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Abstract

Fold–unfold lemmas complement the rewrite tactic in the Coq Proof Assistant to reason about
recursive functions, be they defined locally or globally. Each of the structural cases gives rise to
a fold–unfold lemma that equates a call to this function in that case with the corresponding case
branch. As such, they are “boilerplate” and can be generated mechanically, though stating them by
hand is a learning experience for a beginner, to say nothing about explaining them. Their proof is
generic. Their use is precise (e.g., in terms with multiple calls) and they scale seamlessly (e.g., to
continuation-passing style and to various patterns of recursion), be the reasoning equational or rela-
tional. In the author’s experience, they prove effective in the classroom, considering the clarity of
discourse in the subsequent term reports and oral exams, and beyond the classroom, considering
their subsequent use when continuing to work with the Coq Proof Assistant. Fold–unfold lemmas
also provide a measure of understanding as well as of control about what is cut short when one uses
a shortcut, i.e., an automated simplification tactic. Since Version 8.0, the functional-induction plu-
gin provides them for functions that are defined globally, i.e., recursive equations, and so does the
Equations plugin now, both for global and for local declarations, a precious help for advanced users.

1 Introduction and motivation

Not so many concepts in mathematics are defined recursively, but triviality is one of them:
in the jargon of mathematicians, something is “trivial” when one understands it immedi-
ately or when one can prove it trivially. And a measure of success, when undertaking a
mathematical journey, is the number of things that have become trivial by the end of this
journey. Other measures of success include the ability to reuse the results and the meth-
ods that were acquired in the course of this journey, and the ability to explain these new
methods, these new results, and these new trivialities, as per Boileau’s French alexandrines
“what one understands well is told with clarity; and the words to say it arise easily” (1815).

‡The online version of this article has been updated since original publication. A notice detailing the changes
has also been published at: https://doi.org/10.1017/S0956796823000011
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2 O. Danvy

Rota once singled out, among mathematicians, the “problem solvers” and the “the-
orizers” (1996). Problem solvers are after the goal, the more dazzling the better: the
point of getting to a fountain is to drink, the sooner the better. Theorizers (or “theory
builders” Gowers, 2000) concur with the Little Prince about getting to the fountain; they
see value in the means, the more enlightening the better: the point of getting to the fountain
is not just to make a splash. Rota pointed out that most mathematicians are a mixture of
theorizer and problem solver.

Computer scientists too oscillate between solving problems and developing tools to
solve problems (or to develop other tools). As a result, our middle path is meandering.
Take a statically typed programming language, for example. Do we care about why our
program has a type? No of course, we are too busy forging ahead in the safety that evalu-
ation cannot go wrong. But if the type inferencer rejects our program, oh, the pain: we are
forced to understand the error message and therefore either or all of the type system, the
type inferencer, and its implementation, when all we care about is for the type inferencer
to accept our program so that we can forge ahead. In this context, the middle path is to
know enough about the type system to understand the common error messages of the type
inferencer, an extensible middle ground where we know enough theory to solve problems.

The situation is dual for proving a proposition in the Coq Proof Assistant Bertot &
Castéran (2004): instead of using a type inferencer to infer a type for a given program, we
need to infer a program (i.e., write a proof) for a given type (i.e., a proposition). The Coq
Proof Assistant offers a fertile ground for problem solvers and for theorizers and has made
it possible for students to prove more theorems in a few weeks or months than in their entire
lifetime so far. On this fertile ground, new notions of triviality have emerged, such as the
common succession of proof steps and proof strategies, and these mechanical steps and
strategies have been automated. Today, the culture surrounding the Coq Proof Assistant is
by and large that of advanced problem solvers: proving the goal justifies any automated
means. For example, “Software Foundations” (2012) uses the simpl tactic early in the
game. This approach is effective when the means are trivial, but triviality is an evolving
concept: at the beginning, nothing is trivial. For another example, in his textbook (2013),
Chlipala systematically uses the crush tactic upfront, consistently with the philosophy of
having “short and automated proofs [as] the starting point.” The discourse then becomes
less about the proofs and more about their automation, turning users into power-users.

For newcomers who simply want to become users, this current culture is challenging:
for sure, using shortcuts without understanding what these automated simplification tactics
cut short does enable one to prove many propositions. However, when one becomes stuck,
it can be with no cognitive standing and no traction because these many proof trees now
form a forest that is hiding the tree of knowledge, so to speak. For a less extreme but no
less telling example, it also can be a sobering exercise to try to revisit textbook proofs that
use a shortcut without using this shortcut.

All in all, the path taken by problem solvers is too steep for newcomers. What about the
path a theorizer could take? This path would probably start with building a comfort zone
with the basics, which includes understanding each proof step to build muscle memory in
order to acquire a sense of how one mechanizes a proof in this proof assistant.

Over the last decade Danvy (2011 − 2021), the author has been patiently designing such
a path for newcomers Danvy (2019b). Against this backdrop, the goal of the present tuto-
rial is to describe how to mechanize equational reasoning about recursive programs. In the
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course of the 1970s, this equational reasoning was promoted by Burstall & Landin (1969),
Manna (1974) and Burstall and Darlington (1977), and since the 1980s, it is in common use
to reason about functional programs (Bird & Wadler, 1988; Thompson, 1995; Thompson,
2011), e.g., to manipulate them Jones et al. (1993). At the heart of this mechanical rea-
soning lie fold–unfold steps to relate (a) calls to a structurally recursive function with
arguments that correspond to one of its base cases or to one of its induction steps and
(b) the corresponding case in its definition. It is the author’s thesis that these fold–unfold
steps, once stated as fold–unfold lemmas, provide normal Coq users with an actionable
understanding through a tractable middle path – the path of a theorizer – where they
can distinguish between the trivial and the nontrivial and explain the whole process with
clarity. The present tutorial is an overview of this middle path.

Roadmap: We start off with equational reasoning about the inductive specifications of
programs (Section 2). Fold–unfold lemmas account for the clauses in the inductive spec-
ification of a program (Section 3), and they make it possible to reason about recursive
programs (Section 4). In fact, they typically coincide with these clauses (Section 5), which
we illustrate next with continuation-passing style, functionals that abstract structurally
recursive computations (i.e., fold functions), mutual recursion, and with proving properties
of recursive and co-recursive functions as well as the course-of-values induction principle
(Section 6). We then turn to proving fold–unfold lemmas (Section 7), be it directly or using
the functional-induction plugin or the Equations plugin, and to interfacing with preexisting
recursive functions. Thus equipped, we describe how to reason not only about recursive
equations but also about block-structured programs that use lexical scope (Section 8). We
then put the present work into perspective (Section 9) before concluding (Section 10).

Prequisites and notations: An elementary knowledge of recursive programs, e.g., in
OCaml, and no particular knowledge of the Coq Proof Assistant are expected from the
reader. A deliberately reduced vocabulary of tactics is used here, each of them with one
clear effect in the *goals* window (we are using Proof General), and all of them reviewed
in appendix.

The term “fold–unfold” is due to Burstall and Darlington (1977) and is read “fold after
unfold:”

• The term “unfold” is used when a name is replaced by is denotation, and the Coq
tactic unfold does exactly that. When the name denotes a function and occurs in a
function call, this call is “unfolded” when this function is inlined: an instance of
its body replaces the call where the actual parameters are substituted for its formal
parameters. For example, if foo denotes fun x => if x then 1 else 0, then the call
foo y is unfolded into if y then 1 else 0 using the tactic unfold foo. Some simplifi-
cations can take place during this inlining. For example, the call foo true is unfolded
into 1 using the tactic unfold foo.

• The term “fold” is used when a denotation is replaced by its name, and the Coq tactic
fold does exactly that. When the name denotes a function and an expression is an
instance of the body of this function, this instance is “folded” when this instance is
replaced by a call to this function with suitable actual parameters. For example, if
foo denotes fun x => if x then 1 else 0, then the expression if y then 1 else 0 is
folded into foo y using the tactic fold (foo y), and the expression 1 is folded into
foo true using the tactic fold (foo true).
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As defined by Burstall et al., a fold–unfold step consists in (1) unfolding the call to a
function and then (2) folding another call to this function in the resulting expression.
Fold–unfold steps are most relevant for recursive functions because they make it possi-
ble to focus on what a recursive function does and disregard how it is implemented. So
for example, if list_map denotes the recursive map function over lists, the two expressions
list_map f (v :: vs) and f v :: list_map f vs are interderivable using one fold–unfold
step.

Target audience and goal: This tutorial is written for people who are interested in reason-
ing about programs and who are curious about formulating this reasoning on a computer
in a domain-specific language for writing proofs. The proofs and their pace are elementary
to give the reader a chance to build a new knowledge on top of an existing knowledge
instead of building yet another independent knowledge from scratch, kaleidoscopically.
A not-uncommon side effect of this paced approach is a consolidation of this existing
knowledge. And as in martial arts, the reader has then a chance to reach a mindful posi-
tion where they can accelerate their moves safely, a side effect of having been patiently
introduced to a logic of computing instead of having been made to start with its automation.

I want to give you
what I wish someone had given me

when I was your age.
– Samson Raphaelson (1949)

2 Equational reasoning about specifications of programs

In the Coq Proof Assistant, equational reasoning is achieved using the rewrite tactic. This
tactic, when applied to the Leibniz equality of two expressions, replaces one of these
expressions by the other. Consider, for an elementary example, the mirroring function
over binary trees in Gallina, the resident pure and total functional language in Coq:
Inductive binary_tree (V : Type) : Type :=
| Leaf : V -> binary_tree V
| Node : binary_tree V -> binary_tree V -> binary_tree V.

Definition specification_of_mirror
(mirror : forall V : Type, binary_tree V -> binary_tree V) : Prop :=

(forall (V : Type) (v : V),
mirror V (Leaf V v) = Leaf V v)

/\
(forall (V : Type) (t1 t2 : binary_tree V),

mirror V (Node V t1 t2) = Node V (mirror V t2) (mirror V t1)).

The first declaration defines the polymorphic type of binary trees with payloads in
the leaves. The second specifies the polymorphic mirror function inductively with two
conjuncts, one for the leaves (base case) and one for the nodes (induction step).

To illustrate equational reasoning already, let us prove that at most one function satisfies
this specification:
Proposition there_is_at_most_one_mirror :

forall mirror1 mirror2 : forall V : Type, binary_tree V -> binary_tree V,
specification_of_mirror mirror1 ->
specification_of_mirror mirror2 ->
forall (V : Type) (t : binary_tree V),

mirror1 V t = mirror2 V t.
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In words: any two functions mirror1 and mirror2 that satisfy the specification of the mirror
function map the same input to the same output. The proof starts by naming assumptions
and isolating the equality in the goal. Consistently with the policy that each tactic has
one clearly identifiable effect in the *goals* window, we use an unfold step to replace the
name specification_of_mirror by its denotation, i.e., a conjunction, before naming its two
components:
Proof.

intros mirror1 mirror2.
unfold specification_of_mirror.
intros [S_mirror1_Leaf S_mirror1_Node] [S_mirror2_Leaf S_mirror2_Node].
intros V t.

And indeed the *goals* buffer then contains named assumptions and the equality as a goal:

mirror1 : forall V : Type, binary_tree V -> binary_tree V
mirror2 : forall V : Type, binary_tree V -> binary_tree V
S_mirror1_Leaf : forall (V : Type) (v : V), mirror1 V (Leaf V v) = Leaf V v
S_mirror1_Node : forall (V : Type) (t1 t2 : binary_tree V),

mirror1 V (Node V t1 t2) = Node V (mirror1 V t2) (mirror1 V t1)
S_mirror2_Leaf : forall (V : Type) (v : V), mirror2 V (Leaf V v) = Leaf V v
S_mirror2_Node : forall (V : Type) (t1 t2 : binary_tree V),

mirror2 V (Node V t1 t2) = Node V (mirror2 V t2) (mirror2 V t1)
V : Type
t : binary_tree V
============================
mirror1 V t = mirror2 V t

This equality is proved by structural induction. We first focus on the base case:
induction t as [v | t1 IHt1 t2 IHt2].
-

The *goals* buffer is the same as before, modulo the following changes:

• the goal now reads mirror1 V (Leaf V v) = mirror2 V (Leaf V v), manifesting that we
are in the base case where t is Leaf v; and

• v : V stands instead of t : binary_tree V as the last assumption; v is the argument of
the Leaf constructor.

Instantiating S_mirror1_Leaf and S_mirror2_Leaf with V and v provides two Leibniz equal-
ities, one that matches the left-hand side of the goal and the other that matches the
right-hand side of the goal. Based on these equalities, one can replace equals by equals
in the goal using the rewrite tactic from left to right:

rewrite -> (S_mirror1_Leaf V v).
rewrite -> (S_mirror2_Leaf V v).

The goal then reads Leaf V v = Leaf V v, which can be proved using the reflexivity tactic
since Leibniz equality is reflexive. The base case being established, one can next focus on
the induction step:

reflexivity.
-

The *goals* buffer now reads:

...
V : Type
t1, t2 : binary_tree V
IHt1 : mirror1 V t1 = mirror2 V t1
IHt2 : mirror1 V t2 = mirror2 V t2
============================
mirror1 V (Node V t1 t2) = mirror2 V (Node V t1 t2)
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It is again the same as before, modulo the following changes:

• the goal now reads mirror1 V (Node V t1 t2) = mirror2 V (Node V t1 t2), manifesting
that we are in the induction step where t is Node V t1 t2; and

• t1, t2 : binary_tree V stands instead of t : binary_tree V in the last assumption; t1

and t2 are the arguments of the Node constructor, and they stand along their associated
induction hypotheses IHt1 and IHt2.

Instantiating S_mirror1_Node and S_mirror2_Node with V, t1, and t2 provides two Leibniz
equalities, one that matches the left-hand side of the goal and the other that matches its
right-hand side. Based on these equalities, one can replace equals by equals in the goal
using the rewrite tactic:

rewrite -> (S_mirror1_Node V t1 t2).
rewrite -> (S_mirror2_Node V t1 t2).

The goal then reads Node V (mirror1 V t2) (mirror1 V t1) = Node V (mirror2 V t2)

(mirror2 V t1). The induction hypotheses provide two Leibniz equalities which can be
used to replace equals by equals in the goal:

rewrite -> IHt1.
rewrite -> IHt2.

The goal then reads Node V (mirror2 V t2) (mirror2 V t1) = Node V (mirror2 V t2)

(mirror2 V t1), which again can be proved using the reflexivity tactic, which concludes
the proof:

reflexivity.
Qed.

Likewise, one can prove equationally that a function satisfying the specification of
mirror is involutory, i.e., that composing it with itself yields the identity function:
Theorem a_function_that_satisfies_the_specification_of_mirror_is_involutory :

forall mirror : forall V : Type, binary_tree V -> binary_tree V,
specification_of_mirror mirror ->
forall (V : Type) (t : binary_tree V),

mirror V (mirror V t) = t.

The proof is much as the one above, each step explicit and each of them with a simple
explanation:
Proof.

intro mirror.
unfold specification_of_mirror.
intros [S_mirror_Leaf S_mirror_Node].
intros V t.
(* goal: mirror V (mirror V t) = t *)
induction t as [v | t1 IHt1 t2 IHt2].
{ (* goal: mirror V (mirror V (Leaf V v)) = Leaf V v *)
rewrite -> (S_mirror_Leaf V v).
(* goal: mirror V (Leaf V v) = Leaf V v *)
rewrite -> (S_mirror_Leaf V v).
(* goal: Leaf V v = Leaf V v *)
reflexivity. }

{ (* IHt1 : mirror V (mirror V t1) = t1 *)
(* IHt2 : mirror V (mirror V t2) = t2 *)
(* goal: mirror V (mirror V (Node V t1 t2)) = Node V t1 t2 *)
rewrite -> (S_mirror_Node V t1 t2).
(* goal: mirror V (Node V (mirror V t2) (mirror V t1)) = Node V t1 t2 *)
rewrite -> (S_mirror_Node V (mirror V t2) (mirror V t1)).
(* goal: Node V (mirror V (mirror V t1)) (mirror V (mirror V t2)) = Node V t1 t2 *)
rewrite -> IHt1.
(* goal: Node V t1 (mirror V (mirror V t2)) = Node V t1 t2 *)
rewrite -> IHt2.
(* goal: Node V t1 t2 = Node V t1 t2 *)
reflexivity. }

Qed.
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Both proofs feature equational reasoning, witness their extensive use of the rewrite tac-
tic. The parts specific to the mirror function (S_mirror_Leaf, S_mirror_Node) are carried out
based on its specification. Each time, a call to mirror on a leaf or on a node is replaced by
the corresponding expression equated by the specification, which is called a “fold–unfold
step” since Burstall and Darlington.

Would not it be nice if we could mechanically reason about programs – instead of about
their specification – using fold–unfold steps?

For example, consider the following (obvious) implementation of the mirror function in
direct style:
Fixpoint mirror (V : Type) (t : binary_tree V) : binary_tree V :=

match t with
| Leaf _ v => Leaf V v
| Node _ t1 t2 => Node V (mirror V t2) (mirror V t1)
end.

This implementation begs for the two following statements, one to the effect that it satisfies
the specification and one to the effect that it is involutory. (The second is proved as a
corollary of the first just below, but we would also like a direct proof.)
Proposition there_is_at_least_one_mirror_function :

specification_of_mirror mirror.
Admitted. (* for now *)

Theorem mirror_is_involutory :
forall (V : Type) (t : binary_tree V),
mirror V (mirror V t) = t.

Proof.
exact (a_function_that_satisfies_the_specification_of_mirror_is_involutory

mirror
there_is_at_least_one_mirror_function).

Qed.

In words: applying the previous theorem to suitable arguments yields a quantified Leibniz
equality that coincides with the statement of the theorem.

Besides rewrite, the Coq Proof Assistant offers two tactics to carry out fold–unfold
steps: unfold that replaces a name by its denotation, and fold that replaces a denotation
by an existing name. Using the unfold tactic over a recursive function exposes its internal
representation and using the fold tactic is often chancy in this context, especially when the
name is parameterized. Worse, this strategy does not scale as the programs to reason about
become more complex.

The source of the problem is that the Coq users need to strategize every time they need
to perform a fold–unfold step, i.e., every time a function is called.

Instead, we suggest that fold–unfold lemmas be stated once, when a recursive function
is declared, and used when a function is called, as a predefined strategy.

3 Fold–unfold lemmas

Let us revisit the implementation of the mirror function:
Fixpoint mirror (V : Type) (t : binary_tree V) : binary_tree V :=

match t with
| Leaf _ v => Leaf V v
| Node _ t1 t2 => Node V (mirror V t2) (mirror V t1)
end.

By completeness, the mirror function can either be applied to a leaf or to a node, which
elicits two fold–unfold lemmas:
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Lemma fold_unfold_mirror_Leaf :
forall (V : Type) (v : V),
mirror V (Leaf V v) = ....

Lemma fold_unfold_mirror_Node :
forall (V : Type) (t1 t2 : binary_tree V),
mirror V (Node V t1 t2) = ...

The first lemma aims to state the Leibniz equality associated to a call to the mirror function
on a leaf and the second the Leibniz equality associated to a call to the mirror function on a
node. Now what should one write instead of the ellipses? Answer – one should copy-paste
the corresponding branch in the implementation:
Lemma fold_unfold_mirror_Leaf :

forall (V : Type) (v : V),
mirror V (Leaf V v) = Leaf V v.

Admitted. (* for now *)

Lemma fold_unfold_mirror_Node :
forall (V : Type) (t1 t2 : binary_tree V),
mirror V (Node V t1 t2) = Node V (mirror V t2) (mirror V t1).

Admitted. (* for now *)

4 Equational reasoning about recursive programs

Witness the following proof, the fold–unfold lemmas from Section 3 enable one to reason
equationally as in the proofs in Section 2:
Theorem mirror_is_involutory_alt :

forall (V : Type) (t : binary_tree V),
mirror V (mirror V t) = t.

The proof starts by naming assumptions and isolating the equality in the goal:
Proof.

intros V t.

And indeed the *goals* buffer then contains named assumptions and the equality as a goal.
Compared to the *goals* buffer at the beginning of Section 2, only V and t are declared in
the assumptions: the other assumptions (declaration of mirror and fold–unfold lemmas are
now global:

V : Type
t : binary_tree V
============================
mirror V (mirror V t) = t

The equality is proved by structural induction. We first focus on the base case:
induction t as [v | t1 IHt1 t2 IHt2].
-

The *goals* buffer is the same as before, modulo the following changes:

• the goal now reads mirror V (mirror V (Leaf v)) = Leaf v, manifesting that we are in
the base case where t is Leaf v; and

• v : V stands instead of t : binary_tree V as the last assumption; v is the argument of
the Leaf constructor.

Instantiating fold_unfold_mirror_Leaf with V and v provides a Leibniz equality that matches
a subterm in the left-hand side of the goal. Based on this equality, one can replace equals
by equals in the goal using the rewrite tactic:

rewrite -> (fold_unfold_mirror_Leaf V v).
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The goal now coincides with this Leibniz equality, which makes it possible to complete
the base case and to focus next on the induction step:

exact (fold_unfold_mirror_Leaf V v).
-

The *goals* buffer now reads:

V : Type
t1, t2 : binary_tree V
IHt1 : mirror V (mirror V t1) = t1
IHt2 : mirror V (mirror V t2) = t2
============================
mirror V (mirror V (Node V t1 t2)) = Node V t1 t2

It is again the same as before, modulo the following changes:

• the goal now reads mirror V (mirror V (Node V t1 t2)) = Node V t1 t2, manifesting
that we are in the induction step where t is Node V t1 t2; and

• t1, t2 : binary_tree V stands instead of t : binary_tree V in the last assumption; t1

and t2 are the arguments of the Node constructor, and they stand along their associated
induction hypotheses IHt1 and IHt2.

One instantiation of fold_unfold_mirror_Node provides a Leibniz equality that matches a
subterm in the left-hand side of the goal. Based on this equality, one can replace equals by
equals in the goal using the rewrite tactic:

rewrite -> (fold_unfold_mirror_Node V t1 t2).

The goal then reads mirror V (Node V (mirror V t2) (mirror V t1)) = Node V t1 t2.
Another instantiation of fold_unfold_ mirror_Node provides a Leibniz equality that matches
its left-hand side. Based on this equality, one can replace equals by equals in the goal using
the rewrite tactic:

rewrite -> (fold_unfold_mirror_Node V (mirror V t2) (mirror V t1)).

The goal then reads Node V (mirror V (mirror V t1)) (mirror V (mirror V t2)) =

Node V t1 t2. The induction hypotheses provide two Leibniz equalities which can be used
to replace equals by equals in the goal:

rewrite -> IHt1.
rewrite -> IHt2.

The goal then reads Node V t1 t2 = Node V t1 t2, which is proved using the reflexivity

tactic, which concludes the proof:

reflexivity.
Qed.

We find this formal proof remarkable because both in form and in content, it mechanizes
an informal proof (Manna, 1974; Burge, 1975; Bird & Wadler, 1988). Such a pen-and-
paper proof is typically a series of equalities, each of them with a justification. Here, the
successive goals enumerate these equalities, and each proof step propels the proof from
goal to goal. This mechanization comforts the newcomers that their knowledge is not only
actionable but also building up.
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5 A closer look at the fold–unfold lemmas

Witness the following proof, the two fold–unfold lemmas above coincide with the two
conjuncts in the specification of the mirror function, a consequence of the implementation
being in direct style:
Proposition there_is_at_least_one_mirror_function :

specification_of_mirror mirror.
Proof.

unfold specification_of_mirror.
exact (conj fold_unfold_mirror_Leaf fold_unfold_mirror_Node).

Qed.

This coincidence exemplifies how fold–unfold lemmas provide the same expressive power
to reason about recursive programs as the inductive specification of these recursive
programs.

6 Applications

Fold–unfold lemmas scale seamlessly, e.g., to continuation-passing style (Section 6.1),
fold functions (Section 6.2), and mutual recursion (Section 6.3), as well as to proving
properties of recursive and co-recursive functions (Section 6.4) and to proving the course-
of-values induction principle (Section 6.5).

6.1 Continuation-passing style

Consider the left-to-right continuation-passing implementation of the mirror function:
Fixpoint mirror’_cps (Ans V : Type) (t : binary_tree V) (k : binary_tree V -> Ans) :

Ans :=
match t with
| Leaf _ v =>
k (Leaf V v)

| Node _ t1 t2 =>
mirror’_cps Ans V t1 (fun t1_m =>

mirror’_cps Ans V t2 (fun t2_m =>
k (Node V t2_m t1_m)))

end.

Definition mirror’ (V : Type) (t : binary_tree V) : binary_tree V :=
mirror’_cps (binary_tree V) V t (fun t_m => t_m).

In words, the implementation is tail-recursive and uses a continuation that is initialized in
the main function, mirror’. As a continuation-passing function, mirror’_cps is now poly-
morphic both with respect to the payloads in the leaves of the binary tree to mirror and
with respect to a domain of answers and is also parameterized with a continuation that
maps an intermediate result to an answer. In the base case, the computation continues by
applying the current continuation to a new leaf. In the induction step, and given a current
continuation, mirror’_cps tail-calls itself on the left subtree with a new continuation that,
when applied, tail-calls mirror’_cps on the right subtree with another continuation that,
when applied, sends a new node to the current continuation.

By completeness, the auxiliary function can either be applied to a leaf or to a node,
which elicits two fold–unfold lemmas:
Lemma fold_unfold_mirror’_cps_Leaf :

forall (Ans V : Type) (v : V) (k : binary_tree V -> Ans),
mirror’_cps Ans V (Leaf V v) k = ...

Proof. ...
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Lemma fold_unfold_mirror’_cps_Node :
forall (Ans V : Type) (t1 t2 : binary_tree V) (k : binary_tree V -> Ans),
mirror’_cps Ans V (Node V t1 t2) k = ...

Proof. ...

The first lemma aims to state the Leibniz equality associated to a call to the auxiliary
function on a leaf, and the second the Leibniz equality associated to a call to the auxiliary
function on a node. Now what should one write instead of the ellipses? Answer – one
should copy-paste the corresponding branch in the implementation, just as in Section 3:
Lemma fold_unfold_mirror’_cps_Leaf :

forall (Ans V : Type) (v : V) (k : binary_tree V -> Ans),
mirror’_cps Ans V (Leaf V v) k =
k (Leaf V v).

Admitted. (* for now *)

Lemma fold_unfold_mirror’_cps_Node :
forall (Ans V : Type) (t1 t2 : binary_tree V) (k : binary_tree V -> Ans),
mirror’_cps Ans V (Node V t1 t2) k =
mirror’_cps Ans V t1 (fun t1_m =>

mirror’_cps Ans V t2 (fun t2_m =>
k (Node V t2_m t1_m))).

Admitted. (* for now *)

These fold–unfold lemmas enable one to prove the completeness of mirror’_cps equation-
ally and its soundness relationally:
Lemma completeness_of_mirror’_cps :

forall (V : Type) (t t_m : binary_tree V),
mirror V t = t_m ->
forall (Ans : Type) (k : binary_tree V -> Ans),

mirror’_cps Ans V t k = k t_m.
Proof. ... Qed. (* see the accompanying .v file *)

In words: if mirror maps a binary tree t to its mirror image t_m, then applying mirror’_cps

to t and a continuation k leads to k being applied to t_m. The equivalence of mirror’ and
mirror is a corollary:
Theorem equivalence_of_mirror’_and_mirror :

forall (V : Type) (t : binary_tree V),
mirror’ V t = mirror V t.

Proof.
intros V t.
unfold mirror’.
exact (completeness_of_mirror’_cps

V t (mirror V t) (eq_refl (mirror V t)) (binary_tree V) (fun t_m => t_m)).
Qed.

Witness the accompanying .v file, the completeness lemma is proved by structural induc-
tion on t, using the fold–unfold lemmas in the base case and in the induction step. As for
the soundness lemma, which admittedly is not needed here, it requires one to prove that
continuations are injective if the initial continuation is also injective, which is the case here
(see the accompanying .v file).

6.2 Functionals that abstract structurally recursive computations

Consider the following fold functionals over Peano numerals:
Definition nat_fold_left (V : Type) (z : V) (s : V -> V) (n : nat) : V :=

let fix loop n a :=
match n with
| O => a
| S n’ => loop n’ (s a)
end

in loop n z.

Definition nat_fold_right (V : Type) (z : V) (s : V -> V) (n : nat) : V :=
let fix visit n :=
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match n with
| O => z
| S n’ => s (visit n’)
end

in visit n.

The first functional abstracts a tail-recursive computation over a natural number using an
accumulator and the second an ordinary recursive computation over a natural number. And
as it happens, these two functionals are equivalent Danvy (2019a):
Theorem folding_left_and_right :

forall (V : Type) (z : V) (s : V -> V) (n : nat),
nat_fold_left V z s n = nat_fold_right V z s n.

Proof. ... Qed. (* see the accompanying .v file *)

This theorem is proved by induction on n, using either of the following lemmas, which are
also proved by induction on n, witness the accompanying .v file:
Lemma about_nat_fold_left :

forall (V : Type) (z : V) (s : V -> V) (n : nat),
nat_fold_left V (s z) s n = s (nat_fold_left V z s n).

Proof. ... Qed. (* see the accompanying .v file *)

Lemma about_nat_fold_right :
forall (V : Type) (z : V) (s : V -> V) (n : nat),
nat_fold_right V (s z) s n = s (nat_fold_right V z s n).

Proof. ... Qed. (* see the accompanying .v file *)

These three proofs all use the fold–unfold lemmas associated to the two functionals, mak-
ing it possible for the user to focus on what to prove instead of also having to worry about
how to proceed at every proof step:
Lemma fold_unfold_nat_fold_left_O :

forall (V : Type) (z : V) (s : V -> V),
nat_fold_left V z s O = z.

Admitted. (* for now *)

Lemma fold_unfold_nat_fold_left_S :
forall (V : Type) (z : V) (s : V -> V) (n’ : nat),
nat_fold_left V z s (S n’) = nat_fold_left V (s z) s n’.

Admitted. (* for now *)

Lemma fold_unfold_nat_fold_right_O :
forall (V : Type) (z : V) (s : V -> V),
nat_fold_right V z s O = z.

Admitted. (* for now *)

Lemma fold_unfold_nat_fold_right_S :
forall (V : Type) (z : V) (s : V -> V) (n’ : nat),
nat_fold_right V z s (S n’) = s (nat_fold_right V z s n’).

Admitted. (* for now *)

Both Bird and Wadler’s duality theorems about lists (1988) and their ancestors Burge
(1975) are formalized in a similar manner.

6.3 Mutual recursion

Consider the canonical implementation of the parity predicates:
Fixpoint evenp (n : nat) : bool :=

match n with
| O => true
| S n’ => oddp n’
end

with oddp (n : nat) : bool :=
match n with
| O => false
| S n’ => evenp n’
end.

This implementation gives rise to the following 4 fold–unfold lemmas, admitted for now:
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Lemma fold_unfold_evenp_O : evenp 0 = true. Admitted.

Lemma fold_unfold_evenp_S : forall n’ : nat, evenp (S n’) = oddp n’. Admitted.

Lemma fold_unfold_oddp_O : oddp 0 = false. Admitted.

Lemma fold_unfold_oddp_S : forall n’ : nat, oddp (S n’) = evenp n’. Admitted.

These lemmas were mechanically stated by enumerating all the possible calls to evenp and
oddp and by copy-pasting the corresponding branch in the implementation.

They enable one to prove the soundness and the completeness of the canonical
implementation:
Theorem soundness_and_completeness_of_evenp_and_oddp :

forall n : nat,
(evenp n = true <-> exists m : nat, n = 2 * m)
/\
(oddp n = true <-> exists m : nat, n = S (2 * m)).

Proof. ... Qed. (* see the accompanying .v file *)

The theorem is proved by structural induction on n, using the fold–unfold lemmas in the
base case and in the induction step. One can then verify, for example, that the converse
cases are corollaries of soundness and completeness:
Corollary soundness_and_completeness_of_evenp_and_oddp_too :

forall n : nat,
(evenp n = false <-> exists m : nat, n = S (2 * m))
/\
(oddp n = false <-> exists m : nat, n = 2 * m).

Proof. ... Qed. (* see the accompanying .v file *)

6.4 Proving properties of recursive and co-recursive functions

Witness the accompanying .v file, fold–unfold lemmas come handy to prove, e.g., that list
concatenation is associative, which is a standard example. Ditto for for proving that the
number of leaves in a binary tree equals its number of nodes, plus 1.

The idea readily transfers to streams:
CoInductive stream (V : Type) : Type :=
| Cons : V -> stream V -> stream V.

Consider, for a playful example, a function that ostensibly concatenates one stream to
another:
CoFixpoint stream_append (V : Type) (v1s v2s : stream V) :=

match v1s with
| Cons _ v1 v1s’ =>
Cons V v1 (stream_append V v1s’ v2s)

end.

In order to prove that concatenating a given stream to another yields a stream that is bisim-
ilar to the given stream, the following fold–unfold lemma provides a very useful stepping
stone:
Lemma fold_unfold_stream_append :

forall (V : Type) (v1 : V) (v1s’ v2s : stream V),
stream_append V (Cons V v1 v1s’) v2s = Cons V v1 (stream_append V v1s’ v2s).

Proof. ... Qed. (* see the accompanying .v file *)

6.5 Proving the course-of-values induction principle

Given (1) a predicate P indexed by a natural number and (2) a natural number n, the
following function computes P n /\ ... /\ P 1 /\ P 0:
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Fixpoint course_of_values (P : nat -> Prop) (n : nat) : Prop :=
match n with
| 0 => P 0
| S n’ => P (S n’) /\ course_of_values P n’

end.

Thus equipped, the course-of-values induction principle is stated as follows:
Lemma nat_ind_course_of_values :

forall P : nat -> Prop,
P 0 ->
(forall k : nat,

course_of_values P k -> P (S k)) ->
forall n : nat,

P n.

In the accompanying .v file, this induction principle is proved by mathematical induction
using the fold–unfold lemmas associated to course_of_values.

7 Proving the fold–unfold lemmas

7.1 Using the unfold tactic and then the fold tactic

By their very name, fold–unfold lemmas are proved using the unfold tactic immediately
followed by the fold tactic, which yields a Leibniz equality. So the proof of each fold–
unfold lemma can be stated as an instance of the following one-liner:
Ltac fold_unfold_tactic name := intros; unfold name; fold name; reflexivity.

In other words, the proof of both fold–unfold lemmas for the mirror function, for
example, reads:
Proof.

fold_unfold_tactic mirror.
Qed.

That being said, the reflexivity tactic itself uses fold and unfold as part of its normal-
ization steps toward comparing normal forms, and therefore there is no need for these two
tactics in the proof of fold–unfold lemmas, witness the following shorter proof script that
does not even need the name of the function to unfold and to fold:
Ltac fold_unfold := intros; reflexivity.

In other words, the proof of each fold–unfold lemma can read:
Proof.

fold_unfold.
Qed.

Equivalently, it can read:
Proof.

intros; reflexivity.
Qed.

Since the last two proofs look like magic, i.e., require explanations that use concepts that
are more advanced than the concepts the students have been presented so far, the previous
version (namely fold_unfold_tactic applied to the name of the function at hand) does the
job better. At some point, a student may wonder why the proof assistant accepts the proof
fold_unfold_tactic foo for a fold–unfold lemma about bar, at which point they are mature
enough to be told about the unusual effectiveness of the reflexivity tactic in the Coq Proof
Assistant (to say nothing of its efficiency Grégoire & Leroy (2002)).
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Further up the road, the limitation of the fold–unfold tactic will come to light, namely
for functions whose recursion pattern depends on more than one argument. For example,
consider List.nth, which has type forall V : Type, nat -> list V -> V -> V. Applying
List.nth to an index i, a list vs, and a default value d yields d if i is “out of bounds”
and otherwise the element at index i in vs. Accessing a given list at a given index can
equivalently be defined by induction on the index or by induction on the list. Therefore,
two pairs of fold–unfold lemmas arise.

• The first pair is by cases on the given index:
Lemma fold_unfold_nth_O :
forall (V : Type) (vs : list V) (default : V),

nth 0 vs default = match vs with
| nil => default
| v :: vs’ => v
end.

Lemma fold_unfold_nth_S :
forall (V : Type) (i’ : nat) (vs : list V) (default : V),

nth (S i’) vs default = match vs with
| nil => default
| v :: vs’ => nth i’ vs’ default
end.

• The second pair is by cases on the given list:
Lemma fold_unfold_nth_nil :
forall (V : Type) (i : nat) (default : V),

nth i nil default = match i with
| O => default
| S i’ => default
end.

Lemma fold_unfold_nth_cons :
forall (V : Type) (i : nat) (v : V) (vs’ : list V) (default : V),

nth i (v :: vs’) default = match i with
| O => v
| S i’ => nth i’ vs’ default
end.

One is even tempted to declare 4 fold–unfold lemmas to account for the 4 possibilities:
Lemma fold_unfold_nth_O_nil :

forall (V : Type) (default : V),
nth 0 nil default = default.

Lemma fold_unfold_nth_O_cons :
forall (V : Type) (v : V) (vs’ : list V) (default : V),
nth 0 (v :: vs’) default = v.

Lemma fold_unfold_nth_S_nil :
forall (V : Type) (i’ : nat) (default : V),
nth (S i’) nil default = default.

Lemma fold_unfold_nth_S_cons :
forall (V : Type) (i’ : nat) (v : V) (vs’ : list V) (default : V),
nth (S i’) (v :: vs’) default = nth i’ vs’ default.

Each of these 4 lemmas is seamlessly proved using the fold–unfold tactic since the user
has done the work of enumerating all cases in the statements of the lemmas. (Incidentally,
stating these 4 lemmas could be used to define a function to access a given list at a given
index, as done, e.g., in Isabelle Nipkow et al. (2002).) Both Lemmas fold_unfold_nth_nil

and fold_unfold_list_nth_cons are also seamlessly proved using the fold–unfold tactic.
However, since List.nth is implemented by recursion on the list, the Coq Proof Assistant
balks at proving the two previous lemmas like that. Instead, one needs to customize the
following proof that explicitly distinguishes the two cases of a list:
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Proof. (* for the O case *)
intros V [ | v vs’] default; reflexivity.

Qed.

Proof. (* for the S case *)
intros V i’ [ | v vs’] default; reflexivity.

Qed.

And conversely, for a version of nth that is implemented by recursion on the index, the
two first lemmas are seamlessly proved using the fold–unfold tactic, but for the two others,
one needs to customize the following proof that explicitly distinguishes the two cases of
an index:

Proof. (* for the nil case *)
intros V [ | i’] default; reflexivity.

Qed.

Proof. (* for the cons case *)
intros V [ | i’] v vs’ default; reflexivity.

Qed.

In other words, to state fold–unfold lemmas for a recursive function, one either needs
to know how this function is implemented or one needs to enumerate all possible
configurations of its arguments by eta expanding them according to their type, as it were.

7.2 Using the functional-induction plugin

The functional-induction plugin (FunInd) provides a Function vernacular. This vernacular
appeared in Coq v8.0 as part of this plugin, which was loaded by default. Since Coq v8.7,
this plugin must be explicitly loaded with Require FunInd. When using Function instead
of Fixpoint, an equation is generated – its “fixpoint equality,” to quote the section about
Advanced Recursive Functions in the Coq Reference Manual:

https://coq.github.io/doc/V8.11.2/refman/language/gallina-extensions.html#advanced-recursive-functions

This equation has direct relevance to fold–unfold lemmas.
For example, let us revisit the mirror function, declaring it with Function instead of with

Fixpoint:

Function mirror_alt (V : Type) (t : binary_tree V) : binary_tree V :=
match t with
| Leaf _ v => Leaf V v
| Node _ t1 t2 => Node V (mirror_alt V t2) (mirror_alt V t1)
end.

A by-product of this declaration is that from then on, mirror_alt_equation (i.e., the name
of the function declared with Function, concatenated with _equation) has type

forall (V : Type) (t : binary_tree V),
mirror_alt V t =
match t with
| Leaf _ v => Leaf V v
| Node _ t1 t2 => Node V (mirror_alt V t2) (mirror_alt V t1)
end

It is then immediate to declare the fold–unfold lemmas:

Definition fold_unfold_mirror_alt_Leaf (V : Type) (v : V) :=
mirror_alt_equation V (Leaf V v).

Definition fold_unfold_mirror_alt_Node (V : Type) (t1 t2 : binary_tree V) :=
mirror_alt_equation V (Node V t1 t2).
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And indeed their type reads as follows:
forall (V : Type) (v : V),

mirror_alt V (Leaf V v) = Leaf V v

forall (V : Type) (t1 t2 : binary_tree V),
mirror_alt V (Node V t1 t2) = Node V (mirror_alt V t2) (mirror_alt V t1)

These lemmas hold as instances of the equation.
So all in all, for recursive functions that are declared globally, i.e., for recursive equa-

tions, the Function vernacular provides fold–unfold lemmas for free. (And by that book it
would be great to have a similar coFunction vernacular for co-recursive functions.)

7.3 The Equations plugin

Ostensibly Sozeau & Mangin (2019), the EQUATIONS plugin “provides a syntax for defin-
ing programs by dependent pattern-matching and structural or well-founded recursion.”
Concretely, and because to a person with a hammer, the world looks like a nail, this
syntax is that of block-structured, scope-sensitive recursive functions which are then λ

lifted Johnsson (1985) into toplevel fold–unfold equations, a practical progress over the
functional-induction plugin. Conceptually, and to the author’s eye, Sozeau and Mangin
made the heretofore unidentified connection between functional elimination and λ lift-
ing in their EQUATIONS plugin. And so practically, the extra parameters in the resulting
fold–unfold equations can also make sense, intuitively, in terms of λ lifting.

7.4 Interfacing with preexisting recursive functions

When using library functions, one cannot assume that they were declared with Function

or with Equation, the vernacular provided by the EQUATIONS plugin. To reason about
them uniformly, one can then state their associated fold–unfold lemmas at the outset, by
enumerating the possible configurations of its arguments, as described in Section 7.1.

8 Reasoning about block-structured programs with lexical scope

There is more to functional programming than recursive equations, witness the implemen-
tations of nat_fold_left and nat_fold_right in Section 6.2 that use block structure (loop
and visit are declared locally) and lexical scope (V, z, and s are global to loop and visit).
It feels like pure luck that the fold–unfold tactic proves their fold–unfold lemmas.

Consider the following implementation for computing self-convolutions using the
TABA (There and Back Again Danvy & Goldberg (2005)) recursion pattern, where the list
to convolve is traversed both through the calls to an auxiliary function visit and through
the subsequent returns:
Definition convolve_thyself (V : Type) (vs : list V) : option (list (V * V)) :=

let fix visit (vs_sfx : list V) : option (list V * list (V * V)) :=
match vs_sfx with
| nil => Some (vs, nil)
| v :: vs_sfx’ => match visit vs_sfx’ with

| Some (ws, ps) => match ws with
| nil => None (* impossible case *)
| w :: ws’ => Some (ws’, (v, w) :: ps)
end

| None => None
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end
end

in match visit vs with
| Some (ws, ps) => match ws with

| nil => Some ps
| w :: ws’ => None (* impossible case *)
end

| None => None
end.

In words: during its successive recursive calls, visit traverses the given list, until it reaches
the empty list, i.e., the base case. It then returns a pair holding the given list and an
empty list of pairs. During the subsequent returns, the given list is traversed again and the
convolution is constructed. The option type is only there to appease the type inferencer.

How does one proceed to prove, e.g., the soundness of this implementation?
Theorem soundness_and_totality_of_convolve_thyself :

forall (V : Type) (vs : list V) (ops : option (list (V * V))),
convolve_thyself V vs = ops ->
exists ps : list (V * V),

ops = Some ps /\ map fst ps = vs /\ map snd ps = rev vs.

In words: if applying convolve_thyself to a given list yields an optional result, then this
optional result was constructed with Some and the argument of Some is a list of pairs that can
be unzipped into the given list and its reverse, which is the definition of a symbolic self-
convolution. This lemma establishes that convolve_thyself is total since it always returns a
result constructed with Some, and that it is sound in that it does yield a self-convolution of
the given list.

To prove this soundness, one option is (1) to λ lift this implementation into two recursive
equations and declare the new auxiliary function with Function, since it provides the two
associated fold–unfold lemmas for free:
Function visit_lifted (V : Type) (vs_sfx vs : list V)

: option (list V * list (V * V)) :=
match vs_sfx with
| nil => Some (vs, nil)
| v :: vs_sfx’ => match visit_lifted V vs_sfx’ vs with

| Some (ws, ps) => match ws with
| nil => None (* impossible case *)
| w :: ws’ => Some (ws’, (v, w) :: ps)
end

| None => None
end

end.

Definition convolve_thyself_lifted (V : Type) (vs : list V)
: option (list (V * V)) :=

match visit_lifted V vs vs with
| Some (ws, ps) => match ws with

| nil => Some ps
| w :: ws’ => None (* impossible case *)
end

| None => None
end.

and (2) to proceed with the following auxiliary lemma that characterizes both the control
flow and the data flow of TABA:
Lemma about_visit_lifted :

forall (V : Type) (vs_sfx ws_pfx : list V),
length vs_sfx = length ws_pfx ->
forall ws_sfx : list V,

exists ps : list (V * V),
visit_lifted V vs_sfx (ws_pfx ++ ws_sfx) = Some (ws_sfx, ps) /\
map fst ps = vs_sfx /\ map snd ps = rev ws_pfx.

The reader is referred to Section Section 2 of “Getting There and Back Again” Danvy
(2022) for more detail, but in essence, the third argument of visit_lifted, vs, is the given
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list and its second argument, vs_sfx, is the list traversed by the calls so far. So vs_sfx is
a suffix of vs. In this lemma, this given list is also expressed as the concatenation of a
prefix, ws_pfx, and a suffix, ws_sfx, which are such that the length of this prefix is the same
as the length of the list traversed so far, vs_sfx. The lemma captures how the given list is
traversed at call time and at return time: the lengths of vs_sfx and of ws_pfx are the number
of remaining calls to traverse vs_sfx. By the very nature of structural recursion, this number
is also the number of returns that yield Some (ws_sfx, ps). Therefore, the returns have
traversed the current prefix of the given list, ws_pfx, and the returned list is its current suffix,
ws_sfx. The lemma also captures that the returned list of pairs is a symbolic convolution of
the list that remains to be traversed at call time, namely vs_sfx, and of the list that has been
traversed at return time, namely ws_pfx. The control-flow aspect of the lemma expresses
that ws_pfx has been traversed by the returns and that vs_sfx remains to be traversed by
the calls. The data-flow aspect of the lemma expresses that the returned list of pairs is a
symbolic convolution of these two lists. The lemma is proved by induction on vs_sfx, and
the theorem follows as a corollary.

Is λ lifting the only option? Can one only reason about λ-lifted programs, i.e., recursive
equations, with the Coq Proof Assistant? Well, no. One can reason about λ-dropped pro-
grams Danvy & Schultz (2000), i.e., programs with block structure and lexical scope, with
“λ-dropped proofs,” i.e., proofs with block structure and local names. Here, the λ-dropped
proof starts by naming the recursive function as visit using the remember tactic. One then
declares local lemmas using assert, starting with fold–unfold ones and continuing with
an analogue of the one above, as illustrated in the accompanying .v file. The point here is
that local recursive declarations, block structure, and lexical scope make sense for writing
programs, and they make just as much sense for writing proofs, the Curry–Howard cor-
respondence notwithstanding. And whereas the Function vernacular can only be used for
recursive equations, the Equations plugin can be used for the worker/wrapper pattern.

To drum this drum some more, what if one wants to make do without the intermediate
option type in the auxiliary function to self-convolve a list? After all, this computation is a
showcase for continuations:

Definition convolve_thyself_c (V : Type) (vs : list V) : option (list (V * V)) :=
let fix visit vs_sfx k :=

match vs_sfx with
| nil => k vs nil
| v :: vs_sfx’ => visit vs_sfx’ (fun ws ps =>

match ws with
| nil => None (* impossible case *)
| w :: ws’ => k ws’ ((v, w) :: ps)
end)

end

in visit vs (fun ws ps => match ws with
| nil => Some ps
| w :: ws’ => None (* impossible case *)
end).

In words: instead of returning an optional pair of values, visit is called with a continuation
to which to send these two values. In the base case, the current continuation is sent the
given list and an empty list of pairs. In the induction step, visit traverses the rest of the list
tail-recursively with a new continuation. This new continuation, given a suffix of the given
list and a list of pairs, will send the tail of this suffix and an extended list of pairs to the
current continuation. The initial continuation is sent the empty list and the self-convolution:
it discards one and returns the other.
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Now for proving the soundness and the completeness of this continuation-based imple-
mentation, there is no need to massage it first (here: with λ lifting) to make it fit any
particular plugin, whether explicitly with the functional-induction plugin or implicitly with
the Equations plugin. One can write a λ-dropped proof similar to the one above. This is of
course not a criticism of these plugins, on the contrary: once a beginner is then introduced
to them, their reaction is less likely to be “Whatever. Will this be at the exam?” – it is
more likely to be one of informed appreciation. Furthermore, no new concept is needed to
write a λ-dropped proof, which makes one feel secure in one’s knowledge, seeing that it
is actionable as it is, a welcome relief to the perpetual (and doubt-inducing) need for new
tools to solve new problems.

Let us conclude this section with a simple proof of the simple fact that the lambda-
lifted and the lambda-dropped versions of nat_fold_right are functionally equivalent (the
accompanying .v file also contains a similar proof for nat_fold_left):
Definition nat_fold_right_dropped (V : Type) (z : V) (s : V -> V) (n : nat) : V :=

let fix visit n :=
match n with
| O => z
| S n’ => s (visit n’)
end

in visit n.

Fixpoint nat_fold_right_lifted (V : Type) (z : V) (s : V -> V) (n : nat) : V :=
match n with
| O => z
| S n’ => s (nat_fold_right_lifted V z s n’)
end.

This proof is a routine mathematical induction that features both the global fold–unfold
lemmas associated to nat_fold_right_lifted and the local fold–unfold lemmas associated
to nat_fold_right_dropped:
Lemma fold_unfold_nat_fold_right_lifted_O :

forall (V : Type) (z : V) (s : V -> V),
nat_fold_right_lifted V z s O = z.

Proof.
fold_unfold_tactic nat_fold_right_lifted.

Qed.

Lemma fold_unfold_nat_fold_right_lifted_S :
forall (V : Type) (z : V) (s : V -> V) (n’ : nat),
nat_fold_right_lifted V z s (S n’) = s (nat_fold_right_lifted V z s n’).

Proof.
fold_unfold_tactic nat_fold_right_lifted.

Qed.

Lemma functional_equivalence_of_nat_fold_right_lifted_and_nat_fold_right_dropped :
forall (V : Type) (z : V) (s : V -> V) (m : nat),
nat_fold_right_lifted V z s m = nat_fold_right_dropped V z s m.

The proof starts with the local declaration of visit as denoting the recursive function that
is local to nat_fold_right_dropped in an assumption that is named D_visit:
Proof.

intros V z s m.
unfold nat_fold_right_dropped.
remember (fix visit (n : nat) : V := match n with

| 0 => z
| S n’ => s (visit n’)
end) as visit eqn:D_visit.

Witness the *goals* buffer, this named assumption is in the scope of V, z, and s, just like
visit in the definition of nat_fold_right_dropped:

V : Type
z : V
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s : V -> V
m : nat
visit : nat -> V
D_visit : visit = (fix visit (n : nat) : V := match n with

| 0 => z
| S n’ => s (visit n’)
end)

============================
nat_fold_right_lifted V z s m = visit m

We then state and prove two local fold–unfold lemmas for visit:

assert (fold_unfold_visit_O :
visit 0 = z).

{ rewrite -> D_visit.
reflexivity. }

assert (fold_unfold_visit_S :
forall n’ : nat,

visit (S n’) = s (visit n’)).
{ rewrite -> D_visit.
reflexivity. }

We are then in position to conduct a routine induction proof where the global and the local
fold–unfold lemmas are used in synchrony (the local ones with fewer arguments):

induction m as [ | m’ IHm’].
{ (* goal: nat_fold_right_lifted V z s 0 = visit 0 *)
rewrite -> (fold_unfold_nat_fold_right_lifted_O V z s).
rewrite -> fold_unfold_visit_O.
reflexivity. }

{ (* IHm’ : nat_fold_right_lifted V z s m’ = visit m’ *)
(* goal: nat_fold_right_lifted V z s (S m’) = visit (S m’) *)
rewrite -> (fold_unfold_nat_fold_right_lifted_S V z s m’).
rewrite -> (fold_unfold_visit_S m’).
rewrite -> IHm’.
reflexivity. }

Qed.

The very facts that this induction proof is routine and that the fold–unfold lemmas are used
in synchrony consolidate the newcomer’s grasp of block structure and lexical scope.

9 Reflections

The present work – harnessing the Coq Proof Assistant’s fold and the unfold tactics into
fold–unfold lemmas to mechanize equational reasoning about functional programs – takes
place in a wider context: other ways to reason equationally in Coq and other proof assis-
tants. As other proof assistants have their own paradigms – and taking due note that the
reviewers unanimously consider fold–unfold lemmas to be trivial in Agda, Isabelle, and
Haskell – we only consider Coq. Pretty universally, all the other approaches the author is
aware of use the simpl tactic, which performs simplifications that encompass fold–unfold
steps. Very often, these simplifications save precious time, though at the cost of explain-
ability: it is not always clear how some expressions were simplified and why some others
were not. Also, simplifications can overshoot, which hides opportunities for shared lem-
mas. Take the following lemma, for example, which comes handy when reasoning about
the parity predicates:

Lemma twice_S :
forall n : nat,
S (S (2 * n)) = 2 * S n.

This lemma suffuses a problem solver with boredom (to quote Rota (1996)), but a the-
orizer is happy to see an undergraduate student displaying awareness and potential by
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stating a helper lemma twice : forall x : nat, x + x = 2 * x, and using it in tandem with
plus_Sn_m and plus_n_Sm to prove about_twice:
Proof.

intro n.
(* goal: S (S (2 * n)) = 2 * S n *)
rewrite <- (twice n).
(* goal: S (S (n + n)) = 2 * S n *)
rewrite -> (plus_n_Sm n n).
(* goal: S (n + S n) = 2 * S n *)
rewrite <- (plus_Sn_m n (S n)).
(* goal: S n + S n = 2 * S n *)
exact (twice (S n)).

Qed.

At any rate, the simpl tactic is generally seen as a time saver for experienced users.
Debussy once retorted that of course, he knew the rules of the fugue, which is why he

could break them. The situation appears to be similar here: shortcuts can be used fruitfully
when one knows what they cut short. Unfortunately, using shortcuts, it is perfectly possible
to learn the Coq Proof Assistant with very little understanding and then use it as one would
play whack-a-mole. The proof of Lemma completeness_of_mirror’_cps in Section 6.1, for
example, can proceed by first simplifying and then by mechanically writing the tactic that
fits the current goal (and never mind the semiotics of H nor why one needs to conclude the
proof by invoking reflexivity three times, Lewis–Carroll style):

induction t; simpl; intros.
- rewrite H.
reflexivity.

- (* rewrite IHt1. (* Error: Unable to find an instance for the variable t_m. *) *)
rewrite (IHt1 (mirror V t1)). (* <- guess *)
rewrite (IHt2 (mirror V t2)). (* <- educated guess (learning by doing, yay) *)
rewrite H.
reflexivity.
reflexivity.
reflexivity.

Qed.

This gaming strategy may work when one uses the Coq Proof Assistant in anger, but
it is not sustainable because one learns nothing from what one does mindlessly: exercises
and exams are not referentially transparent, nor are they an end in themselves – they are a
means to acquire an actionable understanding.

Now what to do when a facetious undergraduate student swaps the joy of figuring things
out for the glee of not figuring things out and getting away with it, because, hey, Coq
accepted their proof? Rather than fighting this wave, we can surf on it and introduce Paul
Erdös and his notion of a proof being from The Book. Since some proofs are from The
Book, others are not. Extra credit can be given for proofs that are not from The Book
if they come with an explanation or at least with an analysis, something students take
seriously if 50% and 50% about the quality of one’s understanding being reflected by the
clarity of one’s narrative (1815).

10 Summary and conclusion

Keep calm and write fold–unfold lemmas.

Fold–unfold lemmas complement the Coq Proof Assistant’s rewrite tactic to reason about
recursive programs equationally. Their simplicity is deceiving. For beginners, not being
able to state them is a tell-tale sign. For rookies, not being able to explain them is
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another tell-tale sign. Fold–unfold lemmas often feel beneath more advanced users, and
it is impressive how often these more advanced users subsequently feel that their proof
is above them. The reason for this feeling, however, is merely quantitative: fold–unfold
lemmas offer expressive power to reason about calls to recursive functions, and it is more
efficient to harness this expressive power at the outset, when declaring a recursive function
locally or globally, than to re-invent the wheel each time a recursive function is called. As
such, fold–unfold lemmas – be them stated implicitly using a plugin or stated explicitly by
hand – provide a reliable foundation for reasoning about recursive programs using the Coq
Proof Assistant.
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Appendix

A Coq in no hurry

This appendix provides a minimalistic introduction to the Coq Proof Assistant, in the man-
ner of Bertot (2006). This proof assistant, like Agda, is based on the proposition-as-types
paradigm, but unlike Agda, it has a separate tactics language. This tactics language has
the imperative flavor of algebraic proofs in that the goal is incrementally modified until
the completion of each proof. A proof follows the statement of a theorem/lemma/propo-
sition/etc. Proofs are prefixed by Proof. and suffixed with Qed., unless, e.g., they are
admitted.

A.1 Libraries

The Coq Proof Assistant comes with many libraries, e.g, the one for arithmetics over nat-
ural numbers, that have type nat and are represented as Peano numerals, with O and S as
constructors. This library is imported as follows:
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Require Import Arith.

Given the name of a lemma in this library, the Check command tells us its type. For exam-
ple, Arith features lemmas that correspond to the inductive definition of addition (base case
and induction step) as well as its associativity:
Check Nat.add_0_l. (* : forall m : nat, 0 + m = m *)

Check Nat.add_succ_l. (* forall n m : nat, S n + m = S (n + m) *)

Check Nat.add_assoc. (* : forall n m p : nat, n + (m + p) = n + m + p *)

Likewise, Arith features lemmas that correspond to the inductive definition of multiplica-
tion over the multiplier as well as its distribution over addition:
Check Nat.mul_0_l. (* : forall m : nat, 0 * m = 0 *)

Check Nat.mul_succ_l. (* : forall n m : nat, S n * m = n * m + m *)

Check Nat.mul_add_distr_r. (* : forall n m p : nat, (n + m) * p = n * p + m * p *)

Check Nat.mul_add_distr_l. (* : forall n m p : nat, n * (m + p) = n * m + n * p *)

A.2 Applying lemmas

Lemmas that name universally quantified formulas are instantiated by applying their name
to arguments:
Check (Nat.mul_add_distr_l 2). (* : forall m p : nat, 2 * (m + p) = 2 * m + 2 * p *)

Check (Nat.mul_add_distr_l 2 3). (* : forall p : nat, 2 * (3 + p) = 2 * 3 + 2 * p *)

Check (Nat.mul_add_distr_l 2 3 4). (* : 2 * (3 + 4) = 2 * 3 + 2 * 4 *)

Natural numbers are parsed into Peano numerals:
Check (Nat.add_succ_l 3). (* : forall m : nat, 4 + m = S (3 + m) *)

A.3 Definitions

To align the lemmas that correspond to the inductive definition of addition and multiplica-
tion with the corresponding fold–unfold lemmas, we can rename them:
Definition fold_unfold_add_O : forall m : nat, 0 + m = m :=

Nat.add_0_l.

Definition fold_unfold_add_S : forall n m : nat, S n + m = S (n + m) :=
Nat.add_succ_l.

Definition fold_unfold_mul_O : forall m : nat, 0 * m = 0 :=
Nat.mul_0_l.

Definition fold_unfold_mul_S : forall n m : nat, S n * m = n * m + m :=
Nat.mul_succ_l.

As a functional language, Gallina makes it possible to declare functions. The square
function, for example, is written fun (n : nat) => n * n and can be named using the
traditional syntactic sugar of functional programs:
Definition square (n : nat) : nat :=

n * n.
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A.4 Structure of a proof

A proof is stated as a series of updates over the current goal, using tactics. Some of these
tactics might create subgoals (e.g., for proofs by cases or proofs by induction). Then we
focus on the current subgoal using itemization signs or using curly braces.

A.5 The tactics used in the present tutorial

To prove a universally quantified statement ∀x.s, one typically picks an x and proceeds
with s. This picking is achieved using the intro tactic. If the type of x is composite (e.g., a
product or a sum), one uses the intros tactic with syntactic sugar to name the components.

As described at the end of Section 1, the fold tactic replaces a name by its denotation
and the unfold tactic replaces a denotation by its name.

As described at the beginning of Section 2, given an equality, the rewrite tactic replaces
either side by the other.

Given an argument whose type is inductive, the induction tactic is used to conduct a
structural induction proof at that type. So if this type is nat, this proof corresponds to
mathematical induction since natural numbers are represented as Peano numerals.

The reflexivity tactic is used to prove the current goal when this goal is an equality
with the same left-hand side and right-hand side.

Given an argument that coincides with the current goal, the exact tactic is used to prove
this goal.

The assert and remember tactics are used to declare new assumptions.
Using a semicolon (;) instead of a period (.) between two proof steps conflates them

into one. And if the first proof step creates subgoals, the second proof step takes place for
each of these subgoals.

A.6 Three simple lemmas and their proof

We are now in position to mechanize algebraic proofs.
Proving that 1 is neutral on the left of multiplication is carried out with three successive

fold–unfold steps:
Lemma mul_1_l :

forall n : nat,
1 * n = n.

Proof.
intro n.
(* goal: 1 * n = n *)
rewrite -> (fold_unfold_mul_S 0 n).
(* goal: 0 * n + n = n *)
rewrite -> (fold_unfold_mul_O n).
(* goal: 0 + n = n *)
rewrite -> (fold_unfold_add_O n).
(* goal: n = n *)
reflexivity.

Qed.

Proving Lemma twice from Section 9 is carried out with one fold–unfold step and using
Lemma mul_1_l:
Lemma twice :

forall n : nat,
n + n = 2 * n.

Proof.
intro n.
(* goal: n + n = 2 * n *)
rewrite -> (fold_unfold_mul_S 1 n).
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(* goal: n + n = 1 * n + n *)
rewrite -> (mul_1_l n).
(* goal: n + n = n + n *)
reflexivity.

Qed.

Likewise, and as illustrated in the accompanying .v file, proving the binary expansion
at rank 2 is carried out from left to right by unfolding the left call to square, distributing
multiplication over addition 3 times, reassociating addition twice, commuting a multipli-
cation, applying Lemma twice, and folding two calls to square. (The accompanying .v file
also contain a proof for binary expansion at rank 2 that is carried out from right to left.)

A.7 Addition is commutative

Since addition is defined recursively over its first argument, its commutativity is proved by
nested induction, systematically using its fold–unfold lemmas. The outer induction is over
the first argument on the left-hand side and the inner induction over the first argument on
the right-hand side:
Lemma add_comm :

forall i j : nat,
i + j = j + i.

Proof.
intro i.
(* goal: forall j : nat, i + j = j + i *)
induction i as [ | i’ IHi’]. (* outer induction *)
{ (* goal: forall j : nat, 0 + j = j + 0 *)
intro j.
(* goal: 0 + j = j + 0 *)
rewrite -> (fold_unfold_add_O j).
(* goal: j = j + 0 *)
induction j as [ | j’ IHj’]. (* inner induction in the outer base case *)
{ (* goal: 0 = 0 + 0 *)

rewrite -> (fold_unfold_add_O 0).
(* goal: 0 = 0 *)
reflexivity. }

{ (* IHj’ : j’ = j’ + 0 *)
(* goal: S j’ = S j’ + 0 *)
rewrite -> (fold_unfold_add_S j’ 0).
(* goal: S j’ = S (j’ + 0) *)
rewrite <- IHj’.
(* goal: S j’ = S j’ *)
reflexivity. } }

{ (* IHi’ : forall j : nat, i’ + j = j + i’ *)
(* goal: forall j : nat, S i’ + j = j + S i’ *)
intro j.
(* goal: S i’ + j = j + S i’ *)
rewrite -> (fold_unfold_add_S i’ j).
(* goal: S (i’ + j) = j + S i’ *)
induction j as [ | j’ IHj’]. (* inner induction in the outer induction step *)
{ (* goal: S (i’ + 0) = 0 + S i’ *)

rewrite -> (IHi’ 0).
(* goal: S (0 + i’) = 0 + S i’ *)
rewrite -> (fold_unfold_add_O i’).
(* goal: S i’ = 0 + S i’ *)
rewrite -> (fold_unfold_add_O (S i’)).
(* goal: S i’ = S i’ *)
reflexivity. }

{ (* IHj’ : S (i’ + j’) = j’ + S i’ *)
(* goal: S (i’ + S j’) = S j’ + S i’ *)
rewrite -> (IHi’ (S j’)).
(* goal: S (S j’ + i’) = S j’ + S i’ *)
rewrite -> (fold_unfold_add_S j’ i’).
(* goal: S (S (j’ + i’)) = S j’ + S i’ *)
rewrite -> (fold_unfold_add_S j’ (S i’)).
(* goal: S (S (j’ + i’)) = S (j’ + S i’) *)
rewrite <- IHj’.
(* goal: S (S (j’ + i’)) = S (S (i’ + j’)) *)
rewrite -> (IHi’ j’).
(* goal: S (S (j’ + i’)) = S (S (j’ + i’)) *)
reflexivity. } }

Qed.
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