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ON 3-DIMENSIONAL CONTACT SLANT SUBMANIFOLDS IN
SASAKIAN SPACE FORMS

ION MIHAI AND YOSHIHIKO TAZAWA

Recently, B.-Y. Chen obtained an inequality for slant surfaces in complex space forms.
Further, B.-Y. Chen and one of the present authors proved the non-minimality of
proper slant surfaces in non-flat complex space forms. In the present paper, we
investigate 3-dimensional proper contact slant submanifolds in Sasakian space forms.
A sharp inequality is obtained between the scalar curvature (intrinsic invariant) and
the main extrinsic invariant, namely the squared mean curvature.

It is also shown that a 3-dimensional contact slant submanifold M of a Sasakian
space form M(c), with c / 1 , cannot be minimal.

1. INTRODUCTION.

In [3], Chen proved that the squared mean curvature \\H\\2 and the Gauss curvature
K of a proper slant surface M in a complex space form M(c) satisfy the following basic
inequality:

(1.1) \\H(p)\\2>2K(p) -2 (1 + 3icos20)c,

at each point p € M.
The equality sign of (1.1) holds at a point p € M if and only if with respect to some

suitable orthonormal basis {e\, e2, e$, ei\ at p, the shape operators at p take the following
forms:

(1.2)

The purpose of the present paper is to establish a sharp inequality for 3-dimensional
proper contact slant submanifolds in Sasakian space forms, involving the scalar curvature
T and the squared mean curvature ||-ff||2-

More precisely, we prove that the following estimate holds.
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276 I. Mihai and Y. Tazawa [2]

THEOREM 1 . Let M be a 3-dimensional proper contact slant submanifold of a
5-dimensional Sasakian space form M(c). Then, we have

ll#II2 ^ r ~ [c + 3 + (3c + 5) cos2 0].

The case in which equality holds is investigated.

In [4], B.-Y. Chen and one of the present authors proved that there do not exist
minimal proper slant surfaces in a non-flat complex space form. We show that there do
not exist 3-dimensional minimal proper contact slant submanifolds in a 5-dimensional
Sasakian space form M(c), with c ^ 1.

Finally, we obtain another inequality between an intrinsic invariant (scalar curva-
ture) and extrinsic invariants (scalar normal curvature and squared mean curvature) of a
3-dimensional proper contact slant submanifold in a 5-dimensional Sasakian space form,
and investigate the case in which equality holds.

2. SUBMANIFOLDS OF A SASAKIAN SPACE FORM.

Let (M, g) be a (2m + 1)-dimensional Riemannian manifold endowed with an endo-
morphism <f> of its tangent bundle TM, a vector field £ and a 1-form 77 such that

(<j>X X + r,(X)Z, <^ = 0, W = 0, 7/(0 =

\g{4>X,<f>Y) = g(X,Y) - r,(X)V(Y), r,(X) =

for all vector fields X,Y e T(TM).

If, in addition, dr)(X, Y) — g(<f>X, Y), then M is said to have a contact Riemannian
structure (4>,£,T],g). If, moreover, the structure is normal, that is, if

[4>X, <t>Y) + 4>2[X, Y) - 4>[X, <t>Y\ - 4>[<j>X, Y) = -2dr,(X, Y)£,

then the contact Riemannian structure is called a Sasakian structure and M is called a
Sasakian manifold. On a Sasakian manifold one has

(2.2) (VXJ>)Y = -g(X, Y)£ + r,{Y)X,

where V is the Riemannian connection with respect to g. For more details and back-
ground, we refer to the standard references [1, 8].

A plane section a in TPM of a Sasakian manifold M is called a ^-section if it is
spanned by X and (f>X, where X is a unit tangent vector orthogonal to £. The sectional
curvature K(a) with respect to a (^-section a is called a 0-sectional curvature. If a
Sasakian manifold M has constant (^-sectional curvature c, then it is called a Sasakian

space form and is denoted by M(c).
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The curvature tensor R of a Sasakian space form M(c) is given by ([1]):

(2.3) R(X,Y)Z=^-{g(Y,Z)X-g(X,Z)Y)

C ^ - T,(Y)T,(Z)X + g(X,

-g(Y, Z)ri{X)t + g(<j>Y, Z)cj>X - g(<f>X, Z)<t>Y - 2g(4>X, Y)4>Z),

for any tangent vector fields X, Y, Z to M (c).

An n-dimensional submanifold M of a Sasakian space form M(c) is called a contact
6-slant submanifold if the structure vector field £ is tangent to M and for each non-zero
vector X tangent to M at p € M and orthogonal to £, the angle 0{X) between <pX and
TPM is independent of the choice of X and p (see, for instance, [3] and [2]). Moreover,
M is a proper contact slant submanifold if 0 < 6 < ir/2, that is, M is neither invariant
nor anti-invariant submanifold.

It is easily seen that the minimum codimension of an n-dimensional proper contact

slant submanifold is n — 1. The anti-invariant submanifolds have the same property (see

[7])-

3. MAIN RESULTS.

Let M be an n-dimensional Riemannian manifold. Denote by K(n) the sectional
curvature of the plane section TT C TPM , p € M. For any orthonormal basis {e i , . . . ,en}
of the tangent space TPM, the scalar curvature r at p is defined by

T(p)= £ Kiafiej).

We consider a 3-dimensional proper contact 0-slant submanifold M in a 5-dimensional
Sasakian space form M(c). For any vector X tangent to M, we put

<j>X = PX + FX,

where PX and FX denote the tangential and normal components of <})X, respectively.

Let ei be a unit vector tangent to M and orthogonal to £. We construct a canonical

orthonormal basis {ei,e2,e3,e4,es} defined by

We call such a basis an adapted slant orthonormal basis.
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THEOREM 1 . Let M be a ^-dimensional proper contact slant submanifold of a
5-dimensional Sasakian space form M(c). Then, we have

(3.1) | | # | | 2 ^ ^ r - ^ [c + 3 + (3c + 5) cos2 9}.

Moreover, the equality sign of (3.1) holds at a point p € M if and only if with
respect to some suitable adapted slant orthonormal basis {ei, e2, e3, e4, es} at p, the shape
operators at p take the following forms:

/ 0 A 0
(3.2) Ae4=\ 0 A 0 | , Aes= A 0 sinf? | .

\0 sin^ 0

PROOF: Let p € M and {ei, 62,63,64,65} an adapted slant orthonormal basis. We
have

r(p) = K(ei A e2) + K(ex A e3) + K(e2 A e3).

We recall the Gauss equation for the submanifold M in the Sasakian space form
M(c):

R(X, Y, Z, W) = R{X, Y, Z, W) + 9{h(X, W), h{Y, Z)) - g(h(X, Z), h(Y, W)),

for all vector fields X, Y, Z, W tangent to M, where h denotes the second fundamental
form and R the curvature tensor of M. Then, by using (2.3) and Gauss equation, it
follows that

K(ei A e2) = R(eu e2, eu e2) = ^ - + -(c - 1) cos2 d

+ g{h{ei,ei), h(e2, e2)) - g(h(ei,e2), h{eue2)),

or equivalently,

+ \{ 1) s2 6 + h ^ + h5h5 - {h\f - (h\)\(3.3) K{ex A e 2 ) ~ + \{c - 1) cos2 6 + h ^ + h5
nh

5
22 - {h\2f - (h\2)\

where h^ = g{h{ei,ej),eT),i,j G {1,2,3},re {4,5}.

It is easily seen that

AFCI^ = AFeiei,

which implies h\2 = h\2.

We choose the unit normal vector 64 € T^-M parallel to the mean curvature vector
H(p) of M in p. Then one has H(p) = ||#(p)||e4, which leads to
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The relation (3.3) becomes

(3.4) K{el Ae2) = ^ + ^ ( c - l ) cos2 9 + h \ ^ - (h5
n)

2 - {h\2f - {h\2f.

The trivial inequality (fi — 3A)2 ^ 0 is equivalent to (/* + A)2 ^ 8(A/J - A2). If we put

fj, = h\u A = h\2,

the above inequality and the equation (3.4) imply

(3.5) ||

On the other hand, using Gauss equation we find

(3.6) K(e1 A e3) = K(e2 A e3) = 1 - sin2 9 = cos2 9.

Combining (3.5) and (3.6), we obtain the inequality (3.1) to prove.

Moreover, equality holds in (3.1) at a point p £ M if and only if

Then the shape operators take the desired forms. D

Next, we shall prove the non-minimality of 3-dimensional proper contact slant sub-
manifolds in 5-dimensional Sasakian space forms M (c), with c ^ 1.

THEOREM 2 . Let M be a 3-dimensionai proper contact slant subnmanifold in a

5-dimensional Sasakian space form M(c), with c / 1. Then M is not minimal.

PROOF: We assume that M is a 3-dimensional minimal proper contact slant sub-
manifold in a 5-dimensional Sasakian space form M(c), with c ^ 1. Let {ei,e2,e3,e4,es}
be an adapted slant orthonormal local frame.

For any normal vector U, we put (f>U = tU + fU, where tU and fU denote the
tangential and normal components of <j>U, respectively. Clearly one has

ie4 = — (sin#)ei, te5 = — (sin0)e2,

/ e 4 = -(cos0)e5, fe5 = (cos0)e4.

Taking the normal part of the relation (2.2), we get

VJiFY - FVXY = fh(X, Y) - h(X, PY),

where V x is the normal connection of M.

In particular, one has

Ve
1

1e4 = ^ K ^ i ) ^ + ftii/e4 + h\Je6 - cos0( /4e 4 + h\2eb)},
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where {wjf} denote the connection 1-forms on M(c).

The last equation implies

+ h\2).

Since M is minimal, it follows that wf(ei) = w\
Similarly w|(e2) = u)\{ei). Then, one finds

Let p € M be a non-totally geodesic point. Consider the function

7P : I J M - > R, 7P(«)

where TpM = {y S TPM | <?(w,i>) = l } . Since TpM is a compact set, there exists a
vector v €TpM such that 7P(w) = inf 7P(Tp

1M) = —/i < 0, n € R. It is easily seen that v
is an eigenvector of the shape operator Apv. Then we can choose an orthonormal basis
{ei, e2, e3} of TPM, with e\ = v and e3 = ^, such that

/i(ci , ex) — -fie*, h(ei, e2) = (J,e5, /i(e2, e2) = //e4.

Consequently, there exists a local adapted slant orthonormal frame {ei, e-i, e^, e±, e$}
such that the second fundamental form h satisfies

Heu ei) = -Ae4, /i(ei, e2) = Ae5, ft(e2, e2) = Ae4,

for a certain smooth function A on M.

Using (2.3), a straightforward calculation leads to

~ 3
(•R(ei,e2)e2)x = ~ T ( C —

Therefore the Codazzi equation gives

3
e2A = 3Awi(ei) - j(c —

3
e2A = 3Awi(ei) + -(c -

Thus, we obtain (c — 1) sin 0 cos 6 — 0, which is a contradiction. D

It is known that any invariant submanifold of a Sasakian manifold is minimal. Com-

bining this result with Theorem 2, we find the following.
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COROLLARY 3 . Let M be a 3-dimensional minimal contact slant submanifold of
a ^-dimensional Sasakian space form M(c). Then either c = 1, or M is invariant, or M
is anti-invariant.

A Sasakian space form M ( l ) is locally isometric to a sphere.

We characterise the 3-dimensional minimal proper contact slant submanifold in S5.

PROPOSITION 4 . A 3-dimensional proper contact slant submanifold in the 5-
dimensional sphere S5 is minimal if and only if with respect to some suitable local adapted
slant orthonormal frame {ei, e2, e$, e4, e{\, the shape operators take the following forms:

( - A 0 sin<A A) A

0 A 0 , A e s = A 0
0 0 JP R O O F : Let M be a 3-dimensional minimal proper contact slant submanifold in S5.

Then, as in the proof of Theorem 2, we can construct a local adapted slant orthonormal
frame {ei, e2, e3, e4, e5} such that the second fundamental form h satisfies

i) = -Ae 4 , h(ex, e2) = Ae5, h(e2, e2) = Ae4,

for a certain smooth function A on M. Then the shape operators take the desired forms.

The converse statement is obvious. D

4. A N O T H E R INEQUALITY.

In this section, we prove another inequality between an intrinsic invariant, namely
the scalar curvature r, and extrinsic invariants, namely the scalar normal curvature TL

and squared mean curvature | |^ | | 2 , for a 3-dimensional proper contact slant submanifold
M in a 5-dimensional Sasakian space form M(c).

Let p € M and {ei,e2,e3,e4,e5} an adapted slant orthonormal basis of TPM. We
define the scalar normal curvature T1 at p by

TX(P) = g(R±{ei,e2)e4,e5),

where i?x denotes the curvature tensor of V x .

This definition is formally similar to the definition of the normal curvature of a sur-
face in a 4-dimensional space form (see [6]). Also, since, in the case under consideration,

it follows that the above definition agrees, up to a constant factor, to the definition
introduced in [5].

We observe that the normal connection of M is flat if and only if rL = 0, which is
equivalent to the simultaneous diagonalisability of all shape operators (see, for instance,

[5])-
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THEOREM 5 . Let M be a 3-dimensional proper contact slant submanifold of a
5-dimensional Sasakian space form M{c). Then, we have

(4.1) | | # | | 2 ^ ( r + T ± ) _ 2 ( c + i ) _ 8 c o s 2 0

Moreover, the equality sign of (4.1) holds at a point p € M if and only if with
respect to some suitable adapted slant orthonormal basis {ei, e2) e3, e4, e5} at p, the shape
operators at p take the following forms:

(4.2)

P R O O F : Let p € M and {e\,e2,e3,ei,e5\ an adapted slant orthonormal basis. By
the definition of the mean curvature vector, one has

(4.3)

= Mi - h\2f + (h5
u - h\2f + 4(^/4 + h\M.

By using equation (3.3), (4.3) becomes

(4.4) 9\\H\\2 = (h*n - / 4 ) 2 + (hs
u ~ h\2)

2 + 4(r - 2 cos2 9)

- (c + 3) - 3(c - 1) cos2 6 + 4(/i?2)
2 + 4( /4) 2 .

We choose e\ in the direction of the mean curvature vector. Then tr Aei = 0, and
thus the shape operators have the following forms:

Aet =

It follows that (4.4) is equivalent to

(4.5) 9\\H||2 - AT + (c + 3) + (3c + 5) cos2 0 = 8/x2 + {a - A)2 + 4A2.

On the other hand, by the definition of the scalar normal curvature and Ricci equa-
tion, we get

r 1 = g(R±{e1,e2)e4,es) = g(R{eue2)e4,e5) + g([AeA, Aes]eue2)

— I J. O COS v) ~~T~ ***ii'*i2 "> *^12 22 "~~ 11 12 12 22

= ^ ^ ( 1 -3cos20) + 2ji2 + A(A-a).

https://doi.org/10.1017/S0004972700037655 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700037655


[9] Sasakian space forms 283

Using (4.5) and the trivial inequality 4A(A — a) ^ 4A2 + (A — a)2, the above equation
implies

ATL < 9||#| |2 - AT + 2(c + 1) + 8 cos2 6,

which is equivalent to (4.1).

Equality holds in (4.1) at a point p 6 M if and only if a = —A, that is, the shape

operators take the forms (4.2). D

COROLLARY 6 . Each 3-dimensional proper contact slant submanifold M of a 5-
dimensional Sasakian space form M(c) which satisBes the equality case of (4.1) at every
point p 6 M is a minimal submanifold.

The proof follows from (4.2).
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