
CERTAIN GROUPS OF ORTHONORMAL STEP 
FUNCTIONS 

J. J. PRICE 

1. Introduction. It was first pointed out by Fine (2), that the Walsh 
functions are essentially the characters of a certain compact abelian group, 
namely the countable direct product of groups of order two. Later Chrestenson 
(1) considered characters of the direct product of cyclic groups of order a 
(a = 2, 3, . . .)• I n general, his results show that the analytic properties of 
these generalized Walsh functions are basically the same as those of the 
ordinary Walsh functions. That this is the case does not seem surprising, since 
the structures of the underlying groups are quite similar. 

It is our purpose to show that a considerably different state of affairs 
prevails for characters of a direct product of finite cyclic groups whose orders 
are unbounded. We shall show by examples that for these functions, certain 
basic properties of the Walsh systems mentioned above no longer hold. 

The functions we shall study as well as the Walsh systems are included 
in a very general class of step functions discussed recently by Ohkuma (3). 
We shall quote some of his results. However, a number of his principal theorems 
are proved under special conditions which are not satisfied by the functions 
we shall consider. 

We shall have occasion to cite a number of properties of the Walsh functions. 
Unless otherwise stated, the reference for all of these is the fundamental 
paper of Fine (2). 

2. Definitions. Let {ni, n2} . . .} be a sequence of integers, ni > 2, and let 
po = l,pk = nin2 . . . nk. Denote by / ( r , k) the interval r/pk < x < (r + l)/pk 

and by Xr(k)(x) the characteristic function of the set \Jl(j, k) where j runs 
over all integers = r(modpk). Let us define a system of functions 
{#o(#), 0i(x), . . .} as follows. 

(1) &_,(*) = £ c o / x ^ W , «* = e"mk (* = 1,2, . . . )• 

By definition, 0A_i(x) is a step function whose values run through the nkth 
roots of unity. On the interval [0,1] there are pk intervals of constancy each 
of length l/pk. 

Now let ^(wi, n2, . . .) be the set of all finite products of these functions. 
In particular, ^(2 ,2 ,2 , . . .) is the system of Walsh functions and ^ (a , a, a, . . .) 
is the generalization of Chrestenson. 
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414 J. J. PRICE 

To enumerate our system we use a scheme based on Paley's enumeration 
of the Walsh functions. Every positive integer N can be expressed uniquely 
in the form r0p0 + r\p\ + . . . + rmpm where 0 < rt < nt+i. Set 

(2) M*) = 1, MX) = *o r°(«)*i r iW . • • *mrm(*). 

It is clear that >F(wi, w2, . . .) is an orthonormal system. That it is complete 
can be seen in several ways. For instance, the reasoning used by Fine in (2) 
shows that it is the full set of characters of the countable direct product of 
cyclic groups of order ni transferred to the unit interval in a measure-preserving 
manner. Or, one may invoke a general theorem of Ohkuma (3). 

3. Expansions of certain functions. In this section, we obtain the Fourier 
expansions of several functions with respect to the system >F(wi, n2, . . .)• 

THEOREM 1. 
oo -I ilk— 1 1 

x - M ~ I + E ~Z -=r-r **-i' (*)• 
A-=l Pk j=l <*h — J 

Proof. For every real value of x, x — [x] can be represented in the form 
00 c 

J2 17 » 0 < ck < nk . 
fci Pk 

This representat ion is unique except when x is of the form m/pk. Now let 
f ik)(x) be the characterist ic function of the set of all x for which <f>k_i(x) = w / . 
This set can also be described as \Jl(r,k) where the union is taken over all 
integers r= v (mod nk). Define 

n/e—l 

(3) ck(x) = E rtf\x). 

Then , for every value of x, 

ck{x) 
(4) x -[x]=Z h • 

A = l Pk 

In the case t h a t x = m/pk, (4) gives the finite representat ion of x — [x]. In 
all cases, the series in (4) converges uniformly. W e observe t h a t 

%-TTo l 0, otherwise. 

Th u s , the series (5) is the Fourier expansion of £ik)(x). Subs t i tu t ing it in (3) 
yields 

nis—l nk—l 

(o) ck{x) = -J-£ **-i'(*)E *(«*"')' • 

Now in general, 

^ v d (l - *"+ 1 \ A ^ + 1 - (iV + l)xN + 1 
7~o ax \ 1 — x / (1 — x) 
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CERTAIN GROUPS OF ORTHONORMAL STEP FUNCTIONS 4 1 5 

Putting N — nk — 1, x — œk
j, and using the fact that œlk = 1, 

(7) 

(8) 

^ _j , nk(uk - 1) nk 

. = 0 ( 1 - U tc ) 0)k - 1 

nk— 1 nk— 1 / i \ 

2^ "(«* ) = 2^ " = 7ç— 

(i * o), 

U = o). 

Substituting (7) and (8) in (6), 

(9) ck{x) = ^ - = - + Z -=j~~ **-. '(*). 
Z ^ 1 CO/; — 1 

Finally, using (9), the series in (4) becomes 

Uk - Ï , y^y 1 ^ 1 
(10) 

-i °o -I n/e—l 

A:=l Pk fc-1 Pk~l <*>k — 1 
0t - i y (x) . 

Since the convergence in (4) is uniform, it follows from (9) that there is a 
sequence of partial sums of the series (10) converging uniformly to x — [x]. 
This implies that (10) is the Fourier series of x — [x]. 

If we observe that 

A ; = l 

nk 

A-=l \^Jb_l p j pQ 
v l l 
hm -— = - -
A-̂CO Pk pa 

1, 
pk A-=l \pk-l Pk/ 

then (10) is the series given in the statement of the theorem. 
The next theorem involves a simple, but rather lengthy computation. For 

this reason, we introduce the following lemma which prepares a computation 
needed in the proof of the theorem. Define 

s(v, k) = 1 + co* + aik
2 + . . . + a?;/"1 - vtak\ 

(m = 0), 

(m = 1), 

,nk - 1). 

LEMMA 1 

1 — «o* 

v=0 
,*) = < te_ _ 

1 — wt 
2 

:_1) 

CO;-
(ra = 2,3, 

Proof. 
P A — 1 PA— A PA— J- I " 

(11) X coA~vm(l + co/, + œk
2 + . . . + c o / - 1 ) = ^ wjfc~vm- --

I — CO/j 

1 ^ _ m v-v p(l-m) J pt 

= 7 — 7 2* «* - Z, «* = \ - T - 3 
i — cofc L v=o v=o J I -I 

v=0 

:* 
COA: 

(m = 0), 

(w = 1), 

0 (m = 2 , 3 , . . . , » * - 1). 
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416 J . J . P R I C E 

Applying formulas (7) and (8), with nk replaced by pk, 

Pk—l Pk—l 

(i2) - E «*-""« = - z K«*1-*y 
v=0 v=0 

/ Pk(pk - 1) 
2 

1 ' --m 

(m = 1), 

(w = 0,2,3, . . . , w* - 1). 

Adding (11) and (12) yields the lemma. 
We shall now find the Fourier series associated with the function 

Jk-! (x) = 4>k-i (u)du. 
t / 0 

T H E O R E M 2. 

Jk-lfr) 
1 

Pk(l ~ *k) 
+ </),_! (x) 

L2pk pk{\ - œk). 
oo I y 1 

v=k+\ pv j=i Uv — l * 

Proo/ . If x £ 7 > , &), 

</>,_!(x) = « / ; I <f)k-i(u)du = I <j>k-i{u)du + « / ( x - [x] — ~-\ 

Therefore, if x Ç /(*>, &), 

Since for all x, 

( x _ [ x ] _z . )+ lg 
\ ft"/ ft .7=0 

0>k co/ (x - [x]) + ~- s(v,k). 
Pk 

Pk-l 

Jk-i(x) = X ) x
( / } (x) A _ i ( x ) , 

Pk— 1 Ï PA—1 

(13) /*_,(x) = (* - [*])£ ut'x?\x) + ^ E 5(v,*)x,a)(*). 
F = 0 FA: v=0 

T h e first sum on the right side of (1.3) is <£,_i(x) by definition. 
Fur thermore , 

Pk j=0 

where ^ ( v , k) is the value of y//j(x) on I(v, k). Subs t i tu t ing these facts into (13), 

I Pk—i P*—i 

(14) J,_!(X) = (* - M ) ^),_1(X) + - 2 E ^ W Z "^(V,*) S(F,4). 
Pk j=o v=o 

We assert now t h a t the Fourier expansion of Jk_i(x) does not involve any 
of the functions \{/j(x) for which 1 < j < pk-\. T o show t h a t the corres-
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ponding Fourier coefficients vanish, we use the facts that Jk-i(x) has period 
l/pk-\, $j(x) is constant on intervals of the form I(r, k — 1), and 

»i 

\//j(x)dx = 0. f 
*/o Consequently, 

J»l ï*l/Pk-î / • ! 

Jk-i(x) ypj{x) dx = I Jk-i(pc)dx I \f/j(x)dx = 0. 
0 * / 0 t / 0 

Now if ŷfc_i < j < pk, then \f/j(x) can occur in the expansion of Jk_i(x) only 
if \pj(x) is one of the functions 

<t>kLi(x), (m = 1, 2, . . . , nk - 1). 

If ^ ( x ) is not of this type, it is of the form cj)k_im(x)\f/r(x), where 1 < r < pk-\. 
But then Jk_i(x)<f>k-\~

m(x) has period l/pk-i and the same reasoning shows 
that 

J Jk-i(x) ~\j/j(x) dx = I (Jk-!(x) 4>k-i~™(x)) ~\j/r(x)dx = 0. 
o «/o 

The expansion of x — [x] is given by Theorem 1. We substitute it into 
(14). In view of the above discussion, however, we may drop all terms in 
\f/j(x) for 1 < 7 < pk except those of the type </>k_im(x). The result is: 

(15) /*_!(*) - è«*_i(x) + - - Z ~=s 7 **-i'+1(*) 

+ Z ~rZ) ~=J -z<l>,-i\x) <l>k-i(x) 

i »jfc—1 PA;—1 

+ - iE * H ' W ! <*>*-.->,£)*M). 

The first sum on the right side of (15) has a term in <l>k_ink(x) = 1. Writing 
this term first and shifting the summation index, 

i nk—l -i i i nk-1 -i 

(16) - J - Z -~^~~T 4>*-i*\x) = - —T-- r - ^ Z T—^-RS ^ - i ( x ) . 
£*y=l «* — 1 P*( l — W*) £*m=2 1 ~ 0)k 

Since </>fc_i~w(z/, &) = cofc~
m, the last sum in (15) can be simplified by means 

of Lemma 1. We obtain 
-j nk-1 Pk-1 

(i7) ^ Z **-r(*)Z «fM*,*) 

£jfc(l - CO*) L/>*(1 ~ «*) 2/>JfcJ 

1 w * - 1 1 

Pkm=2 J- — WA 

Substituting (16) and (17) into (15), 
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418 J. J. PRICE 

(18) Jk-i(x) 
/>*(! 

_ i 

+ 0A:-l(tf) 
1 

-2^ 
1 

1 
<t>r-l3(x) <l>k-i(x). 

In our enumerat ion, 

0V_/(X) <f>k-l(x) = ^ . J ^ . J W . 

Therefore, (18) is the desired expansion. 
I t is easy to obtain a similar expansion for the integral of the function 

(j)k-i
m(x). Basically, this amoun t s to replacing wk by ook

m in (18). We can now 
obtain the Fourier series associated with the integral of the function \pj(x) 
for any value of j . 

Given j , there exists k such t ha t pk-\ < j < pk. Then j = mpk-\ + r where 
1 < m < nk — 1 and 0 < r < pk_i so t ha t \pj(x) = <j)k^im(x)\pr(x). Now the 
integral of <t>k-i

m(x) has period l/pk-i whereas the period of \pr (#)is a multiple 
of this number. Therefore, 

in) du. \pj(u)du = yprtx) (f>k-i
m(i 

t / 0 t / 0 

and we easily obtain the following expansion. 

mpi,^i + r where 1 < m < w^-i awrZ 0 < r < />,._ T H E O R E M 3. Let j 

Then 

if/j(u)du 
•/n M l - «Î) 

1 

* = 1 C O , - 1 

1 1 
ffl\ 2pk PiM — CO; 
ffl\ 

tspV- 1+j(x). 

* , (*) 

4. Four ier coef f ic ients . T h e following theorems are of interest . 

(A) If fix) is a cont inuous function with modulus of cont inui ty co(<5) and if 

pk-i < j < pk, then \a,j\ < \oi(l/pk_i) where a} is the j t h Fourier co­

efficient of f{x) with respect to the system ^ (wi , n2, . . .). 

If fix) has bounded total variat ion F, then (B 

< — csc ir/tii-
Pi: 

Theorem (A) is a par t icular case of a result of Ohkuma (3) ; Theorem (B) 
is essentially a result of Chrestenson (1). When the sequence {ni, n», . . .} is 
bounded, there follow directly from (A) and (B) such facts a s : 

(a) If fix) satisfies a Lipschitz condition of order a, then its Fourier co­
efficients are Oil/na). 

(b) If fix) is of bounded variat ion, its coefficients are 0 ( 1 ./n). 
However, if the sequence is unbounded, these assertions cannot be made. 

For instance, if fix) satisfies a Lipschitz condition of order 1, the most we 
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can say about aVh-\ is that it is less in absolute value than C/pk-i where C 
is a constant. Consequently we can conclude only that |a ; | < Cnk/j when 
pk-i < j < pk. Since lim sup n^ = oo, it is conceivable that lim sup j\aj\ — <x>. 
Furthermore, lim sup V esc ir/nk — oo, so it is also conceivable that 
lim supj|ay| = oo for functions of bounded variation. We shall show by 
means of examples that these possibilities actually do occur. 

THEOREM 4. If {«i, n2y . . •} is unbounded, then there exist functions of 
bounded variation whose Fourier coefficients with respect to the system^ (nu n2, . . .) 
are not 0(1/») . 

Proof. Take the function f(x) = x — [x] whose expansion is given by 
Theorem 1. Let a3- denote the jth Fourier coefficient of f(x). For any k, 
4>k-.i

nk~1(x) is the (nk — l)^A_ith or the (pk — pk-i)th function in our enumera­
tion of the system ^ . By Theorem 1, 

1 1 1 
"**-"-* />*(«* - 1 ) pke

2*i/nk-l ' 

(pk - PM) I aVk-Vk_x I = — — csc 7r/nk . 

lim sup (pk ~ pk-x) | aVk-Vk_x | = lim sup \ ( 1 - — J csc w/nk = oo . 

Hence, lim sup j\a^\ — » . 

THEOREM 5. If {ni, n2, . . .} is unbounded there exist absolutely continuous 
functions, in fact functions satisfying a Lipschitz condition of order 1, whose 
Fourier coefficients with respect to the system ^ (» i , n2, . . .) are not 0(1/») . 

Proof. Take the function Jk^i(x). Formula (14) in the proof of Theorem 2 
shows that except for its first pk terms, the Fourier series of Jk-i(x) agrees 
with that of (x — [x])<l>k-i(x). Except for a shift, the Fourier coefficients of 
the latter function are the same as those of x — [x]. Consequently the argument 
used in the proof of Theorem 4 again shows that lim supj|û^| = oo. 

The following elementary facts will be useful. We list them as a lemma 
and sketch the proof. 

LEMMA 2. If n\ < n2 < n% < . . . , then as k —> oo } 

nk fA | œk~
3 — 1 | nk 

log nk. 

Proof. Since |cofc
—-̂  — 1| - 1 = \e~2irii/nk — 1|_1 = %cscirj/nk, the first sum is 

clearly asymptotic to 
2 f»t/2] 

— 2̂ csc v/n- • nk y==i 
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Here, cscirj/nk may be replaced by nk/irj, since the ratio of esc x to \/x is 
bounded for 0 < x < \-K. Therefore, the first sum is asymptotic to 

l [A/2V 
-~2l —A ~ log [nk/2] ~ log nk . 
nk ; = i TTJ 

To prove the second assertion, observe that 
[njfe/4] [»A/4] 

Z) —=7 7 = 7 i Z ( - 1 + i cot TT/'/W*) ~ - - ]j£ c o t *7/ 

[»A/4] 

' lnk nk 

Arguing as above, cot irj/nk may be replaced by nk/irj and the result follows 
in the same way. 

Fine has proved that the Walsh-Fourier coefficients of an absolutely con­
tinuous function are not 0(1/n) unless the function is a constant. We shall 
modify his argument to show that there is a class of unbounded sequences 
{tii} such that the Fourier coefficients of a non-constant absolutely continuous 
function with respect to ^(fii, n2> • . .) are not even 0(\/n). 

We shall consider sequences {nt} satisfying: 
oo -j nv—\ -j 

(19) m < n2 < n» < . . . ; £ — £ r~~ r-r = 0(l//»*_i) . 
v=k+l Pv «=1 I Wv — 1 I 

In view of Lemma 2, the latter condition is equivalent to 

V ! 2 £ * = 0 ( 1 / ^ ) . 

This is a restriction on the rate of increase of the sequence. Still, it does admit 
sequences growing as rapidly as 

2, 2\ 22\ . . . ; nk+1 = 2nk . 

THEOREM 6. If { tii, 2̂> • • •} satisfies (19) then the Fourier coefficients of a 
non-constant absolutely continuous junction with respect to the system >F(wi, «2, • • •) 
are not 0(l/n). 

Proof. Suppose that F(x) is absolutely continuous and that f(x) is its 
derivative. Let {dj} and {bj} be the Fourier coefficients of F(x) and f(x) 
respectively. We assume F(x) is not a constant so that f(x) ?£ 0. Therefore 
one of the Fourier coefficients of f(x), say br, does not vanish. We shall show 
that if ik = pk - pk-i + r then 

tk\aik\ ^ nk. 

Hence, l imsupj |a; | = 
Set 

Hj{x) = I \pj(u)du . 
«/o 

Since Hj(0) = H)(]) = 0, we obtain, on integrating by parts, 
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(20) atk = £F(X) Jt~(x)dx = [ F ( x ) Hllx)^ - jj(x) W-k{x)dx 

= - f(x)Hik(x)dx. 
*/o 

Since the Fourier series given by Theorem 3 has a subsequence of partial 
sums converging uniformly to 

we may subst i tu te it in (20) and integrate termwise. 

aik " P*(l 
T f(x)tr(x)dx + — - —r— f(x)ftk(x)dx 

— CO*) J o L2pk Pk\\ — co*) J Jo 
co -, nv—l -j /»1 

+ JL zrll — T f(x)tsPv-i+ik(x)dx. 
v=k+l Vv s=l <-àv — 1 «/o 

(21) - aik = - - 7 T - r br + — - —y-
£*(1 - co*) L2£* pk(i - < 

*+l £ 
1 r 1 1 i 

b 
ok) L^Pfc Pk{l - w*;J 

»v—1 

j/=*-f 1 £>? <?=1 CO,/ — 1 

oo i -v—i. i 

Now 

max \bj\ —> 0, 

Therefore, by assumption (19), the absolute value of the sum in (21) is 
0 ( l / ^ _ i ) = 0(nk/pk). Mult iplying equation (21) by - /,, 

(22) ikaik = - £ -±— -H\- T-1—) ft,, + *(Wfc). 
£* 1 - co* £* \ 2 1 - co*/ 

Since 

,. H v Pk — Pk-i + r 1 
lim - - = hm -—- = 1 ; ~ nk, 
k^oo Pk k-^oo Pk t — CO* 

the absolute value of the first term in (22) is asymptot ic to nk. The second 
term is o{nk) since bik —+ 0. Hence, 

H \aik\ ^~jnk, k~^ oo. 

5. S u m m a b i l i t y . The trigonometric Fourier series of a continuous function 
f(x) is uniformly (C,l) summable to f(x). The analogous s ta tement is t rue 
for the Walsh functions. In fact, a theorem of Ohkuma (3) implies it is 
t rue in any system ty(ni, n2, . . .) provided {tit} is a bounded sequence. We 
shall show t h a t if [ni] is unbounded, the situation is qui te different. 

T H E O R E M 7. Let {tii, n2, . . .} be unbounded. Then, given any real value a, 
there exists a continuous function whose Fourier series with respect to the system 
ty(ni, n2, . . .) is not (C,l) summable at x = a. 
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Proof. Denote by Dk(x, u) the &th Dirichlet kernel of the system. 
k-l 

(23) Dk{x}u) = Y, ^J(X)^J(U). 

It will be useful to note that if x £ I(r, k), then 

(24) DVk{x,u) = n \"È \ ^ ( * ) * r 1 ( « ) ) 4 = P,xf («). 
v=0 \ j=Q J 

Denote by Kn(x, u) the nth Cesaro kernel: 

1 n 

(25) Kn(x, it) = - £ DÀX> u')-
n j=i 

If the sequence 

) f1 I 
y I \Kn(a, u)\du{ 

is unbounded, then by a well-known theorem of Haar, there exists a con­
tinuous function whose Fourier series is not (C, 1) summable at x = a. 

Let us first consider the case when a = 0. This is a convenient value of a 
because ^ ( 0 ) = 1 for all j . For brevity, let 

D„(u) = Dn(0,u), Kn(u) = Kn(0,u), Kn = $\\Kn(u)\du. 

We shall show that the sequence [Kn] is unbounded. 

(26) pr+1Kvr+l(u) = t ! DM) = £ Dj(u) +ZDj(u) 
.7=1 ; = 1 P r + l 

ftr +1 — 1 Vr 

= prKPr(u) +J2 Z) Dvpr+j(u). 
v=l ; = 1 

Our enumeration of ^(wi, n2, . . .} is such that 

2 DVVT+j{u) = Ç {(1 + « r 1 ^ ) + * r 2 ( « ) + . . • + ^ ' " " ( w ) ) Dpr{u) 
( 2 7 ) '"* ' _ 1 + <t>r\u)Dj(u)} 

= prDPr (u) ((i + 4>r\u) + ... + 0r(v~1)(^)) + <t>r\u) prKPr(u). 
Combining (26) and (27), 

(28) pr+iKpr+1(u) = prDPr(u)Y (1 + 4>r\u) + . . . + <t>r-
{v-l\u)) 

nr + i - l 

+ prKPr(u) X) 4>r\u). 

An easy computation yields 

(29) K,r'+1(u) = | 

c 

? T ^ T ^ T ^ W ( * , ( » ) * 1), 
1 — 0 , (M) 
Z p » + ^ ± ± - = - - £ > , » (* r(«) = 1). 
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By means of (24) and the recursion relation (29), it is possible to obtain 
an exact formula for KPr(u). The reasoning involves a number of cases, all 
of which are quite simple. We shall simply list the results. 

£ - — , u € I (0, r) ; 

(30) Kvr(u) = i ___P^_ u e j (j pr/p^ r) 0- . lf 2 , . . . , » . _ , ; 

i - «r 
0, otherwise. s = 1,2, ... ,r); 

It follows from (30) that 

(3D f\KM\du = Ufi±±+± z\r
A--L4 >£EV^H 

t/0 pr\ Z s==i j==i | 1 — CO* ! ; Pr j=l | I — COr | 
-, nr-1 -, 

= Iy 7 1 _ _ 
Wr^i |1 - wr "'I 

Therefore, by Lemma 2, the sequence f/iPr J is unbounded, increasing at least 
as rapidly as \C\ognr} where C is a constant. Consequently there exists a 
continuous function whose Fourier series is not (C, 1) summable at the 
point x — 0. 

The^functions 
. i 

\Kr(x, u)\du x 
are actually independent of x, hence constant. This is because ^ (^ i , n^ . . .) 
is essentially the set of characters of a compact group whose Haar measure 
coincides with the Lebesgue measure on the unit interval. (The argument 
given by Fine for the Walsh functions (2) carries over directly.) It follows 
that our proof is valid not only for a = 0, but for any value of a. This proves 
the theorem. 

We show next that the situation with respect to summability can be even 
worse if the sequence {nt} increases rapidly enough. Such a sequence will 
be one such that 

(32) »i < n2 < n* < . . . ; - " £ ~ " 7 
Pk r = l &k ~ J-

By Lemma 2, the latter condition is equivalent to 

- » 00 . 

log % 
Plc-l 

and is satisfied if 

nk = eakPk'\ 

where {a,c} is any sequence tending to infinity. 
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THEOREM 8. / / {rii, n2, . . .} satisfies (32), then there exist functions in Lip 1 
whose Fourier series with respect to ^(wi, n2, . . .) are not (C, 1) summable on a 
set S which is non-denumerable and includes all rationale of the form r/pm. 

Proof. It will suffice to prove that the assertion is true for the function 
x — [x]. For, as pointed out in the proof of Theorem 5, the expansion of 
J/,_i(x) is essentially the same as that of x — [x]. 

The latter expansion is given by Theorem .1. Let Sj(x), <TJ(X) denote its jth 
partial sum and (C, 1) mean respectively. Since the series has gaps, Sj(x) will 
be constant over blocks of consecutive values of j . More precisely, 

1 * 1 
(33) sj(x) = sPk^(x) +--J2 —=f—T <t>Li (x), 

vpk-i <j< iy + l ) ^ - i ; l < v < nk. 

Now suppose </>£_!(x) = 1. It is easy to obtain an expression for o-j(x) from 
(33) when j = mpk-\. 

•mpk-i Pic-i mvk-i 

(34) Wft_i(7mw..1(x) = X) Sj(x) =J2 sj(X) + ] £ SjW) 
j=l j=\ j=Pk-l + l 

. m—l 

= pk-i vvk-i(x) + Pk~i{m - l)sPlc^{x) + -—-^2 (m ~ 
Pk r= l 0)k — 1 

Therefore, 

(35) <,„„_,(*) = ^ „„_,(*) + (l - £)*«-.(*) + ^ E (l - -J -^-_-T . 

We may assume \aPk^i(x)} is bounded. Otherwise x is already a point 
where summability fails. Furthermore, {sPk-i(x)} is also bounded. A general 
theorem of Ohkuma (3) says that the pkth partial sums of the Fourier series 
of an integrable function converge to the function at all points of continuity. 
(For x = 0, this argument does not apply but a direct verification is easy.) 
Consequently, 

i in— 1 / \ i 

(36) <w,(«) = o(D + i-E (i - r 
pk r=i V m/wk — 1 
1 m—l -t i m—l i 

= ow + i-Z-J—, - l-Z r l 
Pk r=l 0ôk

 T — 1 ftr=l m w / - l " 

Take m = [\nk] + 1. Since \wk~
r — l\~l = \ esc irr/nk < Cnk/r for 

0 < r < [jnk] + 1, the absolute value of the last sum in (36) is dominated by 

pk7A m r pk pk_x 

Thus if 4>k-i(x) = 1, and j k = {[\nk] + 1)/>A;_I, 

-| [wfc/4] -j 

(37) <,*(*) = 0(1 ) + - - E -=?—T • 
PA; r s = l CO* — 1 
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If for a given x, relation (37) holds for infinitely many values of k, assump­
tion (32) shows that the sequence 

is unbounded. But there is a non-denumerable set S including all rationals 
r/pm of such values of x. Let 

00 c 
x = YJ ~r î 0 < ck < nk. 

k=l Pk 

Since <f>k-i{x) = œk
Ck, x G 5 if and only if infinitely many of the ck are zero. 

This completes the proof. 

It is known that the Walsh-Fourier series of a function of bounded variation 
converges at each dyadic rational and at each point of continuity of the 
function. Since the rationals r/pm are the analogues of the dyadic rationals, 
Theorem 8 demonstrates a significant difference between the analytic 
properties of the Walsh system and those of ^(wi, n2, . • .) when {nt} is 
unbounded. 
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