POSSIBILITIES FOR OBSERVATIONS WITH THE INFRARED SPACE OBSERVATORY OF EMISSION FROM SHOCK-HEATED DUST IN SNRs

J. Svestka

Prague Observatory, Prague, Czechoslovakia *

<u>Abstract</u>: The possibilities for observing infrared emission from shockheated dust in SNRs with the future Infrared Space Observatory (ISO) are illustrated with calculations of the ISOPHOT-P and ISOPHOT-C flux densities and integration times for radiation from six selected SNRs in eight wavelength bands between $4\mu m$ and $180\mu m$.

The flux densities of infrared radiation in eight wavelength bands (4, 25, 35, 50, 75, 105, 140, and 180 μ m) from four selected galactic SNRs (Tycho, Kepler, Cas A and G292.0+1.8) and two extragalactic SNRs (1E0102.2-7219 in the SMC and an SNR in NGC4449) are estimated using results derived from IRAS observations (Braun 1985) and calculations of infrared emission from shock-heated dust (Draine 1981). The integration times are determined from the expected sensitivities of the multiband-multiaperture photopolarimeter (ISOPHOT-P) and the far infrared camera (ISOPHOT-C) (see Tables 1 and 2). The data for the extragalactic SNRs were obtained from Inoue *et al.* 1983, Raymond 1984, Blair *et al.* 1983 and Blair *et al.* 1984. The range of acceptable individual integration times was taken to be between 2 seconds and 1 hour, the total integration time up to 24 hours, and the minimum required signal-to-noise ratio equal to 10.

With these restrictions it should be possible to map Cas A in all eight bands, Kepler in seven bands between 4μ m and 140μ m, Tycho in six bands between 4μ m and 105μ m, and G292.0+1.8 in five bands between 25μ m and 105μ m. Similarly, observations of 1E0102.2-7219 in five bands between 25μ m and 105μ m and of the SNR in NGC4449 in the 25μ m band should be possible. Finally, observations can be made with ISOPHOT-P with different apertures in the 4μ m and 25μ m bands for Cas A and Kepler, and in the 25μ m band only for the other SNRs. Total observing time would be about 15.5 hours. The detailed results are given in Table 3.

* A significant part of these calculations was made during the author's stay at the Max-Planck-Institut für Kernphysik, Heidelberg, F. R. G. Table 1 ISOPHOT-P (Multiband-Multiaperture Photopolarimeter)

```
Wavelength range (µm)
                                       3 ... 30
Total number of spectral bands
                                       10
Central wavelength (µm)
                                         4, 6.5, 10, 16, 25, others TBD
                                       2.5, 2.5, 2.5, 2.5, 2.5, others IBD
Spectral resolution
Total number of apertures
                                       15
                                       5, 8, 12, 20, 30, 40, 60, 80, 110, 150,
Field of view (arc sec)
                                       180, others TBD
                                       3 grid polarizers with 0^0, 60^0, 120^0
Polarization measurements
Min. detectable flux<sup>1</sup>) (mJy)
Photometry
  4 µm<sup>2</sup>)
                                        0.18
  25 µm<sup>3)</sup>
                                        5.0
Polarimetry
  4, µm 2)
                                        0.44
  25 µm3)
                                       12.4
```

Table 2 ISOPHOT-C (Far Infrared Camera)

	Array I Array II		Arrey III		
Wavelength range (µm)	30 ••• 60	60 ••• 120	120 ••• 200		
Pixels	4 × 4	3 x 3	2 × 2		
Broad bands,					
Central wavelength (µm)	45	90	160		
Broad bands, $\lambda/\Delta\lambda$	2.5	2.5	2.5		
Narrow bands,					
Central wavelength (µm)	35,50	75, 105	140 , 180		
Narrow bands, $\lambda/\Delta\lambda$	4	4	4		
Min. detectable flux ¹⁾ (mJy)					
Photometry	21	32	140		
Polarimetry	52	80	350		
Polarisation Measurements	3 grid polarizers with 0^0 , 60^0 , 120^0				

 $\frac{1}{2}$ Integration time 100 s; S/N = 10; broadband filter

 2 NEP = 5.10⁻¹⁸ W·Hz⁻¹/²

 $3 \text{ NEP} = 3 \cdot 10^{-17} \text{ W} \cdot \text{Hz}^{-1/2}$

388

Table 3							
ТҮСНО:	4μ	25µ		5µ 50µ		75µ	105µ
Flux (Jy): Time (s) :	0.003 225	23 2	23 63 2 2		56 3		9 64
	5	x5 matri	x with	spacing	2'		
25µ: Time (s):	180 " 2	80 " 2	40" 2	20 " 20	12" 150	8" 760	5" 3600
KEPLER:	4µ	25µ	35µ	50µ	75µ	105,	ι 140μ
Flux (Jy): Time (s) :	0.0015 23	11 2	15 2	14 2	6 4	2 33	0.5 2000
	2	x2 matri	ix with	spacing	2'		
4μ: Time (s):	180 " 23	80" 590					
25µ: Time (s):	180 " 2	80 " 2	40 ** 2	20 " 3	12" 17	8" 85	5 5 0
Cas A:	4µ 25µ	35µ	50µ	75µ	105µ	140µ	180µ
Flux (Jy): Time (s) :	0.015 19 2	0 170 2 2	150 2	80 2	26 2	7 52	1 25 4 0
	3	x3 matr:	ix with	spacing	2'		
4µ: Time (s):	180" 2	80 " 30	40" 480				
25µ: Time (s):	180" 2	80 " 2	40 " 2	20 " 2	12 " 2	8 " 2	5" 10
G 292.0 +1.	8: 25	μ	35µ	50µ	75µ	105µ	
Flux (Jy): Time (s) :	15 2	ļ	56 5	50 6	25 18	12 75	
	6	x6 matr	ix with	spacing	2'		
4μ: Time (s):	180" 1050						
25µ: Time (s):	180" 2	80 " 2	40" 6	20" 95	12 " 730	8 " 3600	

				······································		
1E0102.2-7219:	25µ	35µ	i	50µ	75µ	105µ
Flux (mJy):	120	150		140	60	20
Time (s) :	2	2		3	30	260
25µ:	20"	12"	8"	5*		
Time (s):	2	5	23	150		
in NGC 4449:	25µ					
Flux (mJy):	3					
Time (s):	280					

Table 3 (cont'd)

References

Braun, R., 1985. Ph.D. Thesis, , Univ. of Leiden.

Draine, B. T., 1981. Astrophys. J., 245, 880.

Inoue, H., Koyama, K., and Tanaka, Y., 1983. Supernova Remnants and their X-ray Emission, , (ed. J. Danziger and P. Gorenstein) Reidel, Dordrecht p. 535. Raymond, J. C., 1984. Ann. Rev. Astr. Astrophys., 22, 75.

Blair, W. P., Krishner, R. P., and Winkler, P. F., 1983. Astrophys. J., 272, 84.

Blair, W. P., Raymond, J. C., Fesen, R. A., and Gull, T. R., 1984. Astrophys. J., 279, 708.