
Canad. Math. Bull. Vol. 49 (1), 2006 pp. 144–151

Scattering Length and the
Spectrum of −∆ + V

Michael Taylor

Abstract. Given a non-negative, locally integrable function V on R
n, we give a necessary and sufficient

condition that −∆ + V have purely discrete spectrum, in terms of the scattering length of V restricted

to boxes.

1 Introduction

It is a classical result of K. Friedrichs [F] that if V ∈ L1
loc (R

n) and V ≥ 0, then

−∆ +V yields a positive self-adjoint operator on L2(R
n), and its spectrum is discrete

if V (x) → +∞ as |x| → ∞. A. Molchanov [Mol] produced a necessary and sufficient
condition for such an operator to have discrete spectrum. His condition takes the
form

(1.1) inf
F

∫

Qb,ξ\F

V (x) dx → ∞, as |ξ| → ∞,

for each b ∈ (0, 1], where Qb,ξ is the n-dimensional cube of the form

(1.2) Qb,ξ =

{
x ∈ R

n : ξ j −
b

2
≤ x j ≤ ξ j +

b

2

}
.

(We henceforth say Qb,ξ is the cube with sidelength b and center ξ.) In (1.1), F runs
over the “negligible” subsets of Qb,ξ , defined by the condition cap F ≤ γ cap Qb,ξ . In

[Mol], γ was taken to be a particular (small) constant γn.
Recent important work of V. Maz’ya and M. Shubin [MS] provides a cleaner form

for the necessary and sufficient condition. In particular, γ can be given any value in
(0, 1). Furthermore, they allow γ = γ(b), possibly decaying to 0 as b → 0, as long as

b−2γ(b) → ∞.
Our purpose here is to produce an alternative formulation of a necessary and suf-

ficient condition that −∆ + V have discrete spectrum (given V ≥ 0, V ∈ L1
loc (R

n)).
Our result is phrased in terms of “scattering length,” a quantity Γ(v) associated to

integrable v ≥ 0 that is somewhat parallel to the notion of capacity of a set. In fact, if
K is a compact set satisfying a mild regularity condition,

(1.3) cap K = lim
r→+∞

Γ(rχK),

where χK denotes the characteristic function of K. We will recall the definition of

Γ(v) in §2. Our main result is the following.
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Theorem 1.1 Given V ≥ 0, V ∈ L1
loc (R

n), the following three conditions are equiv-

alent.

(1) −∆ + V has purely discrete spectrum on L2(R
n).

(2) Given A ∈ (0,∞), there exists b = b(A) ∈ (0, 1] and R ∈ (0,∞) such that

Γ(b2Vb,ξ) ≥ Ab2, for |ξ| ≥ R.

(3) Given A ∈ (0,∞), there exists b0 = b0(A) ∈ (0, 1] and R : (0, b0] → (0,∞) such

that

Γ(b2Vb,ξ) ≥ Ab2, for b ∈ (0, b0], |ξ| ≥ R(b).

Here Vb,ξ is a positive function supported on the unit cube Q = Q1,0, given by

(1.4) Vb,ξ(x) = V (bx + ξ), x ∈ Q.

The rest of this paper is structured as follows. In §2 we define Γ(v) for positive,

integrable v and review some of its crucial properties. In §3 we prove that (2) ⇒ (1)
in Theorem 1.1, and in §4 we prove that (1) ⇒ (3). Clearly (3) ⇒ (2), so this will
prove Theorem 1.1. There is one result in §4, Lemma 4.2, whose proof is presented
in §5.

Remark In the formal limit V = +∞ on K = R
n \ Ω, where one considers −∆

on L2(Ω), with the Dirichlet boundary condition on ∂Ω, the condition (3) of The-
orem 1.1 becomes that for each A ∈ (0,∞), there exists b0 = b0(A) ∈ (0, 1] and

R : (0, b0] → (0,∞) such that

(1.5) cap Kb,ξ ≥ Ab2(cap Qb,ξ), ∀ b ∈ (0, b0], |ξ| ≥ R(b),

where Kb,ξ = K ∩ Qb,ξ . This coincides with one of the criteria (necessary and suffi-
cient) for discreteness presented in [MS, Remark 2.7].

2 Scattering Length

Here we define the scattering length Γ(v) of a positive integrable potential v and
review some of its properties. Our material is taken from [T], which in turn was
influenced by results on scattering length presented in [K, KL]. For simplicity we

take n ≥ 3.
To such v we associate the capacitory potential Uv and the scattering length Γ(v)

as follows. First assume that v ∈ L2(R
n) and has support in a compact set K, as well

as v ≥ 0. We define Uv by

(2.1) Uv(x) = lim
εց0

(ε + v − ∆)−1v(x).

It is shown that this limit exists in L2
loc (R

n) and satisfies

(2.2) 0 ≤ Uv ≤ 1, v ≤ w ⇒ Uv ≤ Uw.
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The existence proof in [K, KL] involves producing the formula

(2.3) Uv(x) = Ex

{
1 − exp

(
−

∫ ∞

0

v(b(τ )) dτ
)}

,

where Ex is expectation with respect to Wiener measure on Brownian paths b starting
at x; see also [T, p. 292] for a derivation of this formula.

The function Uv solves the PDE

(2.4) ∆Uv = −v(1 −Uv).

It follows that −∆Uv = µv is a positive measure on R
n. We set

(2.5) Γ(v) =

∫
dµv(x).

Some basic results on Γ(v) include:

(2.6)

v ≤ w =⇒ Γ(v) ≤ Γ(w),

Γ(v + w) ≤ Γ(v) + Γ(w),

vn ր v =⇒ Γ(vn) ր Γ(v),

Γ(v) ≤ ‖v‖L1 .

We also have

(2.7) ‖∇Uv‖
2
L2(Rn) =

∫

Rn

Uv(x) dµv(x) ≤ Γ(v),

and, for any ball B ⊂ R
n,

(2.8) ‖Uv‖L1(B) ≤ α(B)Γ(v).

These results are established in [T, Propositions 1.2–1.6]. They allow us to define Uv

and Γ(v) for positive v ∈ L1(R
n), having

(2.9) vn ր v, vn ∈ L2
comp(R

n) =⇒ Uvn
ր Uv, Γ(vn) ր Γ(v).

We now give two key estimates, established in [T], which connect scattering length

to eigenvalue estimates. Suppose v ≥ 0 is an integrable function supported on Q, the
cube of sidelength 1 centered at 0. Let λ1(v) ∈ [0,∞) denote the smallest eigenvalue
of −∆ + v, with the Neumann boundary condition, on L2(Q). The following result
summarizes [T, Propositions 2.2–2.3].

Proposition 2.1 There exists Cn ∈ (0,∞) such that

(2.10) λ1(v) ≥ CnΓ(v).

Furthermore, there exist En, C̃n ∈ (0,∞) such that

(2.11) Γ(v) ≤ En =⇒ λ1(v) ≤ C̃nΓ(v).

We refer to [T, pp. 295–297] for proofs of these results. We mention that (2.11) is
proven by an apt choice of test function in the variational characterization of λ1(v),
while (2.10) is proven by examining the decay rate for e−tLN , where LN denotes −∆+
v, with the Neumann boundary condition, on L2(Q).
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3 Sufficient Condition for Discrete Spectrum

The following result yields the implication (2) ⇒ (1) in Theorem 1.1.

Proposition 3.1 Take A ∈ (0,∞) and let Cn be as in (2.10). Assume that there exists

b = b(A) ∈ (0, 1] and R = R(A) ∈ (0,∞) such that

(3.1) CnΓ(b2Vb,ξ) ≥ Ab2, for |ξ| ≥ R.

Then

(3.2) ess spec(−∆ + V ) ⊂ [A,∞).

Proof Let Qb,ξ denote the cube of edge b, center ξ, as in (1.2), and let Lb,ξ denote the

operator −∆ + V on L2(Qb,ξ), with the Neumann boundary condition. A standard
argument involving Rellich’s theorem shows that, if there exists R = R(A) such that

(3.3) spec Lb,ξ ⊂ [A,∞), for |ξ| ≥ R,

then (3.2) holds. Now Lb,ξ is unitarily equivalent to the operator

(3.4) −b−2
∆ + Vb,ξ = b−2(−∆ + b2Vb,ξ),

on L2(Q) (Q denoting the cube of edge 1, center 0), where

(3.5) Vb,ξ(x) = V (bx + ξ), x ∈ Q,

and one places the Neumann boundary condition on the operator (3.4). Now, by
Proposition 2.1, the spectrum of this operator is bounded below by

(3.6) Cnb−2
Γ(b2Vb,ξ),

so Proposition 3.1 is proven.

4 Necessary Condition for Discrete Spectrum

It is convenient to set up some notation. Given a cube Qν ⊂ R
n, we denote by

(4.1) λQν
D (−∆ + V ), resp., λQν

N (−∆ + V ),

the smallest eigenvalue of −∆ + V on L2(Qν), where we impose, respectively, the
Dirichlet or Neumann boundary condition on ∂Qν . As before, let Qb,ξ denote the
cube of edge b, center ξ, as in (1.2). We continue to assume V ≥ 0 and V ∈ L1

loc (R
n).

Lemma 4.1 If −∆ + V has discrete spectrum on L2(R
n), then for each b ∈ (0, 1],

(4.2) λ
Qb,ξ

D (−∆ + V ) −→ +∞, as |ξ| → ∞.
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Proof As is well known, −∆ + V has discrete spectrum on L2(R
n) if and only if the

set

(4.3) X = {u ∈ H1(R
n) : ‖∇u‖2

L2 + ‖V 1/2u‖2
L2 ≤ 1}

is compact in L2(R
n). In turn, such compactness implies

(4.4)

∫

|x|≥R

|u(x)|2 dx ≤ ε(R), ∀ u ∈ X,

where ε(R) → 0 as R → ∞. If we restrict attention to u ∈ H1
0 (Qb,ξ), this gives (4.2).

In the following lemma, Q = Q1,0, the unit cube centered at 0.

Lemma 4.2 There exists An ∈ (0,∞) and Bn : [An,∞) → (0,∞), such that

Bn(A) → ∞ as A → ∞, and such that whenever v ∈ L1(Q) is non-negative and

whenever A ≥ An,

(4.5) λQ
D(−∆ + v) ≥ A =⇒ λQ

N(−∆ + v) ≥ Bn(A).

Such a result is established in [Mol]; a proof is also given in [KS, Lemma 2.9].
For the convenience of the reader, we present yet another proof of Lemma 4.2 in §5.

Granted the result, we deduce from Lemma 4.1 the following.

Corollary 4.3 If −∆ + V has discrete spectrum on L2(R
n), then, for each b ∈ (0, 1],

(4.6) λ
Qb,ξ

N (−∆ + V ) −→ +∞, as |ξ| → ∞.

Note that the left side of (4.6) is equal to

(4.7) b−2λQ
N (−∆ + b2Vb,ξ).

We are now ready to prove the implication (1) ⇒ (3) in Theorem 1.1. Given A ∈
(0,∞), pick b0 = b0(A) so small that (2.11) applies, so that

(4.8) Γ(v) ≤ b2
0A =⇒ λQ

N (−∆ + v) ≤ C̃nΓ(v).

Consequently, for b ∈ (0, b0],

(4.9) Γ(b2Vb,ξ) ≤ Ab2 ⇒ λQ
N (−∆ + b2Vb,ξ) ≤ C̃nΓ(b2Vb,ξ) ≤ C̃nAb2.

Now, by (4.6)–(4.7), we cannot have the bound λQ
N (−∆ + b2Vb,ξ) ≤ C̃nAb2 for large

|ξ|, so consequently we cannot have the bound Γ(b2Vb,ξ) ≤ Ab2 for large |ξ|. The
proof of Theorem 1.1 is complete, modulo the proof of Lemma 4.2, which will be
given in the next section.
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5 Proof of Lemma 4.2

Given non-negative v ∈ L1(Q), let us denote by LD the operator L = −∆+v on L2(Q)
with the Dirichlet boundary condition and by LN the operator with the Neumann
boundary condition. We assume

(5.1) λ = λQ
D(−∆ + v),

the smallest eigenvalue of LD, is large, and we want to estimate the smallest eigenvalue
of LN . We will estimate various “heat semigroups.” For x, y ∈ Q, t > 0, set

(5.2) pD(t, x, y) = e−tLDδy(x), pN (t, x, y) = e−tLN δy(x),

pQ(t, x, y) = et∆N δy(x), p0(t, x, y) = (4πt)−n/2e−|x−y|2/4t .

Here ∆N denotes the Laplace operator on L2(Q), with the Neumann boundary con-
dition. It will be convenient to note the following inequalities:

(5.3) pD(t, x, y) ≤ p0(t, x, y), pN (t, x, y) ≤ pQ(t, x, y).

We want to estimate pN (t, x, y), but first we will estimate pD(t, x, y). Let us fix a ∈
(0, 1) and set

(5.4) τ = λ−a.

Using (5.3) we have

(5.5) ‖e−τLD‖L(L1,L2) ≤ (4πτ )−n/4, ‖e−τLD‖L(L2,L∞) ≤ (4πτ )−n/4,

while (5.1) gives

(5.6) ‖e−τLD‖L(L2,L2) ≤ e−τλ.

Hence

(5.7) ‖e−3τLDδy‖L∞ ≤ Cτ−n/2e−τλ
= Cλan/2e−λ1−a

.

In other words,

(5.8) 0 ≤ pD(3τ , x, y) ≤ Cλan/2e−λ1−a

, ∀ x, y ∈ Q.

Next, we estimate V y(t, x) = pN (t, x, y) − pD(t, x, y), for t ∈ [0, 3τ ]. We have

(5.9) (∂t − L)V y = 0 on R
+ × Q, V y(0, x) = 0,

and x ∈ ∂Q =⇒ V y(t, x) = pN (t, x, y). Hence

(5.10) x ∈ ∂Q =⇒ 0 ≤ V y(t, x) ≤ pQ(t, x, y).
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Let us define the set Ωτ ⊂ Q by

(5.11) Ωτ = {y ∈ Q : dist(y, ∂Q) ≥ τ 1/3}.

It is clear that, if λ is sufficiently large, so τ is sufficiently small,

(5.12) x ∈ ∂Q, y ∈ Ωτ , t ∈ [0, 3τ ] ⇒ pQ(t, x, y) ≤ Ce−λa/4

,

so applying the maximum principle to (5.9)–(5.10) gives

(5.13) V y(t, x) ≤ Ce−λa/4

, for x ∈ Q, y ∈ Ωτ , t ∈ [0, 3τ ],

and hence, by (5.8), if we take a = 4/5 and assume λ is sufficiently large,

(5.14) 0 ≤ pN(3τ , x, y) ≤ Cλ2n/5e−λ1/5

, ∀ x ∈ Q, y ∈ Ωτ .

Now, using the semigroup property of etLN and the fact that ‖e−tLN‖L(L∞,L∞) ≤ 1,
we deduce that

(5.15) 0 ≤ pN(t, x, y) ≤ Cλ2n/5e−λ1/5

, ∀ x ∈ Q, y ∈ Ωτ , t ≥ 3τ .

In particular, if λ is large enough that 3τ = 3λ−4/5 < 1, the estimate (5.15)
applies with t = 1. On the other hand, we can use (5.3) to obtain

(5.16) pN (1, x, y) ≤ pQ(1, x, y) ≤ C, ∀ x ∈ Q, y ∈ Q \ Ωτ .

It follows that

(5.17)

∫

Q

pN(1, x, y) dy ≤ Cλ2n/5e−λ1/5

+ C Vol (Q \ Ωτ )

≤ Cλ2n/5e−λ1/5

+ Cλ−4/15.

Of course pN (1, x, y) = pN (1, y, x), so there is a similar bound on
∫

Q
pN (1, x, y) dx.

Hence we deduce that

(5.18) ‖e−LN‖L(L2,L2) ≤ Cλ2n/5e−λ1/5

+ Cλ−4/15
= Φ(λ).

It follows that

(5.19) λQ
N (−∆ + v) ≥ log

1

Φ(λ)
,

and Lemma 4.2 is proven.
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