J. Austral. Math. Soc. (Series A) 61 (1996), 396-399

DIFFEOMORPHISMS WITH THE SHADOWING PROPERTY

KAZUHIRO SAKAI

(Received 23 May 1995; revised 20 September 1995)

Communicated by P. Kloeden

Abstract

It is proved that for every diffeomorphism f on a surface satisfying Axiom A, f is in the C^2 -interior of the set of all diffeomorphisms having the shadowing property if and only if f satisfies the strong transversality condition.

1991 Mathematics subject classification (Amer. Math. Soc.): 54H20, 58F10, 58F15. Keywords and phrases: Axiom A, basic set, shadowing property.

The shadowing property, which is also well known as the pseudo orbit tracing property, is closely related to the stability of a diffeomorphism satisfying Axiom A. In [6] it is stated that for a diffeomorphism f satisfying Axiom A, if f satisfies the strong transversality condition, then f has the shadowing property. Conversely, the strong transversality condition for f was proved in [2] and [7] when f is in the C^1 -interior of the set of all diffeomorphisms having the shadowing property. It is also proved in [2] that every diffeomorphism in the C^r -interior of the set of all diffeomorphisms having the shadowing property astisfies Axiom A when r = 1. However it is unknown whether the conclusion also holds for the case when $r \ge 2$.

In this paper, in the context of C^2 topology, by using a result stated in [8] the relationship between the shadowing property and the transversality of the stable manifolds and the unstable manifolds of a C^2 diffeomorphism on a surface satisfying Axiom A was discussed.

Let *M* be a C^{∞} closed manifold and Diff^r(*M*) ($r \ge 1$) be the space of C^r diffeomorphisms of *M* endowed with C^r topology. In the following results let *M* be a surface.

THEOREM. Let $f \in \text{Diff}^2(M)$ satisfy Axiom A. Then f is in the C²-interior of the

^{© 1996} Australian Mathematical Society 0263-6115/96 \$A2.00 + 0.00

set of all diffeomorphisms having the shadowing property if and only if f satisfies the strong transversality condition.

Let $f \in \text{Diff}^2(M)$ satisfy Axiom A. If f satisfies the strong transversality condition, then f is structurally stable (see [5]). Thus f is in the C^2 -interior of the set of all diffeomorphisms having the shadowing property (because f has the shadowing property and which is invariant under a conjugacy). Since the non-wandering set of f is a disjoint union of basic sets, our theorem will be obtained from the following

PROPOSITION. Let Λ_i (i = 1, 2) be basic sets of $f \in \text{Diff}^2(M)$ and suppose $x \in W^s(\Lambda_1) \cap W^u(\Lambda_2) \setminus \Lambda_1 \cup \Lambda_2$. If there is a C^2 neighborhood $\mathcal{U}(f)$ of f such that every $g \in \mathcal{U}(f)$ has the shadowing property, then $T_x M = T_x W^s(x) + T_x W^u(x)$.

Let d be a metric on M induced from a Riemannian metric $\|\cdot\|$ on TM. A sequence $\{x_k\}_{k=a}^b$ $(-\infty \le a < b \le \infty)$ of points is called a δ -pseudo-orbit of $f \in \text{Diff}^r(M)$ $(r \ge 1)$ if $d(f(x_k), x_{k+1}) < \delta$ for $a \le k \le b-1$. Given $\varepsilon > 0$, $\{x_k\}_{k=a}^b$ is said to be ε -shadowed by $x \in M$ if $d(f^k(x), x_k) < \varepsilon$ for $a \le k \le b$. We say that f has the shadowing property if for $\varepsilon > 0$ there is $\delta > 0$ such that every δ -pseudo-orbit of f can be ε -shadowed by some point.

A hyperbolic set Λ is called a *basic set* if there is a compact neighborhood U of Λ in M such that $\bigcap_{n \in \mathbb{Z}} f^n(U) = \Lambda$ and $f_{|\Lambda}$ has a dense orbit. The *local stable* and the *unstable manifolds* are denoted by $W^s_{\varepsilon_0}(x)$ and $W^u_{\varepsilon_0}(x)$ $(x \in \Lambda)$ respectively for some $\varepsilon_0 > 0$. The *stable manifold*, $W^s(x)$, and the *unstable manifold*, $W^u(x)$, of $x \in \Lambda$ are defined in the usual way, and we put $W^{\sigma}(\Lambda) = \bigcup_{x \in \Lambda} W^{\sigma}(x)$ $(\sigma = s, u)$. A basic set Λ is called of *saddle type* if $0 < \dim W^s(x) < \dim M$ for $x \in \Lambda$.

Hereafter let M be a surface. The notion of C^0 -transversality between stable and unstable manifolds of basic sets Λ_i and Λ_j was introduced in [8] as follows. If there exists $x \in W^s(\Lambda_i) \cap W^u(\Lambda_j) \setminus \Lambda_i \cup \Lambda_j$, then for $\varepsilon > 0$ we denote by $C_{\varepsilon}^{\sigma}(x)$ the connected component of x in $W^{\sigma}(x) \cap B_{\varepsilon}(x)$ ($\sigma = s, u$) and let $B_{\varepsilon}^+(x)$ and $B_{\varepsilon}^-(x)$ be the components of $B_{\varepsilon}(x) \setminus C_{\varepsilon}^s(x)$. Here $B_{\varepsilon}(x) = \{y \in M \mid d(x, y) \le \varepsilon\}$. We say that $W^s(x)$ and $W^u(x)$ meet C^0 -transversely at x if dim $W^{\sigma}(x) = 1$ ($\sigma = s, u$), $B_{\varepsilon}^+(x) \cap C_{\varepsilon}^u(x) \ne \emptyset$ and $B_{\varepsilon}^-(x) \cap C_{\varepsilon}^u(x) \ne \emptyset$ for every $\varepsilon > 0$.

Let Λ be a basic set of $f \in \text{Diff}^r(M)$ $(r \ge 1)$. Since dim M = 2, there is a locally f-invariant C^0 -foliation with C^1 -leaves defined in some neighborhood of Λ (see [1]). This foliation plays an essential role in the proof of the following lemma.

LEMMA 1 ([8, Proposition A]). Let Λ_i (i = 1, 2) be basic sets of $f \in \text{Diff}^r(M)$ $(r \ge 1)$, and suppose that $x \in W^s(p) \cap W^u(q) \setminus \Lambda_1 \cup \Lambda_2$ $(p \in \Lambda_1, q \in \Lambda_2)$. If f has the shadowing property, then $W^s(p)$ and $W^u(q)$ meet C^0 transversely at x.

REMARK. Let $x \in W^s(p) \cap W^u(q)$ be as in Lemma 1. If $W^s(p)$ and $W^u(q)$ meet C^0 -transversely at x, then they do not have a non-degenerate tangency at x (for the

Kazuhiro Sakai

definition of a non-degenerate tangency see [3, p. 104]). Thus, if Λ is a Newhouse wild hyperbolic set of $f \in \text{Diff}^2(M)$ ([3]), and if we put $\Lambda_1 = \Lambda_2 = \Lambda$, then, by Newhouse's result and Lemma 1, there exists a non-empty C^2 -open set \mathcal{O} such that every $g \in \mathcal{O}$ does not have the shadowing property.

To prove our proposition we shall use the following basic fact.

LEMMA 2. Let Λ_i (i = 1, 2) be basic sets of $f \in \text{Diff}^r(M)$ $(r \ge 1)$, and suppose that $x \in W^s(p) \cap W^u(q) \setminus \Lambda_1 \cup \Lambda_2$ $(p \in \Lambda_1, q \in \Lambda_2)$. Then there are $\varepsilon > 0$ and a C^r diffeomorphism $\tilde{\varphi}_x : B_{\varepsilon}(x) \to \mathbb{R}^2 = \{(v, w) \mid v, w \in \mathbb{R}\}$ such that $\tilde{\varphi}_x(x) = (0, 0)$ and $\tilde{\varphi}(C^s_{\varepsilon}(x)) \subset v$ -axis.

PROOF. Let $x \in W^s(p) \cap W^u(q)$ be as above. Since $T_{\Lambda_1}M = E^s \oplus E^u$ is hyperbolic, there are $\delta > 0$ and C^r maps $\varphi_s : E_p^s(\delta) \to E_p^u$ and $\varphi_u : E_p^u(\delta) \to E_p^s$ such that $W_{\varepsilon_0}^s(p) = \exp_p(E_p^s(\delta), \varphi_s(E_p^s(\delta)))$ and $W_{\varepsilon_0}^u(p) = \exp_p(\varphi_u(E_p^u(\delta)), E_p^u(\delta))$. Here $E_p^\sigma(\varepsilon) = \{v \in E_p^\sigma : ||v|| \le \varepsilon\}$. Since f is a diffeomorphism, (iterating x by f if necessary) we may assume that $x \in W_{\varepsilon_0}^s(p) \cap B_{\delta/2}(p)$. Let us denote the natural projection from $E_p^s \oplus E_p^u$ to E_p^σ by $\overline{\pi}^\sigma$ ($\sigma = s, u$) and define a C^r -diffeomorphism $\varphi : B_{\delta}(p) \to T_p M = E_p^s \oplus E_p^u$ by

$$\varphi(y) = \left(\bar{\pi}^{s}(\exp_{p}^{-1} y) - \varphi_{u}(\bar{\pi}^{u}(\exp_{p}^{-1} y)), \bar{\pi}^{u}(\exp_{p}^{-1} y) - \varphi_{s}(\bar{\pi}^{s}(\exp_{p}^{-1} y))\right)$$

for $y \in B_{\delta}(p)$. Then $\varphi(W^s_{\varepsilon_0}(p)) \subset E^s_p$ (see [4, p. 81]). Since $x \in W^s_{\varepsilon_0}(p) \cap B_{\delta/2}(p)$, if we put $\varepsilon = \delta/2$, then $\varphi(C^s_{\varepsilon}(x)) \subset E^s_p(\delta)$. Let $\eta : T_{\varphi(x)}(T_pM) \to T_pM$ be the parallel transformation. Then $\tilde{\varphi}_x = \eta \circ \varphi : B_{\varepsilon}(x) \to \mathbb{R}^2$ satisfies the conclusion of this lemma.

PROOF OF PROPOSITION. Let Λ_i (i = 1, 2) be basic sets of $f \in \text{Diff}^2(M)$ and suppose $x \in W^s(\Lambda_1) \cap W^u(\Lambda_2) \setminus \Lambda_1 \cup \Lambda_2$. We shall prove that if there is a C^2 neighborhood $\mathcal{U}(f)$ of f such that every $g \in \mathcal{U}(f)$ has the shadowing property, then $T_x M = T_x W^s(x) + T_x W^u(x)$.

By Lemma 2 there are $\delta > 0$ and a C^2 -diffeomorphism $\tilde{\varphi}_x : B_{\varepsilon_0}(x) \to \mathbb{R}^2$ such that $\tilde{\varphi}_x(C^s_{\delta}(x)) \subset v$ -axis and $\tilde{\varphi}_x(x) = (0, 0)$. If $T_{(0,0)}\tilde{\varphi}_x(C^u_{\delta}(x)) \neq v$ -axis, then we have $T_x M = T_x W^s(x) + T_x W^u(x)$ that is; $W^s(x)$ and $W^u(x)$ meet transversely at x. Thus we assume that $T_{(0,0)}\tilde{\varphi}_x(C^u_{\delta}(x)) = v$ -axis. It is easy to see that there are $\varepsilon > 0$ and a C^2 -function $\gamma : [-\varepsilon, \varepsilon] \to \mathbb{R}$ such that graph $(\gamma) \subset \tilde{\varphi}_x(C^u_{\delta}(x))$ and $(0, \gamma(0)) = \tilde{\varphi}_x(x) = (0, 0)$. If $\gamma''(0) \neq 0$ then, since $\gamma'(0) = 0$, $W^s(x)$ and $W^u(x)$ do not meet C^0 -transversely at x. This is inconsistent with Lemma 1 and so $\gamma''(0) = 0$. If we denote a C^2 -metric as ρ_{C^2} , then for every δ' , there exists $0 < \varepsilon' < \varepsilon$ such that

$$\rho_{C^2}\left(\tilde{\varphi}_x^{-1}(\operatorname{graph}(\gamma(-\varepsilon',\varepsilon'))), C^s_{\varepsilon'}(x)\right) < \delta'$$

since $\gamma'(0) = 0$ and $\gamma''(0) = 0$. Thus, by using a standard procedure, for every $\nu > 0$ and every C^2 -neighborhood $\mathscr{U}(f)$ of f such that every $g \in \mathscr{U}(f)$ has the shadowing property, we can construct a C^2 -diffeomorphism $\psi : M \to M$ such that

$$\begin{aligned}
\psi(x) &= x \\
\psi_{|M \setminus B_{v}(x)} &= \mathrm{id} \\
\psi(W^{s}(x) \cap B_{v'}(x)) \subset W^{u}(x) \\
\tilde{f} &= \psi^{-1} \circ f \in \mathscr{U}(f),
\end{aligned}$$

where $0 < \nu' < \nu$ is sufficiently small. From this we have

$$W^{s}(x, \tilde{f}) \cap B_{\nu'}(x) = W^{u}(x, \tilde{f}) \cap B_{\nu'}(x)$$

Here $W^{\sigma}(x, \tilde{f})$ ($\sigma = s, u$) are the stable and the unstable manifolds of \tilde{f} at x. By Lemma 1, this is a contradiction since \tilde{f} has the shadowing property and so the proof is completed.

References

- [1] W. de Melo, 'Structural stability of diffeomorphisms on two-manifolds', *Invent. Math.* 21 (1973), 233-246.
- [2] K. Moriyasu, 'The topological stability of diffeomorphisms', Nagoya Math. J. 123 (1991), 91-102.
- [3] S. Newhouse, 'The abundance of wild hyperbolic sets and non-smooth stable sets for diffeomorphisms', Inst. Hautes Études Sci. Publ. Math. 50 (1979), 101–151.
- [4] J. Palis and W. de Melo, Geometric theory of dynamical systems (an introduction) (Springer, Berlin, 1982).
- [5] C. Robinson, 'Structural stability of C¹ diffeomorphisms', J. Differential Equations 22 (1976), 28-73.
- [6] —, 'Stability theorems and hyperbolicity in dynamical systems', Rocky Mountain J. Math. 7 (1977), 425–437.
- [7] K. Sakai, 'Pseudo-orbit tracing property and strong transversality of diffeomorphisms on closed manifolds', Osaka J. Math. 31 (1994), 373–386.
- [8] ——, 'Shadowing property and transversality condition', in: Proceedings of the International Conference on Dynamical Systems and Chaos in Tokyo 1994, vol. 1 (World Scientific, Singapore, 1995) pp. 233–238.

Department of Mathematics Kanagawa University Rokkakubashi Kanagawa-ku Yokohama 221 Japan e-mail: kazsaka@cc.kanagawa-u.ac.jp