COMMUTATIVITY CONDITIONS ON RINGS

PAOLA MISSO

We prove the following result: let R be an arbitrary ring with centre Z such that for every $x, y \in R$, there exists a positive integer $n = n(x, y) \ge 1$ such that $(xy)^n - y^n x^n \in Z$ and $(yx)^n - x^n y^n \in Z$; then, if R has no non-zero nil ideals, R is commutative. We also prove a result on commutativity of general rings: if Ris r!-torsion free and for all $x, y \in R$, $[x^r, y^s] = 0$ for fixed integers $r \ge s \ge 1$, then R is commutative. As a corollary we obtain that if R is (n+1)!-torsion free and there exists a fixed $n \ge 1$ such that $(xy)^n - y^n x^n = (yx)^n - x^n y^n \in Z$ for all $x, y \in R$, then R is commutative.

In this note we study certain relations among the elements of a ring R forcing the commutativity of the ring under suitable conditions. In [3] Herstein proved that if R is a ring without nil ideals and there exists an integer $n \ge 1$ such that for all $x, y \in R$, $(xy)^n = x^n y^n$ then R must be commutative. In this direction, in [1] it was proved that if R has no nonzero nil ideals and if for each finite subset F of R there exists an integer $n = n(F) \ge 1$ such that $(xy)^n - y^n x^n \in Z$, where Z is the centre of R, for all $x, y \in F$ then R is commutative. Here we shall improve this result by proving the following more natural theorem: let R be an arbitrary ring with centre Z such that for every $x, y \in R$, there exists a positive integer $n = n(x, y) \ge 1$ such that

$$(xy)^n - y^n x^n \in Z$$
 and $(yx)^n - x^n y^n \in Z$;

then, if R has no nonzero nil ideals, R is commutative. We also prove a theorem concerning the commutativity of general rings; more precisely, if R is r!-torsion free and, for all $x, y \in R$,

$$[x^r, y^s] = 0$$

for fixed integers $r \ge s \ge 1$, then R is commutative.

As a corollary we obtain that if R is (n+1)!-torsion free and there exists a fixed $n \ge 1$ such that $(xy)^n - y^n x^n = (yx)^n - x^n y^n \in \mathbb{Z}$, for all $x, y \in R$, then R is commutative.

We start with:

Received 20th July 1990

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

P. Misso

THEOREM 1. Let R be a ring with no nonzero nil ideals such that for all $x, y \in R$, there exists a positive integer $n = n(x, y) \ge 1$ such that

$$(xy)^n - y^n x^n \in Z$$
 and $(yx)^n - x^n y^n \in Z$.

Then R is commutative.

PROOF: Let $x, y \in R$ and let $n \ge 1$ be such that $(xy)^n - y^n x^n \in Z$ and $(yx)^n - x^n y^n \in Z$. Hence, for suitable $z_1, z_2 \in Z$ we have

and
$$(xy)^n x - y^n x^n x = z_1 x$$
$$x(yx)^n - xx^n y^n = z_2 x.$$

Subtracting the first equality from the second it follows that

$$y^{n}x^{n+1} - x^{n+1}y^{n} = (z_{2} - z_{1})x;$$

hence, by commuting with x, we get

$$[y^n, x^{n+1}, x] = 0.$$

But then, by a result of Bell-Klein-Nade [2], the ring R is commutative.

We now prove a result on commutators:

THEOREM 2. Let R be a ring with identity 1, such that, for every $x, y \in R$

$$[x^r, y^s] = 0,$$

for fixed integers $r \ge s \ge 1$. Then, if R is r!-torsion free, R is commutative.

PROOF: We will make use of a Vandermonde determinant argument. Since R has identity 1, the elements i + x for $1 \le i \le r$ are defined and we have

$$(i+x)^r y^s - y^s (i+x)^r = 0.$$

By expanding out the sums, we obtain

$$\binom{r}{1}i^{r-1}(xy^s-y^sx)+\ldots+\binom{r}{r-1}i(x^{r-1}y^s-y^sx^{r-1})=0$$

for all $1 \leq i \leq r$, where the $\binom{r}{i}$'s are the usual binomial coefficients.

It follows that

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & 2 & \dots & 2^{r-1} \\ \vdots & \vdots & \ddots & \vdots \\ 1 & r & \dots & r^{r-1} \end{pmatrix} \begin{pmatrix} x^r y^s - y^s x^r \\ \binom{r}{r-1} (x^{r-1} y^s - y^s x^{r-1}) \\ \vdots \\ \binom{r}{1} (x y^s - y^s x) \end{pmatrix} = 0.$$

Π

[2]

47

Since R is r!-torsion free the Vandermonde matrix has non-zero determinant; hence the column vector on the right must be zero; in particular

$$\binom{r}{1}(xy'-y'x)=0$$

and, since R is r!-torsion free, we get

xy' = y'x.

Now, by using the same argument applied to y, remembering that R is s!-torsion free, we get the desired result, that is

$$xy = yx$$
, for all $x, y \in R$.

From Theorem 2, it follows:

COROLLARY. Let R be a ring, n a fixed positive integer such that for all $x, y \in R$

$$(xy)^n - y^n x^n = (yx)^n - x^n y^n \in Z.$$

If R is (n+1)!-torsion free then R is commutative.

PROOF: Let $x, y \in R$; then

$$(xy)^n - y^n x^n = z = (yx)^n - x^n y^n$$

for a suitable $z \in Z$. As in the proof of Theorem 1 this easily leads to

$$y^n x^{n+1} - x^{n+1} y^n = 0,$$

that is

[3]

$$[y^n, x^{n+1}]=0.$$

As this point, to reach the conclusion it is enough to make use of the previous theorem.

References

- H. Abu-Khuzam, 'Commutativity results for rings', Bull. Austral. Math. Soc. 38 (1988), 191-195.
- [2] H.E. Bell, A.A. Klein and I. Nade, 'Some commutativity results for rings', Bull. Austral. Math. Soc. 22 (1980), 285-289.
- [3] I.N. Herstein, 'Power maps in rings', Michigan Math. J. 8 (1961), 29-32.

Dipartimento di Matematica ed Applicazioni Università di Palermo Via Archirafi 34, 90123 Palermo Italy