ON 3-DIMENSIONAL CONTACT SLANT SUBMANIFOLDS IN SASAKIAN SPACE FORMS

Ion Mihai and Yoshiniko Tazawa

Recently, B.-Y. Chen obtained an inequality for slant surfaces in complex space forms. Further, B.-Y. Chen and one of the present authors proved the non-minimality of proper slant surfaces in non-flat complex space forms. In the present paper, we investigate 3-dimensional proper contact slant submanifolds in Sasakian space forms. A sharp inequality is obtained between the scalar curvature (intrinsic invariant) and the main extrinsic invariant, namely the squared mean curvature.

It is also shown that a 3 -dimensional contact slant submanifold M of a Sasakian space form $\widetilde{M}(c)$, with $c \neq 1$, cannot be minimal.

1. Introduction.

In [3], Chen proved that the squared mean curvature $\|H\|^{2}$ and the Gauss curvature K of a proper slant surface M in a complex space form $\widetilde{M}(c)$ satisfy the following basic inequality:

$$
\begin{equation*}
\|H(p)\|^{2} \geqslant 2 K(p)-2\left(1+3 \cos ^{2} \theta\right) c \tag{1.1}
\end{equation*}
$$

at each point $p \in M$.
The equality sign of (1.1) holds at a point $p \in M$ if and only if with respect to some suitable orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ at p, the shape operators at p take the following forms:

$$
A_{e_{3}}=\left(\begin{array}{cc}
3 \lambda & 0 \tag{1.2}\\
0 & \lambda
\end{array}\right), \quad A_{e_{4}}=\left(\begin{array}{cc}
0 & \lambda \\
\lambda & 0
\end{array}\right)
$$

The purpose of the present paper is to establish a sharp inequality for 3-dimensional proper contact slant submanifolds in Sasakian space forms, involving the scalar curvature τ and the squared mean curvature $\|H\|^{2}$.

More precisely, we prove that the following estimate holds.

Received 26th February, 2003

This article was written while the first author has visited Tokyo Denki University, supported by a JSPS research fellowship. The first author would like to express his hearty thanks for the hospitality he received during his visit.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

Theorem 1. Let M be a 3-dimensional proper contact slant submanifold of a 5-dimensional Sasakian space form $\widetilde{M}(c)$. Then, we have

$$
\|H\|^{2} \geqslant \frac{8}{9} \tau-\frac{2}{9}\left[c+3+(3 c+5) \cos ^{2} \theta\right] .
$$

The case in which equality holds is investigated.
In [4], B.-Y. Chen and one of the present authors proved that there do not exist minimal proper slant surfaces in a non-flat complex space form. We show that there do not exist 3 -dimensional minimal proper contact slant submanifolds in a 5 -dimensional Sasakian space form $\widetilde{M}(c)$, with $c \neq 1$.

Finally, we obtain another inequality between an intrinsic invariant (scalar curvature) and extrinsic invariants (scalar normal curvature and squared mean curvature) of a 3-dimensional proper contact slant submanifold in a 5 -dimensional Sasakian space form, and investigate the case in which equality holds.

2. Submanifolds of a Sasakian space form.

Let (\widetilde{M}, g) be a $(2 m+1)$-dimensional Riemannian manifold endowed with an endomorphism ϕ of its tangent bundle $T \widetilde{M}$, a vector field ξ and a 1-form η such that

$$
\left\{\begin{array}{l}
\phi^{2} X=-X+\eta(X) \xi, \phi \xi=0, \eta \circ \phi=0, \eta(\xi)=1 \tag{2.1}\\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \eta(X)=g(X, \xi)
\end{array}\right.
$$

for all vector fields $X, Y \in \Gamma(T \widetilde{M})$.
If, in addition, $d \eta(X, Y)=g(\phi X, Y)$, then \widetilde{M} is said to have a contact Riemannian structure (ϕ, ξ, η, g). If, moreover, the structure is normal, that is, if

$$
[\phi X, \phi Y]+\phi^{2}[X, Y]-\phi[X, \phi Y]-\phi[\phi X, Y]=-2 d \eta(X, Y) \xi
$$

then the contact Riemannian structure is called a Sasakian structure and \widetilde{M} is called a Sasakian manifold. On a Sasakian manifold one has

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \phi\right) Y=-g(X, Y) \xi+\eta(Y) X \tag{2.2}
\end{equation*}
$$

where $\tilde{\nabla}$ is the Riemannian connection with respect to g. For more details and background, we refer to the standard references $[1,8]$.

A plane section σ in $T_{p} \widetilde{M}$ of a Sasakian manifold \widetilde{M} is called a ϕ-section if is spanned by X and ϕX, where X is a unit tangent vector orthogonal to ξ. The sectional curvature $\bar{K}(\sigma)$ with respect to a ϕ-section σ is called a ϕ-sectional curvature. If a Sasakian manifold \widetilde{M} has constant ϕ-sectional curvature c, then it is called a Sasakian space form and is denoted by $\widetilde{M}(c)$.

The curvature tensor \widetilde{R} of a Sasakian space form $\widetilde{M}(c)$ is given by ([1]):

$$
\begin{align*}
\widetilde{R}(X, Y) Z= & \frac{c+3}{4}(g(Y, Z) X-g(X, Z) Y) \tag{2.3}\\
+ & \frac{c-1}{4}(\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z)
\end{align*}
$$

for any tangent vector fields X, Y, Z to $\widetilde{M}(c)$.
An n-dimensional submanifold M of a Sasakian space form $\widetilde{M}(c)$ is called a contact θ-slant submanifold if the structure vector field ξ is tangent to M and for each non-zero vector X tangent to M at $p \in M$ and orthogonal to ξ, the angle $\theta(X)$ between ϕX and $T_{p} M$ is independent of the choice of X and p (see, for instance, [3] and [2]). Moreover, M is a proper contact slant submanifold if $0<\theta<\pi / 2$, that is, M is neither invariant nor anti-invariant submanifold.

It is easily seen that the minimum codimension of an n-dimensional proper contact slant submanifold is $n-1$. The anti-invariant submanifolds have the same property (see [7]).

3. Main results.

Let M be an n-dimensional Riemannian manifold. Denote by $K(\pi)$ the sectional curvature of the plane section $\pi \subset T_{p} M, p \in M$. For any orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of the tangent space $T_{p} M$, the scalar curvature τ at p is defined by

$$
\tau(p)=\sum_{1 \leqslant i<j \leqslant n} K\left(e_{i} \wedge e_{j}\right)
$$

We consider a 3 -dimensional proper contact θ-slant submanifold M in a 5 -dimensional Sasakian space form $\widetilde{M}(c)$. For any vector X tangent to M, we put

$$
\phi X=P X+F X
$$

where $P X$ and $F X$ denote the tangential and normal components of ϕX, respectively.
Let e_{1} be a unit vector tangent to M and orthogonal to ξ. We construct a canonical orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ defined by

$$
\begin{array}{ll}
e_{2}=\frac{1}{\cos \theta} P e_{1}, & e_{3}=\xi \\
e_{4}=\frac{1}{\sin \theta} F e_{1}, \quad e_{5}=\frac{1}{\sin \theta} F e_{2}
\end{array}
$$

We call such a basis an adapted slant orthonormal basis.

THEOREM 1. Let M be a 3-dimensional proper contact slant submanifold of a 5-dimensional Sasakian space form $\widetilde{M}(c)$. Then, we have

$$
\begin{equation*}
\|H\|^{2} \geqslant \frac{8}{9} \tau-\frac{2}{9}\left[c+3+(3 c+5) \cos ^{2} \theta\right] \tag{3.1}
\end{equation*}
$$

Moreover, the equality sign of (3.1) holds at a point $p \in M$ if and only if with respect to some suitable adapted slant orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ at p, the shape operators at p take the following forms:

$$
A_{e_{4}}=\left(\begin{array}{ccc}
3 \lambda & 0 & \sin \theta \tag{3.2}\\
0 & \lambda & 0 \\
\sin \theta & 0 & 0
\end{array}\right), \quad A_{e_{5}}=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & 0 & \sin \theta \\
0 & \sin \theta & 0
\end{array}\right)
$$

Proof: Let $p \in M$ and $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ an adapted slant orthonormal basis. We have

$$
\tau(p)=K\left(e_{1} \wedge e_{2}\right)+K\left(e_{1} \wedge e_{3}\right)+K\left(e_{2} \wedge e_{3}\right)
$$

We recall the Gauss equation for the submanifold M in the Sasakian space form $\widetilde{M}(c):$

$$
\widetilde{R}(X, Y, Z, W)=R(X, Y, Z, W)+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
$$

for all vector fields X, Y, Z, W tangent to M, where h denotes the second fundamental form and R the curvature tensor of M. Then, by using (2.3) and Gauss equation, it follows that

$$
\begin{aligned}
K\left(e_{1} \wedge e_{2}\right)=R\left(e_{1}, e_{2}, e_{1}, e_{2}\right)=\frac{c+3}{4} & +\frac{3}{4}(c-1) \cos ^{2} \theta \\
& +g\left(h\left(e_{1}, e_{1}\right), h\left(e_{2}, e_{2}\right)\right)-g\left(h\left(e_{1}, e_{2}\right), h\left(e_{1}, e_{2}\right)\right)
\end{aligned}
$$

or equivalently,

$$
\begin{equation*}
K\left(e_{1} \wedge e_{2}\right)=\frac{c+3}{4}+\frac{3}{4}(c-1) \cos ^{2} \theta+h_{11}^{4} h_{22}^{4}+h_{11}^{5} h_{22}^{5}-\left(h_{12}^{4}\right)^{2}-\left(h_{12}^{5}\right)^{2} \tag{3.3}
\end{equation*}
$$

where $h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), i, j \in\{1,2,3\}, r \in\{4,5\}$.
It is easily seen that

$$
A_{F e_{1}} e_{2}=A_{F e_{2}} e_{1}
$$

which implies $h_{12}^{5}=h_{22}^{4}$.
We choose the unit normal vector $e_{4} \in T_{p}^{\perp} M$ parallel to the mean curvature vector $H(p)$ of M in p. Then one has $H(p)=\|H(p)\| e_{4}$, which leads to

$$
\|H(p)\|^{2}=\frac{1}{9}\left(h_{11}^{4}+h_{22}^{4}\right)^{2}, \quad h_{11}^{5}+h_{22}^{5}=0 .
$$

The relation (3.3) becomes

$$
\begin{equation*}
K\left(e_{1} \wedge e_{2}\right)=\frac{c+3}{4}+\frac{3}{4}(c-1) \cos ^{2} \theta+h_{11}^{4} h_{22}^{4}-\left(h_{11}^{5}\right)^{2}-\left(h_{12}^{4}\right)^{2}-\left(h_{22}^{4}\right)^{2} \tag{3.4}
\end{equation*}
$$

The trivial inequality $(\mu-3 \lambda)^{2} \geqslant 0$ is equivalent to $(\mu+\lambda)^{2} \geqslant 8\left(\lambda \mu-\lambda^{2}\right)$. If we put

$$
\mu=h_{11}^{4}, \quad \lambda=h_{22}^{4}
$$

the above inequality and the equation (3.4) imply

$$
\begin{equation*}
\|H(p)\|^{2} \geqslant \frac{8}{9}\left[K\left(e_{1} \wedge e_{2}\right)-\frac{c+3}{4}-\frac{3}{4}(c-1) \cos ^{2} \theta\right] \tag{3.5}
\end{equation*}
$$

On the other hand, using Gauss equation we find

$$
\begin{equation*}
K\left(e_{1} \wedge e_{3}\right)=K\left(e_{2} \wedge e_{3}\right)=1-\sin ^{2} \theta=\cos ^{2} \theta \tag{3.6}
\end{equation*}
$$

Combining (3.5) and (3.6), we obtain the inequality (3.1) to prove.
Moreover, equality holds in (3.1) at a point $p \in M$ if and only if

$$
h_{11}^{4}=3 h_{22}^{4}, \quad h_{12}^{4}=0, \quad h_{11}^{5}=0
$$

Then the shape operators take the desired forms.
Next, we shall prove the non-minimality of 3-dimensional proper contact slant submanifolds in 5-dimensional Sasakian space forms $\widetilde{M}(c)$, with $c \neq 1$.

Theorem 2. Let M be a 3-dimensional proper contact slant subnmanifold in a 5-dimensional Sasakian space form $\widetilde{M}(c)$, with $c \neq 1$. Then M is not minimal.

Proof: We assume that M is a 3 -dimensional minimal proper contact slant submanifold in a 5 -dimensional Sasakian space form $\widetilde{M}(c)$, with $c \neq 1$. Let $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ be an adapted slant orthonormal local frame.

For any normal vector U, we put $\phi U=t U+f U$, where $t U$ and $f U$ denote the tangential and normal components of ϕU, respectively. Clearly one has

$$
\begin{aligned}
t e_{4} & =-(\sin \theta) e_{1}, \\
f e_{4} & =-(\cos \theta) e_{5}=-(\sin \theta) e_{2} \\
& f e_{5}=(\cos \theta) e_{4}
\end{aligned}
$$

Taking the normal part of the relation (2.2), we get

$$
\nabla_{X}^{\perp} F Y-F \nabla_{X} Y=f h(X, Y)-h(X, P Y)
$$

where ∇^{\perp} is the normal connection of M.
In particular, one has

$$
\nabla_{e_{1}}^{\perp} e_{4}=\frac{1}{\sin \theta}\left\{\omega_{1}^{2}\left(e_{1}\right) F e_{2}+h_{11}^{4} f e_{4}+h_{11}^{5} f e_{5}-\cos \theta\left(h_{12}^{4} e_{4}+h_{12}^{5} e_{5}\right)\right\}
$$

where $\left\{\omega_{A}^{B}\right\}$ denote the connection 1 -forms on $\widetilde{M}(c)$.
The last equation implies

$$
\omega_{4}^{5}\left(e_{1}\right)=\omega_{1}^{2}\left(e_{1}\right)-(\cot \theta)\left(h_{11}^{4}+h_{22}^{4}\right)
$$

Since M is minimal, it follows that $\omega_{4}^{5}\left(e_{1}\right)=\omega_{1}^{2}\left(e_{1}\right)$.
Similarly $\omega_{4}^{5}\left(e_{2}\right)=\omega_{1}^{2}\left(e_{2}\right)$. Then, one finds

$$
\omega_{4}^{5}=\omega_{1}^{2} .
$$

Let $p \in M$ be a non-totally geodesic point. Consider the function

$$
\gamma_{p}: T_{p}^{1} M \rightarrow \mathbf{R}, \quad \gamma_{p}(v)=g(h(v, v), F v)
$$

where $T_{p}^{1} M=\left\{v \in T_{p} M \mid g(v, v)=1\right\}$. Since $T_{p}^{1} M$ is a compact set, there exists a vector $v \in T_{p}^{1} M$ such that $\gamma_{p}(v)=\inf \gamma_{p}\left(T_{p}^{1} M\right)=-\mu<0, \mu \in \mathbf{R}$. It is easily seen that v is an eigenvector of the shape operator $A_{F v}$. Then we can choose an orthonormal basis $\left\{e_{1}, e_{2}, e_{3}\right\}$ of $T_{p} M$, with $e_{1}=v$ and $e_{3}=\xi$, such that

$$
h\left(e_{1}, e_{1}\right)=-\mu e_{4}, \quad h\left(e_{1}, e_{2}\right)=\mu e_{5}, \quad h\left(e_{2}, e_{2}\right)=\mu e_{4} .
$$

Consequently, there exists a local adapted slant orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ such that the second fundamental form h satisfies

$$
h\left(e_{1}, e_{1}\right)=-\lambda e_{4}, \quad h\left(e_{1}, e_{2}\right)=\lambda e_{5}, \quad h\left(e_{2}, e_{2}\right)=\lambda e_{4},
$$

for a certain smooth function λ on M.
Using (2.3), a straightforward calculation leads to

$$
\begin{aligned}
& \left(\widetilde{R}\left(e_{2}, e_{1}\right) e_{1}\right)^{\perp}=\frac{3}{4}(c-1)(\sin \theta \cos \theta) e_{4} \\
& \left(\widetilde{R}\left(e_{1}, e_{2}\right) e_{2}\right)^{\perp}=-\frac{3}{4}(c-1)(\sin \theta \cos \theta) e_{5}
\end{aligned}
$$

Therefore the Codazzi equation gives

$$
\begin{aligned}
& e_{2} \lambda=3 \lambda \omega_{1}^{2}\left(e_{1}\right)-\frac{3}{4}(c-1) \sin \theta \cos \theta \\
& e_{2} \lambda=3 \lambda \omega_{1}^{2}\left(e_{1}\right)+\frac{3}{4}(c-1) \sin \theta \cos \theta
\end{aligned}
$$

Thus, we obtain $(c-1) \sin \theta \cos \theta=0$, which is a contradiction.
It is known that any invariant submanifold of a Sasakian manifold is minimal. Combining this result with Theorem 2, we find the following.

Corollary 3. Let M be a 3-dimensional minimal contact slant submanifold of a 5-dimensional Sasakian space form $\widetilde{M}(c)$. Then either $c=1$, or M is invariant, or M is anti-invariant.

A Sasakian space form $\widetilde{M}(1)$ is locally isometric to a sphere.
We characterise the 3-dimensional minimal proper contact slant submanifold in S^{5}.
Proposition 4. A 3-dimensional proper contact slant submanifold in the 5dimensional sphere S^{5} is minimal if and only if with respect to some suitable local adapted slant orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$, the shape operators take the following forms:

$$
A_{e_{4}}=\left(\begin{array}{ccc}
-\lambda & 0 & \sin \theta \\
0 & \lambda & 0 \\
\sin \theta & 0 & 0
\end{array}\right), \quad A_{e_{5}}=\left(\begin{array}{ccc}
0 & \lambda & 0 \\
\lambda & 0 & \sin \theta \\
0 & \sin \theta & 0
\end{array}\right) .
$$

Proof: Let M be a 3 -dimensional minimal proper contact slant submanifold in S^{5}. Then, as in the proof of Theorem 2, we can construct a local adapted slant orthonormal frame $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ such that the second fundamental form h satisfies

$$
h\left(e_{1}, e_{1}\right)=-\lambda e_{4}, \quad h\left(e_{1}, e_{2}\right)=\lambda e_{5}, \quad h\left(e_{2}, e_{2}\right)=\lambda e_{4},
$$

for a certain smooth function λ on M. Then the shape operators take the desired forms.
The converse statement is obvious.

4. Another inequality.

In this section, we prove another inequality between an intrinsic invariant, namely the scalar curvature τ, and extrinsic invariants, namely the scalar normal curvature τ^{\perp} and squared mean curvature $\|H\|^{2}$, for a 3 -dimensional proper contact slant submanifold M in a 5 -dimensional Sasakian space form $\widetilde{M}(c)$.

Let $p \in M$ and $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ an adapted slant orthonormal basis of $T_{p} M$. We define the scalar normal curvature τ^{\perp} at p by

$$
\tau^{\perp}(p)=g\left(R^{\perp}\left(e_{1}, e_{2}\right) e_{4}, e_{5}\right)
$$

where R^{\perp} denotes the curvature tensor of ∇^{\perp}.
This definition is formally similar to the definition of the normal curvature of a surface in a 4-dimensional space form (see [6]). Also, since, in the case under consideration,

$$
g\left(R^{\perp}\left(e_{1}, \xi\right) e_{4}, e_{5}\right)=g\left(R^{\perp}\left(e_{2}, \xi\right) e_{4}, e_{5}\right)=0
$$

it follows that the above definition agrees, up to a constant factor, to the definition introduced in [5].

We observe that the normal connection of M is flat if and only if $\tau^{\perp}=0$, which is equivalent to the simultaneous diagonalisability of all shape operators (see, for instance, [5]).

THEOREM 5. Let M be a 3-dimensional proper contact slant submanifold of a 5-dimensional Sasakian space form $\widetilde{M}(c)$. Then, we have

$$
\begin{equation*}
\|H\|^{2} \geqslant \frac{4}{9}\left(\tau+\tau^{\perp}\right)-\frac{2}{9}(c+1)-\frac{8}{9} \cos ^{2} \theta \tag{4.1}
\end{equation*}
$$

Moreover, the equality sign of (4.1) holds at a point $p \in M$ if and only if with respect to some suitable adapted slant orthonormal basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ at p, the shape operators at p take the following forms:

$$
A_{e_{4}}=\left(\begin{array}{ccc}
-\lambda & \mu & \sin \theta \tag{4.2}\\
\mu & \lambda & 0 \\
\sin \theta & 0 & 0
\end{array}\right) \quad A_{e_{5}}=\left(\begin{array}{ccc}
\mu & \lambda & 0 \\
\lambda & -\mu & \sin \theta \\
0 & \sin \theta & 0
\end{array}\right)
$$

Proof: Let $p \in M$ and $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}$ an adapted slant orthonormal basis. By the definition of the mean curvature vector, one has

$$
\begin{align*}
9\|H\|^{2}=\left(h_{11}^{4}+h_{22}^{4}\right)^{2}+\left(h_{11}^{5}\right. & \left.+h_{22}^{5}\right)^{2} \tag{4.3}\\
& =\left(h_{11}^{4}-h_{22}^{4}\right)^{2}+\left(h_{11}^{5}-h_{22}^{5}\right)^{2}+4\left(h_{11}^{4} h_{22}^{4}+h_{11}^{5} h_{22}^{5}\right)
\end{align*}
$$

By using equation (3.3), (4.3) becomes

$$
\begin{align*}
9\|H\|^{2}=\left(h_{11}^{4}-h_{22}^{4}\right)^{2}+\left(h_{11}^{5}-h_{22}^{5}\right)^{2} & +4\left(\tau-2 \cos ^{2} \theta\right) \tag{4.4}\\
& \quad-(c+3)-3(c-1) \cos ^{2} \theta+4\left(h_{12}^{4}\right)^{2}+4\left(h_{12}^{5}\right)^{2}
\end{align*}
$$

We choose e_{4} in the direction of the mean curvature vector. Then $\operatorname{tr} A_{e_{5}}=0$, and thus the shape operators have the following forms:

$$
A_{e_{4}}=\left(\begin{array}{ccc}
\alpha & \mu & \sin \theta \\
\mu & \lambda & 0 \\
\sin \theta & 0 & 0
\end{array}\right), \quad A_{e_{5}}=\left(\begin{array}{ccc}
\mu & \lambda & 0 \\
\lambda & -\mu & \sin \theta \\
0 & \sin \theta & 0
\end{array}\right)
$$

It follows that (4.4) is equivalent to

$$
\begin{equation*}
9\|H\|^{2}-4 \tau+(c+3)+(3 c+5) \cos ^{2} \theta=8 \mu^{2}+(\alpha-\lambda)^{2}+4 \lambda^{2} \tag{4.5}
\end{equation*}
$$

On the other hand, by the definition of the scalar normal curvature and Ricci equation, we get

$$
\begin{aligned}
\tau^{\perp} & =g\left(R^{\perp}\left(e_{1}, e_{2}\right) e_{4}, e_{5}\right)=g\left(\widetilde{R}\left(e_{1}, e_{2}\right) e_{4}, e_{5}\right)+g\left(\left[A_{e_{4}}, A_{e_{5}}\right] e_{1}, e_{2}\right) \\
& =\frac{c-1}{4}\left(1-3 \cos ^{2} \theta\right)+h_{11}^{5} h_{12}^{4}+h_{12}^{5} h_{22}^{4}-h_{11}^{4} h_{12}^{5}-h_{12}^{4} h_{22}^{5} \\
& =\frac{c-1}{4}\left(1-3 \cos ^{2} \theta\right)+2 \mu^{2}+\lambda(\lambda-\alpha)
\end{aligned}
$$

Using (4.5) and the trivial inequality $4 \lambda(\lambda-\alpha) \leqslant 4 \lambda^{2}+(\lambda-\alpha)^{2}$, the above equation implies

$$
4 \tau^{\perp} \leqslant 9\|H\|^{2}-4 \tau+2(c+1)+8 \cos ^{2} \theta
$$

which is equivalent to (4.1).
Equality holds in (4.1) at a point $p \in M$ if and only if $\alpha=-\lambda$, that is, the shape operators take the forms (4.2).

Corollary 6. Each 3-dimensional proper contact slant submanifold M of a 5dimensional Sasakian space form $\widetilde{M}(c)$ which satisfies the equality case of (4.1) at every point $p \in M$ is a minimal submanifold.

The proof follows from (4.2).

References

[1] D.E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509 (Springer-Verlag, Berlin, 1976).
[2] J. Cabrerizo, A. Carriazo, L.M. Fernandez and M. Fernandez, 'Slant submanifolds in Sasakian manifolds', Glasgow Math. J. 42 (2000), 125-138.
[3] B.-Y. Chen, 'On slant surfaces', Taiwanese J. Math. 3 (1999), 163-179.
[4] B.-Y. Chen and Y. Tazawa, 'Slant submanifolds of complex projective and complex hyperbolic spaces', Glasgow Math. J. 42 (2000), 439-454.
[5] P.J. De Smet, F. Dillen, L. Verstraelen and L. Vrancken, 'A pointwise inequality in submanifold theory', Arch. Math. (Brno) 35 (1999), 115-128.
[6] P. Wintgen, 'Sur l'inégalité de Chen-Willmore', C.R. Acad. Sci. Paris 288 (1979), 993-995.
[7] K. Yano and M. Kon, Anti-invariant submanifolds, Lecture Notes in Pure and Applied Mathematics (Marcel Dekker, New York, Basel, 1976).
[8] K. Yano and M. Kon, Structures on manifolds, Series in Pure Mathematics 3 (World Scientific, Singapore, 1984).

Faculty of Mathematics
Str. Academiei 14
70109 Bucharest
Romania
e-mail: imihai@math.math.unibuc.ro

School of Information Environment
Tokyo Denki University
Inzai, Chiba Prefecture 270-1382
Japan
e-mail: tazawa@cck.dendai.ac.jp

