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Control of dopant atoms and defects in materials underpins much of modern electronics and holds great 
promise for future applications and ‘quantum’ technologies. However, from the early days of the electron 
microscope its resolution was limited by the aberrations of the electron lenses to just beyond the level 
where such features can be directly visualized. Thus the development of modern aberration-correctors, 
which pushed the feats of imaging individual atomic columns or even single atoms to a more routine level, 
has propelled electron microscopy to the forefront of many areas of materials science. 
 
One of the outcomes of reduced aberrations is alleviation of the electron wavelength resolution limit, 
resulting in the ability to obtain atomic-resolution images at a wider range of accelerating voltages. This 
allows us to select the operating energy of the electron microscope, and in doing so vary the amount of 
energy that is transferred to the sample. For example, graphene and similar 2D materials are often best 
imaged at voltages around 60 kV [1], whereas imaging at higher energies can quickly modify the area of 
interest. However, operating the microscope at a range of voltages presents a range of challenges, varying 
from the technical difficulties of aligning the aberration-corrector [2] to minimizing thermal drift. Another 
of the key uncertainties in the precise interpretation of scanned microscope images is knowing exactly 
where the probe is on the sample. This difficulty arises because the beam will deviate from the desired 
position due to limitations in the control electronics or drift in the sample position. A closely linked 
strategy to limit undesired sample damage is therefore to precisely control the beam. The electron beam 
can be scanned in variable patterns, such as spirals centered on the area of interest [3]. This control can be 
used to more accurately determine the probe position, to characterize the response of the scan system and 
ultimately to guide the beam to only the desired coordinates. 
 
Recent work has begun to open a new era in electron microscopy, where instead of being used only as an 
imaging or spectroscopic system, the atomic-sized electron beam in a scanning transmission electron 
microscope (STEM) can be used as a tool to manipulate matter at the nanoscale, with examples including 
fabricating crystalline oxides at atomic-plane resolution [4] and sculpting the technologically ubiquitous 
silicon [5]. For 2D materials, this control has been extended to single atoms, as demonstrated by moving 
single silicon atoms in graphene [6,7]. In 3D crystalline materials, recent developments have allowed the 
imaging of single atom diffusion [8] and control of single dopant atoms [9] (see Figure 1). Combining 
variable operating voltage electron microscopy with position control therefore represents a promising 
strategy to either reduce undesired damage or to engineer a new atom-by-atom fabrication technique [10]. 
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Figure 1. High-angle annular dark field (HAADF) images showing single dopant Bi atoms in Si[110]. A 
160 kV electron beam was used to guide the atoms towards the desired position. Images adapted from 
reference [9].   
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