem shows that, if there exists R = R(A) such that

(3.3) spec
$$L_{b,\xi} \subset [A,\infty)$$
, for $|\xi| \ge R_{\xi}$

then (3.2) holds. Now $L_{b,\xi}$ is unitarily equivalent to the operator

(3.4)
$$-b^{-2}\Delta + V_{b,\xi} = b^{-2}(-\Delta + b^2 V_{b,\xi}),$$

on $L^2(Q)$ (Q denoting the cube of edge 1, center 0), where

$$(3.5) V_{b,\xi}(x) = V(bx+\xi), \quad x \in Q.$$

and one places the Neumann boundary condition on the operator (3.4). Now, by Proposition 2.1, the spectrum of this operator is bounded below by

$$(3.6) C_n b^{-2} \Gamma(b^2 V_{b,\xi}),$$

so Proposition 3.1 is proven.

4 Necessary Condition for Discrete Spectrum

It is convenient to set up some notation. Given a cube $Q_{\nu} \subset \mathbb{R}^{n}$, we denote by

(4.1)
$$\lambda_D^{Q_\nu}(-\Delta+V), \text{ resp., } \lambda_N^{Q_\nu}(-\Delta+V),$$

the smallest eigenvalue of $-\Delta + V$ on $L^2(Q_{\nu})$, where we impose, respectively, the Dirichlet or Neumann boundary condition on ∂Q_{ν} . As before, let $Q_{b,\xi}$ denote the cube of edge *b*, center ξ , as in (1.2). We continue to assume $V \ge 0$ and $V \in L^1_{loc}(\mathbb{R}^n)$.

Lemma 4.1 If $-\Delta + V$ has discrete spectrum on $L^2(\mathbb{R}^n)$, then for each $b \in (0, 1]$,

(4.2)
$$\lambda_D^{Q_{b,\xi}}(-\Delta+V) \longrightarrow +\infty, \quad as |\xi| \to \infty.$$

Proof As is well known, $-\Delta + V$ has discrete spectrum on $L^2(\mathbb{R}^n)$ if and only if the set

(4.3)
$$X = \{ u \in H^1(\mathbb{R}^n) : \|\nabla u\|_{L^2}^2 + \|V^{1/2}u\|_{L^2}^2 \le 1 \}$$

is compact in $L^2(\mathbb{R}^n)$. In turn, such compactness implies

(4.4)
$$\int_{|x|\geq R} |u(x)|^2 dx \leq \varepsilon(R), \quad \forall \ u \in X,$$

where $\varepsilon(R) \to 0$ as $R \to \infty$. If we restrict attention to $u \in H_0^1(Q_{b,\xi})$, this gives (4.2).

In the following lemma, $Q = Q_{1,0}$, the unit cube centered at 0.

Lemma 4.2 There exists $A_n \in (0,\infty)$ and $B_n: [A_n,\infty) \to (0,\infty)$, such that $B_n(A) \to \infty$ as $A \to \infty$, and such that whenever $v \in L^1(Q)$ is non-negative and whenever $A \ge A_n$,

(4.5)
$$\lambda_D^Q(-\Delta+\nu) \ge A \Longrightarrow \lambda_N^Q(-\Delta+\nu) \ge B_n(A).$$

Such a result is established in [Mol]; a proof is also given in [KS, Lemma 2.9]. For the convenience of the reader, we present yet another proof of Lemma 4.2 in $\S5$. Granted the result, we deduce from Lemma 4.1 the following.

Corollary 4.3 If $-\Delta + V$ has discrete spectrum on $L^2(\mathbb{R}^n)$, then, for each $b \in (0, 1]$,

(4.6)
$$\lambda_N^{Q_{b,\xi}}(-\Delta+V) \longrightarrow +\infty, \quad as \ |\xi| \to \infty.$$

Note that the left side of (4.6) is equal to

$$(4.7) b^{-2}\lambda_N^Q(-\Delta+b^2V_{b,\xi})$$

We are now ready to prove the implication $(1) \Rightarrow (3)$ in Theorem 1.1. Given $A \in (0, \infty)$, pick $b_0 = b_0(A)$ so small that (2.11) applies, so that

(4.8)
$$\Gamma(\nu) \le b_0^2 A \Longrightarrow \lambda_N^Q(-\Delta + \nu) \le \widetilde{C}_n \Gamma(\nu).$$

Consequently, for $b \in (0, b_0]$,

(4.9)
$$\Gamma(b^2 V_{b,\xi}) \le Ab^2 \Rightarrow \lambda_N^Q(-\Delta + b^2 V_{b,\xi}) \le \widetilde{C}_n \Gamma(b^2 V_{b,\xi}) \le \widetilde{C}_n Ab^2.$$

Now, by (4.6)–(4.7), we cannot have the bound $\lambda_N^Q(-\Delta + b^2 V_{b,\xi}) \leq \tilde{C}_n A b^2$ for large $|\xi|$, so consequently we cannot have the bound $\Gamma(b^2 V_{b,\xi}) \leq A b^2$ for large $|\xi|$. The proof of Theorem 1.1 is complete, modulo the proof of Lemma 4.2, which will be given in the next section.

5 Proof of Lemma 4.2

Given non-negative $v \in L^1(Q)$, let us denote by L_D the operator $L = -\Delta + v$ on $L^2(Q)$ with the Dirichlet boundary condition and by L_N the operator with the Neumann boundary condition. We assume

(5.1)
$$\lambda = \lambda_D^Q (-\Delta + \nu),$$

the smallest eigenvalue of L_D , is large, and we want to estimate the smallest eigenvalue of L_N . We will estimate various "heat semigroups." For $x, y \in Q$, t > 0, set

(5.2)
$$p_D(t, x, y) = e^{-tL_D} \delta_y(x), \quad p_N(t, x, y) = e^{-tL_N} \delta_y(x),$$

 $p_Q(t, x, y) = e^{t\Delta_N} \delta_y(x), \quad p_0(t, x, y) = (4\pi t)^{-n/2} e^{-|x-y|^2/4t}$

Here Δ_N denotes the Laplace operator on $L^2(Q)$, with the Neumann boundary condition. It will be convenient to note the following inequalities:

(5.3)
$$p_D(t, x, y) \le p_0(t, x, y), \quad p_N(t, x, y) \le p_Q(t, x, y)$$

We want to estimate $p_N(t, x, y)$, but first we will estimate $p_D(t, x, y)$. Let us fix $a \in (0, 1)$ and set

(5.4)
$$\tau = \lambda^{-a}.$$

Using (5.3) we have

(5.5)
$$\|e^{-\tau L_D}\|_{\mathcal{L}(L^1,L^2)} \le (4\pi\tau)^{-n/4}, \|e^{-\tau L_D}\|_{\mathcal{L}(L^2,L^\infty)} \le (4\pi\tau)^{-n/4},$$

while (5.1) gives

$$\|e^{-\tau L_D}\|_{\mathcal{L}(L^2,L^2)} \leq e^{-\tau \lambda}.$$

Hence

(5.7)
$$\|e^{-3\tau L_D}\delta_y\|_{L^{\infty}} \leq C\tau^{-n/2}e^{-\tau\lambda} = C\lambda^{an/2}e^{-\lambda^{1-a}}.$$

In other words,

(5.8)
$$0 \le p_D(3\tau, x, y) \le C\lambda^{an/2}e^{-\lambda^{1-a}}, \quad \forall x, y \in Q$$

Next, we estimate $V_y(t, x) = p_N(t, x, y) - p_D(t, x, y)$, for $t \in [0, 3\tau]$. We have

(5.9)
$$(\partial_t - L)V_y = 0 \text{ on } \mathbb{R}^+ \times Q, \quad V_y(0, x) = 0,$$

and $x \in \partial Q \Longrightarrow V_y(t, x) = p_N(t, x, y)$. Hence

(5.10)
$$x \in \partial Q \Longrightarrow 0 \le V_y(t, x) \le p_Q(t, x, y).$$

M. Taylor

Let us define the set $\Omega_{\tau} \subset Q$ by

(5.11)
$$\Omega_{\tau} = \{ y \in Q : \operatorname{dist}(y, \partial Q) \ge \tau^{1/3} \}.$$

It is clear that, if λ is sufficiently large, so τ is sufficiently small,

(5.12)
$$x \in \partial Q, \ y \in \Omega_{\tau}, \ t \in [0, 3\tau] \Rightarrow p_Q(t, x, y) \le C e^{-\lambda^{a/4}},$$

so applying the maximum principle to (5.9)-(5.10) gives

(5.13)
$$V_{y}(t,x) \leq Ce^{-\lambda^{a/4}}, \text{ for } x \in Q, \ y \in \Omega_{\tau}, \ t \in [0,3\tau],$$

and hence, by (5.8), if we take a = 4/5 and assume λ is sufficiently large,

(5.14)
$$0 \leq p_N(3\tau, x, y) \leq C\lambda^{2n/5} e^{-\lambda^{1/5}}, \quad \forall x \in Q, \ y \in \Omega_{\tau}.$$

Now, using the semigroup property of e^{tL_N} and the fact that $||e^{-tL_N}||_{\mathcal{L}(L^{\infty},L^{\infty})} \leq 1$, we deduce that

(5.15)
$$0 \le p_N(t, x, y) \le C\lambda^{2n/5} e^{-\lambda^{1/5}}, \quad \forall x \in Q, \ y \in \Omega_\tau, \ t \ge 3\tau.$$

In particular, if λ is large enough that $3\tau = 3\lambda^{-4/5} < 1$, the estimate (5.15) applies with t = 1. On the other hand, we can use (5.3) to obtain

$$(5.16) p_N(1,x,y) \le p_Q(1,x,y) \le C, \quad \forall x \in Q, \ y \in Q \setminus \Omega_{\tau}.$$

It follows that

(5.17)
$$\int_{Q} p_{N}(1, x, y) \, dy \leq C \lambda^{2n/5} e^{-\lambda^{1/5}} + C \operatorname{Vol}(Q \setminus \Omega_{\tau})$$
$$\leq C \lambda^{2n/5} e^{-\lambda^{1/5}} + C \lambda^{-4/15}.$$

Of course $p_N(1, x, y) = p_N(1, y, x)$, so there is a similar bound on $\int_Q p_N(1, x, y) dx$. Hence we deduce that

(5.18)
$$\|e^{-L_N}\|_{\mathcal{L}(L^2,L^2)} \leq C\lambda^{2n/5}e^{-\lambda^{1/5}} + C\lambda^{-4/15} = \Phi(\lambda).$$

It follows that

(5.19)
$$\lambda_N^Q(-\Delta+\nu) \ge \log \frac{1}{\Phi(\lambda)},$$

and Lemma 4.2 is proven.

Scattering Length and the Spectrum of $-\Delta + V$

References

- [F] K. Friedrichs, Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren. Math. Ann. 109(1934), 465–487, 685–713.
- [K] M. Kac, Probabilistic methods in some problems of scattering theory. Rocky Mountain J. Math. 4(1974), 511–537.
- [KL] M. Kac and J. Luttinger, Scattering length and capacity. Ann. Inst. Fourier 25(1975), no. 3-4, 317–321.
- [KS] V. Kondrat'ev and M. Shubin, Discreteness of spectrum for the Schr
 ødinger operators on manifolds with bounded gaometry. Oper. Theory Adv. Appl. 110, Birkhauser, Basel, 1999, pp. 185–226.
- [MS] V. Maz'ya and M. Shubin, Discreteness of spectrum and positivity criteria for Schrödinger operators. Ann. Math. 162(2005), 919–942.
- [Mol] A. Molchanov, On conditions for the discreteness of the spectrum conditions for self-adjoint differential equations of the second order. Proc. Moscow Math. Soc. 2(1953), 169–199. (Russian)
- [T] M. Taylor, Scattering length and perturbations of $-\Delta$ by positive potentials. J. Math. Anal. Appl. **53**(1976), no. 2, 291–312.

Mathematics Department University of North Carolina Chapel Hill, NC 27599 U.S.A. e-mail: met@math.unc.edu