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Abstract. The Rayleigh-Taylor instability (RTI) of a continuously stratified fluid has implica-
tions on the stability of solar and planetary interiors. A nonlinear stage of the two-dimensional
RTI is studied by including various effects. By using the multiple scale method, we derived a non-
linear Schrödinger equation (NLSE) in 2+1 dimensions. We show the general soliton solutions
of the NLSE and this allows to discuss their stability.
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1. Introduction
The problem of RTI deals with a heavy fluid supported by a light fluid. It has implica-

tions on the stability of solar, planetary and stellar atmospheres, astrophysical, geophys-
ical, controlled fusion, and industrial processes such as supernova explosions, and con-
trolled thermonuclear fusion experiments (CTFs) (Chandrasekhar, 1961; Dávalos-orozco,
1993, 1996). Zelazo and Melcher pointed out that a magnetic field applied tangentially to
the interface between two kinds of fluids exerts a stabilizing influence on the configura-
tion. The stability of a magnetic fluid column was experimentally demonstrated (Zelazo
and Melcher, 1969).

Malik and Singh (1989) extended the above work to a system with a magnetic field and
surface tension, and demonstrated the formation of bubbles by means of the Lagrangian
transformations. They showed as well how the magnetic fluid and the surface tension
stabilize the interface to conserve the contours. Iizuka and Wadati (1990) studied the
nonlinear stage of the RTI from a viewpoint of the nonlinear wave theory. The stabilizing
effect comes from the surface tension between the two fluids and/or from the magnetic
field (Malik and Singh, 1989). Dávalos-orozco (1993, 1996) investigated the RTI of two
superposed fluids under a horizontal rotation field and also under the simultaneous action
of horizontal rotation and magnetic fields (See ref. Khater et al. 2001, 2003 for details
and review).

2. Problem Formulation
We consider two-dimensional semi-infinite, incompressible fluids separated by the in-

terface z = 0, along the direction of streaming. The fluid of the density ρ1 with magnetic
permeability µ1 occupies the half-space z < 0, and the fluid of the density ρ2 with mag-
netic permeability µ2 is in the half-space z > 0. The magnetic field H(1,0,0) acts along
the direction of the flow. The system is assumed to be irrotational under the influence
of a gravitational force g(0,0,-g). The basic equations governing the velocity potential φ
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(v = ∇φ) and the magnetic potential ψ(H = −∇ψ) are

∇2φ(1) = ∇2ψ(1) = 0, −∞ < z < η, ∇2φ(2) = ∇2ψ(2) = 0, η < z < ∞, (2.1)

with |∇φ(1)| → 0, |∇ψ(1)| → 0 as z → −∞, and |∇φ(2)| → 0, |∇ψ(2)| → 0 as z → ∞.
The boundary conditions at the free interface z = η(x, y, t), are given by

∂φ(j)

∂z
− ∂η

∂t
= ∇φ(j) · ∇η j = 1, 2 and µH(1)

n = H(2)
n , H

(1)
T = H

(2)
T , (2.2)
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] (
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)2
)

,

(2.3)

where µ = µ1
µ2 , Hn and HT represent the normal and tangential components of the

magnetic field. Both the magnetic fluids are assumed to be linearly magnetizable. T is
the coefficient of surface tension. The nonlinear stability problem posed by Eqs. (2.1)
to (2.3) is examined. The method employed is that of multiple time and space scales
[Nayfeh, 1981]. In order to describe nonlinear interactions of small but finite-amplitude
waves, one first normalizes the various physical quantities with respect to a characteristic
length and a characteristic time . We introduce the variables

xi = εix, yi = εiy, ti = εit, η(x, y, t) =
3∑

n=1

εnηn (xi; yi; ti) +O(ε)4 + . . . . , (2.4)

and similarly for φ(z, x, y, t) and ψ(z, x, y, t), where i = 0, 1, 2 and ε represents a small
parameter characterizing the steepness ratio of the wave. For the problem under investiga-
tion, it is sufficient to take N = 3 as far as the lowest significant order is concerned. Eqs.
(2.1)-(2.3) require a priori information of the displacement η(x, y, t) at the perturbed
surface. To circumvent this problem, we used Taylor’s expansion of various quantities
about z = 0. On substituting expressions (2.4) into Eqs. (2.1) and transforming bound-
ary conditions, and on equating the coefficients of terms of like powers in ε, we obtained
the linear and the successive nonlinear partial differential equations (PDE’s) of various
orders. The problem can then be solved for any order with the knowledge of the solutions
of all the previous orders.

3. Linear theory
The progressive wave solution of the first-order system is obtained

η1 = A (x, y, t) exp i (kx0 + ly0 − ωt0) + c.c., (3.1)

φ
(1)
1 =

−ω

k
i (A (x, y, t) exp i (kx0 + ly0 − ωt0) − c.c.) exp (kz) at z < 0, (3.2)

φ
(2)
1 =

ω

k
i (A (x, y, t) exp i (kx0 + ly0 − ωt0) − c.c.) exp (−kz) at z > 0, (3.3)

ψ
(1)
1 =

(1 − µ)(k + l)
(µ + 1) kµ2

iH (A (x, y, t) exp i (kx0 + ly0 − ωt0) − c.c.) exp (kz) at z < 0,

(3.4)

ψ
(2)
1 =

(1 − µ)(k + l)
(µ + 1) kµ2

iH (A (x, y, t) exp i (kx0 + ly0 − ωt0) − c.c.) exp (−kz) at z > 0,

(3.5)
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where c.c., A, k, l and ω are complex conjugate, amplitude, wavenumbers and frequency
of the center of the wave packet, respectively. By substitution from (3.1)–(3.5) into (2.1)–
(2.3), one is led to the dispersion relation

D (ω, k, l) = ω2 − k − k3 − kl2 − (k + l)2
(

H2

4πµ2 (ρ1 + ρ2)

)
(1 − µ)2

µ + 1
, (3.6)

The neutral point of the instability occurs at

(ρ1 + ρ2)
2

ρ1ρ2

(
k + k3 + kl2

(k + l)2
+

(
H2

4ρ (ρ1 + ρ2)

)
(1 − µ)2

µ + 1

)
= 0. (3.7)

4. Second-order problem
With substitution of the first-order solutions (3.1)–(3.5) into the second-order equa-

tions, then the uniformly valid solutions for the second-order problem furnish the solv-
ability condition as

Dω
∂A

∂t1
+ Dk

∂A

∂x1
+ Dl

∂A

∂y1
= 0, (4.1)

where Dω, Dk and Dl are the partial derivatives of the dispersion relation (3.6) with re-
spect to frequency ω and wave numbers, respectively. The amplitude A of the progressive
wave is a function of the faster scales x1, x2; y1, y2; t1, t2. Introducing the group velocity
of the wave packet Vk and Vl are given by

Vk =

(
l + 3k2 + l2

)
(ρ1 + ρ2) + H2(k+l)(µ−1)2

2πµ2(µ+1)

2ωρ1 + 2ωρ2
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(2kl) (ρ1 + ρ2) + H2(k+l)(µ−1)2

2πµ2(µ+1)

2ωρ1 + 2ωρ2
,

(4.2)
and substituting into (4.1), we get

∂A

∂t1
+ Vk

∂A

∂x1
+ Vl

∂A

∂y1
= 0. (4.3)

5. Third-order problem
By using the first-order and the second-order solutions, Simplifying the right-hand side

of third order equations and after some straightforward reductions, the condition for the
free surface elevation η3 to be nonsecular is

2i
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where Ω = −H2(µ−1)2

4πµ2(µ+1)(ωρ1+ωρ2)
. Introducing the transformations

ξ1 =
x1

R
1/2
1

, η1 =
(

R2
2

R1
− R3

)−1/2 (
R2

R1
x1 − y1

)
, τ = t2, (5.2)

Under such a transformations, (5.2) reduced to an elliptic two-dimensional NLSE

2i
∂A

∂τ
+

∂2A

∂ξ2
1

− ∂2A

∂η2
1

= Q |A|2 A, (5.3)

where Q = Q1
R1

. Eq. (5.4) has soliton solutions as (Khater et al. 2001, 2003)

A =
(√

2C/Q sec
(√

C (ln [exp(d1η1) sin(d0τ + d1ξ1)]) + d
)
− π

)
exp i (c0τ + c1ξ1 + c2η1) ,

(5.4)

A =

√
C

Q
sinh

(
2 tanh−1

(
exp

(√
2C (d0τ + d1ξ1 + d2η1) + d

))
− π

)
× exp (i (c0τ + c1ξ1 + c2η1)) , (5.5)

where C, d0, d1, d2, c0, c1, c2 are real constants. The soliton stability of Eq. (5.3) can be
obtained by deriving the functional relation δL/δA∗=0, from the Lagrangian

L =
∫ ∫ (

i

2

(
A∗ ∂A

∂τ
− A

∂A∗

∂τ

)
− 1

2

(∣∣∣∣ ∂A

∂ξ1
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2

−
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2
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Q

2
|A|2

))
dξ1dη1. (5.6)

We have two integrals of motion as

N =
∫ ∫ (

|A|2
)

dξ1dη1, H =
1
2

∫ ∫ (∣∣∣∣ ∂A

∂ξ1

∣∣∣∣
2

−
∣∣∣∣ ∂A

∂η1
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2

+
Q

2
|A|2

)
dξ1dη1, (5.7)

where the normalization N is the wave action and H is the Hamiltonian.

6. Conclusion
The nonlinear stage of the two-dimensional RTI is studied by including various effects,

even the effect of surface tension between the two fluids. By using the multiple scales
method. Linearized equations for the system are derived and the dispersion relation is
obtained. From the second- and third-order theories, we have derived a NLSE in 2+1
dimensions. We find the soliton solutions of 2+1 dimensions NLSE. This allows to discuss
the stability of the soliton solutions.

References
Chandrasekhar, S., 1961, Hydrodynamic and Hydromagnetic Stability (Clarendon Press)
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