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This work deals with the closed-loop control of streaky structures induced by free-
stream turbulence (FST), at the levels of 3.0 % and 3.5 %, in a zero-pressure-gradient
transitional boundary layer, by means of localized sensors and actuators. A linear
quadratic Gaussian regulator is considered along with a system identification technique
to build reduced-order models for control. Three actuators are developed with different
spatial supports, corresponding to a baseline shape with only vertical forcing, and to
two other shapes obtained by different optimization procedures. A computationally
efficient method is derived to obtain an actuator that aims to induce the exact
structures that are inside the boundary layer, given in terms of their first spectral
proper orthogonal decomposition (SPOD) mode, and an actuator that maximizes
the energy of induced downstream structures. All three actuators lead to significant
delays in the transition to turbulence and were shown to be robust to mild variations
in the FST levels. Integrated total drag reductions observed were up to 21 % and
19 % for turbulence intensity levels of 3.0 % and 3.5 %, respectively, depending on the
considered actuator. Differences are understood in terms of the SPOD of actuation and
FST-induced fields along with the causality of the control scheme when a cancellation
of disturbances is considered along the wall-normal direction. The actuator optimized
to generate the leading downstream SPOD mode, representing the streaks in the
open-loop flow, leads to the highest transition delay, which can be understood due to
its capability of closely cancelling structures in the boundary layer.

Key words: boundary layer control, drag reduction, transition to turbulence

1. Introduction
In modern transonic civil aircraft in a cruise configuration, the main drag component

is related to the skin friction due to turbulent boundary layers. Other contributions
are mainly due to induced and wave drag components (Raymer 2012). Friction is
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expected to dominate the total drag coefficient in the future due to the tendency of
growing wing aspect ratio and larger wing area of the new generation of airplanes,
which implies a reduction of respectively induced and wave drag components
(Torenbeek 2013). Any reduction in the skin friction will therefore result in significant
savings for the operational cost of aircraft and an accompanying reduction in carbon
dioxide emissions.

With this in mind, in this work we tackle the problem of delaying the transition to
turbulence for boundary layers. A long-term objective of such study is the application
of the techniques developed herein in flight (as developed, for example, in the work
of Simon et al. (2016) for a different type of disturbance). Given the intricateness
of the subject, we will demonstrate the feasibility of such techniques in the simpler
case of a simulated boundary layer developing over a flat plate with a high level of
external disturbances, a canonical problem representative of a low subsonic flight, at
low altitude, a condition typical of sail planes, for instance.

1.1. Transition to turbulence
In the classical route to turbulence, which occurs in a low-perturbation scenario,
a laminar boundary layer solution becomes unstable to infinitesimal perturbations,
which will grow exponentially in the form of two-dimensional Tollmien–Schlichting
(TS) waves. When a critical amplitude for such fluctuations is reached, nonlinear
interactions start to occur, which will eventually lead to three-dimensionality and
breakdown to turbulence, a process that is thoroughly described in the review of
Kachanov (1994).

However, if the zero-pressure-gradient laminar boundary layer is subject to levels
of free-stream turbulence (FST) higher than ≈1 %, the transition to turbulence will
occur via a different mechanism, which ‘bypasses’ the classical TS case (Matsubara
& Alfredsson 2001). When FST is considered, low-frequency vortices (Hultgren
& Gustavsson 1981; Zaki & Saha 2009) enter the boundary layer, leading to the
appearance of elongated ‘streaky’ structures with alternating high and low streamwise
velocity components with respect to the mean flow. Such streaky structures are
sometimes referred to as the Klebanoff mode, referring to the experiments of
Klebanoff (1971); more recent experiments have also identified such structures
for different levels of FST (Westin et al. 1994; Matsubara & Alfredsson 2001). In
the works of Andersson, Berggren & Henningson (1999) and Luchini (2000), which
compare experimental results from FST-induced structures with prediction from the
linear theory, it is shown that such streaky structures match those generated by the
optimal perturbation, calculated from a transient growth analysis, therefore leading to
a linear growth in the streamwise direction.

The physical origin of these streaks may be explained by the lift-up effect, as
explained in the early works of Ellingsen & Palm (1975) and Landahl (1980).
Low-speed fluid is pushed away from the wall and high-speed fluid is pushed
towards it, which creates the aforementioned quasi-periodic low- and high-speed
streaks, aligned side-by-side along the spanwise direction, as observed in the works
of Andersson et al. (2001) and Asai, Minagawa & Nishioka (2000, 2002). These
works focus on steady streaks; the effect of unsteadiness on the streak instability
has been recently examined in the work of Vaughan & Zaki (2011), where it is
shown that unsteady streaks are more unstable than the steady ones, with a critical
amplitude for instability of 8.5 %, comparably lower than the value of 26 % found
by Andersson et al. (2001). This therefore leads to an expected more challenging
scenario for control.
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The instability of the streaks occurring when a certain amplitude is reached
has often been modelled as a secondary higher-frequency instability (Brandt &
Henningson 2002; Brandt, Henningson & Ponziani 2002). The amplitude of the
streaks is expected to grow up to a certain threshold when they start to develop into
the formation of turbulent spots, localized regions of chaotic motion. Once these
spots merge, they lead to a developed turbulent boundary layer. This mechanism for
transition bypasses the classical route, occurring even for a base flow without an
inflection point (for reviews on the topic of bypass transition, the reader is referred
to Reshotko (2001), Zaki & Durbin (2005), Durbin & Wu (2007) and Zaki (2013)).
This view of bypass transition has been elucidated by a number of flow visualizations
and velocity measurements performed in previous experimental studies (Kendall 1998;
Saric, Reed & Kerschen 2002).

This behaviour is explained theoretically given the non-normality of the Orr–
Sommerfeld/Squire operator that describes the flow dynamics, which is associated
with non-orthogonal eigenmodes (Reddy & Henningson 1993; Schmid & Henningson
2012). Such non-orthogonality may lead to strong transient amplifications, which
may occur even if the flow is stable. In the case of boundary layers, the upstream
perturbations which undergo the highest transient amplifications take the form of the
aforementioned streamwise-elongated structures with comparably narrow spanwise
scales.

In summary, the boundary layer for this particular problem will be divided intro
three parts: (i) an upstream region, where the FST disturbances trigger fluctuations
inside the boundary layer; (ii) a middle zone, where such disturbances grow linearly
due to the aforementioned mechanisms; and (iii) a downstream region, where the
amplitude of the streaks has reached its critical amplitude, leading to nucleation of
turbulent spots that propagate and eventually merge, leading to a developed turbulent
boundary layer. The objective of this work is to deal with region (ii), where linear
estimation and control methods can be applied and are expected to be reasonably
effective given the moderate amplitude of the fluctuations and linear mechanisms that
are behind their development.

1.2. Control
The high dimensionality and inherent nonlinearity of the Navier–Stokes equations
cause the computational requirements of both the simulated system and the on-line
actuation calculation to rapidly become intractable with the size of the calculation
domain. However, since the target of the control law is within the previously
mentioned zone (ii), where the linearized Navier–Stokes equations accurately describe
the flow behaviour, simplifications may be used to overcome such difficulties. The
usual strategy here consists in the ‘reduce-then-design’ approach (Semeraro et al.
2013b), where the control laws are designed off-line in a reduced-order model and
tested a posteriori in the full nonlinear system, either a simulation or an experiment
(Bagheri, Henningson & Henningson 2009; Semeraro et al. 2011, 2013a; Belson
et al. 2013). An interesting reduced-order model for flow control is the eigensystem
realization algorithm (Juang & Pappa 1985), which reproduces the input–output
behaviour observed via the impulse response without the need to solve adjoint
equations. Other possibilities, which will not be pursued in this work, include
applying system identification to model the said relationship between the inputs
and outputs of the system. Examples of such may be found in the works of Hervé
et al. (2012) and Gautier & Aider (2014), who apply ARMAX (Auto-Regressive
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Moving-Average eXogenous), which is built directly from unsteady measurements of
the fluctuations, for the control of a backward-facing step flow.

Once the reduced-order model is available, a common strategy for control of
boundary layer transition is to place the actuation in a region where the amplitude
of the perturbations is small and to account for the convective nature of the flow
via a feedforward scheme, where the actuator is placed downstream of the input and
upstream of the objective position. The control action is then decided by means of
measuring the input and acting to minimize a given quantity at the objective position.
This can be accomplished using static compensators, such as the linear quadratic
Gaussian (LQG) regulator. Examples of the application of LQG to flow problems
may be found in the works of Barbagallo, Sipp & Schmid (2009, 2011) and Juillet,
McKeon & Schmid (2014). The reader is also referred to the work of Schmid &
Sipp (2016) for an overview of optimal control applied to flow problems.

The previously cited works deal with the control of the transition induced by modal
instabilities, such as TS waves. The control of non-modal structures is more rare. One
of the early examples of such may be found in the work of Jacobson & Reynolds
(1998), who conducted an experimental demonstration via oscillating synthetic jets to
introduce counter-rotating vortices which cancelled those generated by an upstream
cylindrical element. In the cited work, control was designed ad hoc and demonstrated
an attenuation of the disturbances.

Other applications may be found in the works of Hanson et al. (2010) and
Osmokrovic, Hanson & Lavoie (2014), who used plasma actuator arrays to reduce
the energy of specifically targeted modes of streak disturbances generated from an
array of roughness elements. Hanson et al. (2014) and Bade et al. (2016) provide
experimental demonstrations of active control via feedback and feedforward controllers
designed to target disturbances also introduced by an array of roughness elements.
Papadakis, Lu & Ricco (2016) deal with a pair of Orr–Sommerfeld modes introduced
in a numerical simulation and design an optimal controller to target them, obtaining
significant attenuations in the resultant velocity field. An important characteristic of
the said works is that they all deal with isolated streaks. This implies that the streaks
are generated inside the boundary layer, via the inclusion of roughness elements or
via the inclusion of specific disturbances in a numerical simulation. This causes the
simulation or experiment to be less representative of real-life applications, where the
perturbations are usually broadband and located outside the boundary layer.

In less artificial studies, Lundell (2007) and Monokrousos et al. (2008) used
blowing and suction at the wall and wall-shear stress measurements combined with
feedforward control to delay the transition induced by FST, which inherently considers
a much greater number of upstream modes. However, Lundell (2007) tuned the
control effort for one specific configuration. Monokrousos et al. (2008) used spatially
extended actuators with a large number of degrees of freedom, and a long strip
along the streamwise direction was included for sensing. Both of these characteristics
would pose prohibitive limitations in an actual practical implementation. In line with
these works, Lundell, Monokrousos & Brandt (2009) demonstrated the drawbacks of
currently available actuators and suggested they pose a considerable limitation for the
control of streaky structures in flow control applications (see the review of Cattafesta
& Sheplak (2011) for an overview of actuators for flow control applications).

The difficulty in the control of bypass transition is that, differently from the TS case,
which corresponds to a definite modal instability, a family of streaks may be generated
inside the boundary layer. Even though the resulting structure will correspond to the
one generated by the optimal perturbation, as shown in Luchini (2000), its precise
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shape will be different depending on where it is generated in the streamwise direction.
This poses a challenge to the actuator, which in practice has to be located in an
specific position.

1.3. Contribution of the present work
The present study tackles the mitigation of unsteady streaks, generated by means
of FST, which penetrate the boundary layer via the receptivity mechanism (Brandt,
Schlatter & Henningson 2004). We assess the role of actuation by considering
different strategies for the design of the resulting forcing, which gives insight into
the physics behind the active control of streaks. Such strategies are useful for the
design and evaluation of actuators for active control.

In the current work we tackle, for the first time, some of the specific difficulties
involved in the control of such streaky structures. The method derived in the
accompanying work (Morra et al. 2019) to deal with complex disturbances is applied
for other flow cases, which further demonstrates its pertinence for this problem. Most
importantly, a computationally efficient method to compute the optimal forcing is
derived and adapted to obtain an actuator that generates a perturbation of a specific
shape inside the boundary layer; this significantly increases the delay in transition
observed in previous works, in an experimentally implementable configuration. Both
methods could be applicable to several different flow control problems.

We obtain a physically based interpretation of the results using spectral proper
orthogonal decomposition (SPOD) and an evaluation of the different speeds of the
structures present in a boundary layer. This supplies a quantification of the difficulties
involved in the control of streaky structures when compared to the more usual
problem of controlling TS waves.

Finally, as outlined in Fabbiane, Bagheri & Henningson (2017), the design of
efficient actuators is currently a challenge for the application of flow control, as
the currently available actuators are within the break-even point between the energy
saved via the delay of transition and the energy spent by the actuator. The methods
developed herein supply a means for the design of new actuators and evaluation of
existing ones.

The paper is organized as follows. Next, § 2 introduces the flow configuration
control and estimation methods. Then SPOD is applied to the open-loop data in § 3,
the result being compared to the optimal perturbation. The methods for the design of
actuators are given in § 4 with the results and discussion in §§ 5 and 6, respectively;
finally, conclusions are drawn in § 7. The appendix presents the specifics of the SPOD
calculation and a detailed description of the adjoint optimization methods considered
in the design of the forcings.

2. Flow configuration, control methods and estimation tools
The same flow configuration as in Morra et al. (2019) and Sasaki (2019) will be

considered here, along with a similar approach for designing the kernel for closed-loop
control via the use of a reduced-order model for fast evaluation of control performance.
For completeness, such characteristics will be briefly outlined in this section.

2.1. Flow configuration
The incompressible Navier–Stokes equations model the flow,

∂q
∂t
+ (q · ∇)q=−∇p+

1
Re
∇

2q+ λfringe(x1)q+ f , (2.1)

∇ · q= 0, (2.2)
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where q(x, t) = (u(x, t), v(x, t), w(x, t)) and p(x, t) are the velocity and pressure,
respectively, at each time step t and position x = (x1, x2, x3), taken in Cartesian
coordinates.

A plate of semi-infinite length lies in the (x1, x3) plane, where no-slip conditions
are enforced at x2= 0. The control action is analysed via large-eddy simulations (LES)
with the pseudo-spectral code SIMSON (Chevalier, Lundbladh & Henningson 2007),
which gives a high numerical accuracy. The flow is periodic along the spanwise
direction, and a fringe forcing, given as λfringe(x1), is introduced in the last 20 %
of the domain to ensure periodicity also along the streamwise direction. Spatial
coordinates and velocities are non-dimensionalized using the displacement thickness
δ∗ in the entrance of the domain and the free-stream velocity U∞, respectively.
The resulting Reynolds number, defined as Re = δ∗U∞/ν, where ν is the kinematic
viscosity, is 300. The computational domain for the three-dimensional simulation is
of [0, 4000] × [0, 60] × [−25, 25] in the x1, x2 and x3 directions, with Nx1 = 1024
and Nx3 = 108 Fourier modes discretizing the (x1, x3) plane and Nx2 = 121 Chebyshev
polynomials in the vertical direction. A volume forcing f is used to perform the
control action, and its spatial shape will be obtained by three different methods,
which will be introduced in § 4.

The effect of the LES filter in the region where the flow dynamics is linear, where
closed-loop control will take place, is negligible (see Schlatter, Stolz & Kleiser (2004,
2006a,b) for further details). A similar configuration was studied in the work of
Monokrousos et al. (2008), where details concerning the subgrid-scale model and
particularities of the solution method may be found. LES results prior to the fully
turbulent regime were compared to direct numerical simulations (DNS) in a box
of dimensions [0, 1000] × [0, 60] × [−25, 25], with (1152, 121, 108) points in the
streamwise, wall-normal and spanwise directions, and similar results were observed.
The set-up used in this work was therefore considered to be appropriate for the
development of the control laws and evaluation of the delay in the transition to
turbulence.

At the fringe region, a number of modes from the continuous branch of the Orr–
Sommerfeld–Squire operators (which will be referred to as OSS modes) is forced. The
prescribed perturbation takes the form of

q′FST =
∑
α

∑
β

∑
ω

φ(α, β, ω)q′?(x2, α, β, ω)ei(αx1+βx3−ωt), (2.3)

where q′ = (u′, v′, w′), the prime indicates a fluctuation and q′? represents the
eigensolution of the Orr–Sommerfeld–Squire eigenvalue problem for the velocity
fluctuations for a parallel flow, and α, β and ω are the streamwise and spanwise
wavenumber and the angular frequency, respectively. For further details concerning
the method, the reader is referred to the work of Brandt et al. (2004). Some 200
modes, with an integral length scale of L = 7.5δ∗ and turbulence intensity level
Tu = 3.0 % or 3.5 % will be considered in this work. The characteristic spectrum of
the FST seeks to represent the von Kármán spectrum and is the same as in Brandt
et al. (2004) and also used in Morra et al. (2019) to produce homogeneous isotropic
turbulence. For further details, the reader is referred to the previously cited works.

A localized measurement of the streamwise skin friction is used to define the
inputs given by sensors, y(t, x3), and downstream objective, z(t, x3). Three rows of 36
equispaced independent objects are placed with a transverse separation of 1x3 = 1.4,
which is adequate to resolve the spanwise wavenumber content of the fluctuations
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OSS

U∞

x2

x1

x3

y-reference sensors
u-actuators

z-objective

FIGURE 1. Scheme for the three-dimensional simulation of the flat plate considered. The
blue and red circles represent the input sensors and actuators, respectively.

considered here. Measurements are taken at x1y =250 and x1z =400, defining input and
objective, respectively. Actuation is performed at x1u = 325. Alternatively, streamwise
positions will sometimes be referred to by the local Reynolds number based on x1,
Rex. For sensor, actuation and objective positions, Rex is equal to 105 000, 127 000
and 150 000, respectively. Figure 1 presents a scheme for the current simulation and
coordinates considered in this paper.

This set of positions was chosen by an evaluation of the accuracy of the reduced-
order models in predicting the velocity fluctuations at the position of the objective, as
introduced in Sasaki et al. (2018b). For the case of FST-induced fluctuations, it is a
trade-off between two behaviours:

(i) Sensor and objective should be sufficiently downstream such that the receptivity
has ceased and the velocity fluctuations on the near-wall region can be strongly
correlated to the fluctuations throughout the boundary layer.

(ii) The set of positions is in a region where the flow dynamics is mostly linear,
i.e. the fluctuations have not grown to a point where secondary instabilities and
nonlinearities have started to appear.

Controllers are designed following a common approach in flow control problems,
such that linear control laws can be derived a priori using a linear reduced-order
model (ROM) and applied a posteriori in a nonlinear simulation where the delay
in transition to turbulence can be assessed. Application of such control techniques
further downstream would probably be less efficient and eventually require the use
of nonlinear techniques, which are out of the scope of the current work. Parameter
studies performed using the nonlinear simulation have demonstrated that this set of
positions was adequate for the present control set-up.

2.2. Control methods
For the development of the control law, the same approach as per Morra et al. (2019)
will be followed by means of the construction of an LQG regulator (Bagheri et al.
2009; Fabbiane et al. 2015; Sasaki et al. 2018a), using the eigensystem realization
algorithm (Juang & Pappa 1985; Ma, Ahuja & Rowley 2011) to supply a state-space
representation of the flow with a tractable dimension, therefore allowing the design of
the LQG controller.

The choice of LQG as the control method is mainly due to its optimality. Its design
is made in two steps via the solution of two Riccati equations for the estimation and
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control problems. The control law has guaranteed stability, as long as the system is
observable and controllable Ogata & Yang (2002). The computation of the actuation
via a limited number of measurements, which is related to the estimation problem,
is also a desirable characteristic of this method, which allows its implementation in
experimental applications.

The solution of the Riccati equations for the Kalman gain (estimation problem)
and the actual control kernel (control problem) requires a state-space description of
the problem, which is given in terms of a matrix A, describing the linear system
dynamics, matrices B and Md that describe the effect of the actuation and of the
disturbance, respectively, and matrices Cy and Cz determining the actual measurements.
The problem then reads as

q̇(t)= Aq(t)+ Bu(t)+Mdd(t),
y(t)= Cyq(t)+ n(t),

z(t)= Cz(t)q(t).

 (2.4)

In the system above, white noise is assumed to be present both in the measurement
sensor, n(t), and in the form of a disturbance, d(t). This assumption implies that the
covariance matrices associated with these two quantities are diagonal and given by V n

and V d, respectively. The quantity Mdd(t) represents an exogenous disturbance to the
system, which, in this particular case, corresponds to a superposition of OSS modes
with random phase.

The objective function for the definition of the controller is then defined as the H2
norm of the system, and includes both the actuation signal, u(t), and the output, z(t),
by means of weighting matrices Q and R,

J1 =
1
2

∫
∞

0
(zHQ z+ uHRu) dt, (2.5)

where the superscript H indicates the conjugate transpose. The Q matrix here is
taken as constant, unit weights for each of the downstream sensors z, and the R
matrix penalizes the actuation. Minimization of the functional in (2.5) will supply the
Riccati equation for the actuation, leading to a desired performance without excessive
actuation energy.

In the LQG framework, the full state, q(t), is considered to be unavailable, as is the
case in most flow control applications; thus, the flow state has to be estimated from
a finite number of measurements. This is then addressed by means of a Kalman filter,
by considering directly the minimization of the expected value of the estimation error,

J2 = lim
t→∞

Tr(E[e(t)e(t)T]), (2.6)

where e(t) is the difference between the estimated and the actual state at time t, Tr(·)
is the trace operator, E[·] is the expected value and the superscript T supplies the
conjugate transpose. Minimization of the functional (2.6) therefore depends on the
covariances of d(t) and n(t) and also results in a Riccati equation. Further details on
the application of LQG with a flow control perspective may be found in Bagheri et al.
(2009) and Sasaki et al. (2018a).

It should be noted that the resulting control kernel depends on the matrices V n and
V d, related to the estimation, and Q and R, related to the actuation. The determination
of these parameters is made in this study by means of a brute-force method, using the
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linearized description of the system, seeking the highest attenuation of the objective
functional (2.5), which allows the evaluation of a large number of kernels in a
computationally inexpensive manner. Details of such procedure may be found in
Morra et al. (2019); we have taken the parameters from that work in all cases in the
present study.

The solution of the LQG optimality conditions will result in a kernel k(t, x3), which
has to be convoluted with the measurements y(t, x3) to compute the actuation signal.
The spanwise direction is discretized considering the position of the localized sensors
and actuators, such that each actuator will behave as a double convolution between
the measurements and the resulting kernel,

ul(n)=
∫ t

0

N∑
m=0

km(t− τ)yl−m(t− τ) dτ , (2.7)

where the index l refers to each actuator and sensor, such that all the y sensor
measurements are considered in the computation of the actuation signal of each
actuator.

2.3. Eigensystem realization algorithm using transfer functions
The numerous degrees of freedom of typical fluid mechanics problems require the
usage of a reduced-order model for the description of (2.4). As in previous works
by this group (Sasaki et al. 2018a), the eigensystem realization algorithm (ERA)
(Juang & Pappa 1985) was chosen for this task. ERA involves the singular value
decomposition of a Hankel matrix, formed by the impulse responses of all the inputs
of the system, which, for this case, correspond to the disturbances d and actuation
u. For the details concerning the construction of the Hankel matrix, the reader is
referred to Sasaki et al. (2018a).

Obtaining the Hankel matrix normally relies on the availability of the impulse
responses of the aforementioned disturbances and actuation. The difficulty here is
that the considered disturbance is formed by a large number of OSS modes, which
implies that the computation of each individual impulse response is not feasible
computationally. Furthermore, such impulse responses are not available for the case
of an experimental implementation. We therefore proceed by a somewhat different
strategy, defining a new set of ‘dummy’ measurements yd, placed upstream of the y
and z measurements. Empirical transfer functions are then calculated between yd and
y or z, following the procedure introduced in Sasaki et al. (2019), which was applied
for wall-bounded turbulent flows,

Ĝydy(ω, βk)=
Ŝydy(ω, βk)

Ŝydyd(ω, βk)
, Ĝydz(ω, βk)=

Ŝydz(ω, βk)

Ŝydyd(ω, βk)
. (2.8a,b)

Here Ŝydyd(ω, βk) and Ŝydy(ω, βk) or Ŝydz(ω, βk) are quantities in the frequency–
wavenumber domain corresponding to the auto- and cross-spectra of the dummy
measurement, yd, and the measurements, y and z, and are calculated via ensemble
averaging. The discrete spanwise wavenumbers βk are defined by considering
each localized actuator as a discrete measurement at a given position x3, βk =

[−βmax/2βmax/2], where βmax = 2π/(1x3).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.893


883 A34-10 K. Sasaki and others

15
10

5
0 x3

-5
-10

-15

0 100 200 300 400
t 500 600 700

1
(÷ 10-3)

(÷ 10-4)

0
-1

y(
t)

0 200 400
t

600

10

y 1
(t

)

5

0

FIGURE 2. Original identified impulse response as a function of the spanwise direction
and time (solid black lines) and the eigensystem realization algorithm (dashed blue lines)
between d(t) and z(t). The upper plot presents only the central (aligned sensors) case.

Inverse Fourier-transforming the quantities defined in (2.8),

gydz(t, x3)=
1

2π

1
Nβ

∫
∞

−∞

N−1∑
k=0

Ĝydz(ω, βk)eiβkx3e−iωt dω, (2.9)

where Nβ is the number of discrete transverse wavenumbers considered, provides
empirically identified impulse responses, which may be directly applied in the ERA
method for the construction of ROMs for designing LQG. This procedure, which is
based only on the measured signal, permits the design of LQG controllers even for
experimental implementations, by means of measurements of the signals only, and
was first introduced in Morra et al. (2019) and Sasaki (2019). The reader is referred
to such works for further details concerning this method.

Application of ERA involves the singular value decomposition of a Hankel matrix,
where the number of singular values used in the ROM depends on an established
tolerance with respect to the most amplified mode. For the current application, a
tolerance of 10−3.5 was chosen, which results in a reduced system with NERA = 387
modes. This system is observed to accurately reproduce the empirically identified
transfer functions, as may be seen from figure 2. The resulting number also permits
the design of the controller in a typical workstation. Further details concerning the
resulting model may be found in Sasaki (2019) and Morra et al. (2019).

Such empirically derived transfer functions may also be used to predict the time
and spanwise behaviour of the z(t, x3) measurement, at the objective position, from
the y(t, x3) measurement, when the actuator is not active in the system. The empirical
transfer function is then

Ĝyz(ω, βk)=
Ŝyz(ω, βk)

Ŝyy(ω, βk)
, (2.10)

with gyz(t, x3) resulting from the double inverse Fourier transform, as per equation
(2.9). The prediction is then taken as the double convolution of ĝyz(ω, βk) with the
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FIGURE 3. Comparison between (a) LES field at (x1, x2)= (400, 0) and (b) its prediction
from the empirical transfer function using wall-shear stress measurements at (x1, x2) =
(250, 0).

measurements y(t, x3). This procedure may be applied to any streamwise separated
measurements. Figure 3 presents a sample of the prediction of z(t, x3) from the
measurements y(t, x3) for the set-up considered in this paper. The normalized
correlation coefficient at zero time delay between the nonlinear simulation data,
yLES(t, x3), and the estimation, yLES(t, x3),

Corr=

∫ π

−π

yLES(t, x3)yest(t, x3) dt dz√∫ π

−π

y2
LES(t, x3) dt dx3

√∫ π

−π

y2
est(t, x3) dt dx3

(2.11)

is 0.90 and the mean-square values of the LES and estimated fields are 2.82× 10−3

and 2.12× 10−3, which indicates an adequate performance of the reduced-order model.
For more details concerning the application of the proposed methodology for the

time-domain prediction of streaky structures induced by FST, the reader is referred to
the work of Morra et al. (2019), which first introduced the method for this type of
application.

3. Spectral proper orthogonal decomposition applied to transitional streaks

In what follows, SPOD is applied to fluctuation data at the (x2, x3) cross-stream
plane at the streamwise objective position, x1= 400, without any control action taking
place. SPOD has been used in previous studies (Picard & Delville 2000; Cavalieri
et al. 2013; Semeraro et al. 2016; Towne, Schmidt & Colonius 2018) with the
objective of extracting the most energetic, and probable, structures in the flow, for
each (ω, βk) combination. Here the SPOD modes will be used to extract the dominant
structure in the flow, to determine the best suited actuator for this application, and,
finally, to evaluate how the closed-loop actuation is attenuating the streaks in the
flow.

SPOD is applied to the velocity fluctuations such that they are optimal modes to
represent the turbulent kinetic energy, where the modes are defined from the solution
of the following integral equation:∫

Γ (x, x′, ω, βk)ψj(x′, ω, βk) dx′ = λψi(x, ω). (3.1)
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Here ψ will correspond to an eigenfunction (SPOD mode) with corresponding λ,
eigenvalue, and Γ (x, x′, ω, βk) is the two-point cross spectral density, which is
defined from the Fourier transform of the correlation tensor,

Γ (x, x′, ω, βk)=

∫
∞

−∞

C(x, x′, τ , βk)eiωτ dτ . (3.2)

The correlation tensor C is obtained from

C(x, x′, τ , βk)= E[q(x, t)q∗(x′, t′ + τ)], (3.3)

with q = (u, v, w), the three velocity components, and E[·] the expectation operator,
representing the expected value of a given realization of the flow.

Equation (3.1) may be replaced by an eigenvalue problem (Towne et al. 2018),
which reads

H(ω, βk)ψ(ω, βk)= λ(ω, βk)ψ(ω, βk), (3.4)

where the elements of H(ω, βk) are calculated via an ensemble averaging

Hij(ω, βk)= 〈q̂i(ω, βk)q̂j(ω, βk)〉, (3.5)

where q̂= (û(ω,βk), v̂(ω,βk), ŵ(ω,βk)). For a detailed description of SPOD, the reader
is referred to the work of Towne et al. (2018). In appendix A, a brief description of
the application of SPOD to data is provided.

The elements in (3.5) are determined by means of the Welch method, as outlined
in appendix A, with a triangular window and 80 % overlap of the segments. Each
segment had 100 points with a time discretization of 1t = 30. The total number
of segments in the averaging was 90. These choices were seen to be adequate for
the current application to accurately resolve the frequencies and wavenumbers of the
structures in the flow, exemplified in figure 4.

The SPOD modes are compared to the flow response to the optimal upstream
perturbation, which is calculated by using direct–adjoint power iterations via the
boundary layer equations, as in Levin & Henningson (2003). The objective of such
comparison is to determine whether the FST modes are inducing the optimally
growing structures, which correspond to streaks for this application. The optimal
perturbation is made for a given (ω, βk), and the comparison made to the most
amplified case. The calculation is performed for different streamwise positions and
the perturbation that is most amplified with respect to its initial position is chosen for
comparison. We have also obtained the flow response to the optimal forcing, adapting
the formalism in Levin & Henningson (2003) for resolvent analysis, as shown in
appendix B. The resulting fluctuation at the final integration position is approximately
the same for the optimal upstream perturbation and optimal forcing, given that they
are both generated at the same streamwise position.

Figure 4 presents the comparison of the leading SPOD mode with the result of
the optimal perturbation, which is found to be generated at x1 ≈ 75. The behaviour
of the first SPOD mode for the streamwise velocity fluctuation in the (x2, x3) plane
is also shown and highlights the characteristic streaky behaviour of the flow. The
calculation was made for (ω, βk) = (0, 0.37), as this corresponds approximately to
the most amplified frequency–wavenumber pair, as shown in figure 5.

As highlighted in figure 4, there is a good correspondence between the first SPOD
mode of the velocity fluctuations induced by FST and the optimal perturbation.
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FIGURE 4. Comparison of the SPOD modes in the wall-normal direction induced by the
FST with the result of the optimal perturbation (a) and characteristic streaky behaviour
observed in the streamwise velocity fluctuations (b). The pseudo-colours vary between −1
and +1 and the arrows correspond to the wall-normal and spanwise velocity fluctuations.
Modes were normalized to present unit amplitude. Comparison for Tu= 3.0 %.
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FIGURE 5. Behaviour of the first SPOD eigenvalue as a function of the frequency
and spanwise wavenumber, for the Tu = 3.0 % case. Similar characteristics for the most
amplified frequency–wavenumber pair are also observed for Tu= 3.5 %.

A similar feature had already been observed in other works (Luchini 2000), where
the optimal perturbation is seen to be approximately independent of Reynolds number
and to match the structures induced by FST modes.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.893


883 A34-14 K. Sasaki and others

Finally, figure 5 presents the behaviour of the first SPOD eigenvalue as a function of
the frequency and transverse wavenumber. Such analysis is necessary for the definition
of the (ω, βk) pair which will be considered in the optimization of the actuator in
§§ 4.2 and 4.3. Although not shown here, the first eigenvalue dominates the dynamics
of this flow, being roughly one order of magnitude higher than the subsequent modes.
It is clear that the dominating structures are present for βk≈0.37, which will therefore
be targeted by the optimization techniques presented herein.

The most amplified spanwise wavenumber, βk ≈ 0.37, was observed to be in
accordance with the theoretical prediction, obtained by computing the most amplified
structure via direct–adjoint iterations, as in Levin & Henningson (2003). As for
the frequency, its theoretically most amplified value, derived from the same method,
corresponds to ω= 0. The non-zero peak frequency in the SPOD results is nonetheless
quite low, and may be seen as representative of the ω→ 0 limit. In the remainder of
this paper, the most amplified (ω, βk) pair will be referred to as (0, 0.37). The use of
36 sensors in each row leads to a maximum available spanwise wavenumber of 2.07,
with a resolution of 0.12, which is sufficient to resolve the spanwise-wavenumber
content, evaluated from the dominant SPOD mode.

4. Actuators
A total number of 36 elements are considered in the row of actuation, u. Each

element adds a body force to the flow with a given spatial support b(x1, x2, x3) =
( fx1(x1, x2, x3), fx2(x1, x2, x3), fx3(x1, x2, x3)), which is modulated by a time signal al(t),

f (x1, x2, x3, t)= al(t)b(x1, x2, x3), (4.1)

and the role of the control law is then to determine the time modulation, al(t), for
each element. The role of the control law is then to determine the on-line time
modulation of each of the 36 actuators, al(t), based on the measurements taken
upstream, y(t), in a scheme involving both the estimation of the velocity fluctuations
throughout the domain and the definition of a kernel for their control, as established
in previous sections. It should be noted that this type of strategy differs from the
simpler opposition control, which takes place at a specific operation condition and
involves an ad hoc tuning of the parameters. With this, opposition control becomes
usually unable to deal with broadband perturbations, such as those induced by a large
number of OSS modes.

Three different actuators will be evaluated, which vary in terms of their spatial
support. It should be noted that the actuators are positioned at a distance of 1x1= 75
upstream of the objective position; the main difference between them is therefore
on how the streak that is induced by each actuator develops further downstream, a
characteristic that will be evaluated in § 6.2.

4.1. Vertical force fx2-only actuator
The first actuator corresponds to a vertical body force only and it seeks to mimic
the effect of ring plasma actuators, such as in the works of Kim & Choi (2016) and
Shahriari, Kollert & Hanifi (2018), who deal with a plasma actuator with a similar
spatial support, acting on the wall-normal direction. The effectiveness of such an
actuator is related to the lift-up effect, which is a known trigger of streaks (Brandt
2014). For such an actuator, we define the following spatial support, leading to a
force only in the wall-normal direction,

fx2 = exp[−(x1 − x10)
2/(Lx1)

2
− x2

2/(Lx2)
2
− x2

3/(Lx3)
2
], (4.2)
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FIGURE 6. Impulse response of the blowing actuator, considering wall-shear stress as the
measured quantity, in the time (a) and frequency (b) domains, respectively.

with the other components of the forcing equal to zero, x10 = 325 corresponding to the
position of actuation, and Lx1 = 3, Lx2 = 5 and Lx3 = 1.5. The resulting spatial support
along the wall-normal direction will be shown in figure 9 in comparison with the two
other cases evaluated here.

The impulse response measured at the objective location and its corresponding
frequency content are shown in figure 6. It should be noted that the frequency
content of such an actuator is concentrated close to ω= 0, with a preferable spanwise
wavelength β ≈ 0.37, which corresponds to the most amplified streaks generated
by the FST. The delay with respect to the peak of the impulse response in the
time domain may be used to obtain an approximation of the group velocity of the
structures, as introduced in Sasaki et al. (2019). For this particular case, the group
velocity is estimated as 4.5× 10−3.

4.2. Optimal forcing actuator
The second actuator to be considered corresponds to a spatial support given in terms
of the optimal forcing, which is calculated at the position of actuation, x1 = 325. It
should be noted that such forcing is different from the one considered in § 3 where
the streamwise dependence on the generation of the forcing is also considered. The
method to calculate the optimal forcing is outlined in the appendix and corresponds
to a modification of the procedure described in Levin & Henningson (2003), using
adjoint methods for constrained optimization; the goal is to obtain the forcing that
leads to the highest energy gain at the position of the objective, at x1 = 400, for the
most amplified spanwise wavenumber, β ≈ 0.37.

The actuation is restricted to spatially localized upstream areas by inclusion of a
Gaussian mask in the optimization procedure. This avoids a spatially extended forcing,
which would be impracticable in experimental applications, for example. As shown in
appendix B, the spanwise spatial support is imposed by a Gaussian function given by
exp(−x2

3/(Lx3)
2), with Lx3 = 1.5. The resulting spatial support along the wall-normal

direction is shown later in figure 9 for the span and wall-normal components; the
contribution of the streamwise forcing is irrelevant, as it is comparatively inefficient
for the generation of streaks.

The corresponding impulse responses in the time and frequency domains are
shown in figure 7. As before, the most amplified streaks are located at β ≈ 0.37, in
accordance with the performed optimization.

4.3. Identified actuator
Finally, the third actuator to be considered is calculated targeting the specific shape of
the structures present at the objective position, x1 = 400, given in terms of their first
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FIGURE 7. Time-domain (a) and frequency-domain (b) behaviour of the impulse response
of the optimal forcing actuator, considering wall-shear stress as the measured output
quantity.
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FIGURE 8. Time-domain (a) and frequency-domain (b) behaviour of the impulse response
of the identified actuator, considering wall-shear stress as the measured output quantity.
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FIGURE 9. Spatial support of the three forcings considered along the wall-normal direction
for the streamwise (a), wall-normal (b) and spanwise (c) components, respectively.

SPOD mode for the most amplified (ω, βk) pair, as described in § 3. The actuator will
be referred to as ‘identified’ as it targets the structures that were previously identified
at the position of the objective. This procedure is also outlined in appendix B and it is
inspired by the work of Tissot et al. (2017). This actuator is expected to be the most
efficient, as it targets the specific structures present in the flow and should therefore
lead to their best cancellation, in accordance with the physical mechanisms behind
active flow control. The resulting impulse response is shown in figure 8.

As before, the maximum of the frequency–wavenumber content is consistent with
the targeted streaks. Both the optimal forcing and the identified actuator consider a
spanwise component for the forcing. This consideration causes the (x3, t) behaviour
to be non-symmetric along the spanwise direction. The frequency and wavenumber
content of these impulses is therefore non-symmetric along the β direction, a feature
that may be observed in figures 7 and 8.
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FIGURE 10. Comparison of the energy fluctuation as a function of the streamwise position
for the different forcings considered: optimal forcing calculated for different streamwise
positions (blue solid), optimal forcing at the most amplified position (pink crosses),
optimal forcing calculated at the position of actuation (green dotted), vertical forcing (red
dashed) and SPOD-based identification (black dash-dotted). A zoom of the area of interest
(x1 > 325) is shown in the inset.

4.4. Comparison of the different forcings
The main difference on the spatial support of the forcings is on their wall-normal
behaviour, as the same Gaussian mask was considered in the span and streamwise
directions. The three different cases are shown in figure 9 for the streamwise, wall-
normal and spanwise components. The spatial support was normalized such that the
energy content of the different forcings is the same.

The two optimization techniques lead to the typical behaviour for the optimal
forcing shape as in Monokrousos et al. (2010). The main difference between the
optimal forcing and SPOD-based optimization is that the latter presents a peak at
higher wall-normal positions, a feature that is seen to be related to the streaks the
actuator generates, and a higher streamwise velocity forcing.

Finally, the energy E of the fluctuation,

E(x1, ω, βk)=

∫
∞

0
|q̂(x1, x2, ω, βk)|

2 dx2, (4.3)

resulting from the application of these forcings is shown in figure 10, with forcing
restricted to the actual actuation position. The result is compared to the calculation
of the optimal forcing, with localized spatial support at different streamwise locations.
The shape of the optimal forcing is recalculated at each streamwise position,
considering the previously defined assumptions. There is a strong dependence of
the fluctuation energy on the position where the optimization is performed, as
previously observed in other works (Levin & Henningson 2003). Therefore, there
is an optimal streamwise position for the actuation which, for this particular case,
corresponds to x1 ≈ 75. Actuation in this position will lead to a fluctuation that
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approximately matches the FST-induced streaks at the objective position for control
(x1 ≈ 400), as previously seen in figure 4. However, closed-loop control with an
actuation at x1= 75 should be avoided, as the receptivity to the FST in this region is
still strongly active, which would decrease the efficiency of the controller. Moreover,
the considered reduced-order models would be inaccurate, as they are built only with
information available in the near-wall region. Finally, as will be outlined in § 6.3, the
different speeds of the actuator-induced streaks would also prevent the use of such
an upstream actuation, as this would lead to causality issues of the controller.

The optimal forcing calculated at x1=325, where the actuation is actually performed
for control, leads to a much higher energy at the objective position when compared
to the other two approaches. However, as will be shown later, it leads to a thinner
streak when compared to the actual structures inside the boundary layer.

5. Results
5.1. Choice of linear quadratic Gaussian parameters

Attention will be focused on two turbulence intensity cases, Tu = 3.0 % and 3.5 %,
both of which present challenging scenarios on which transition to turbulence will
be induced by the free-stream disturbances and where some nonlinearity is already
present in the sensor–actuator region, posing a limitation on the accuracy of the
considered reduced-order models. The same kernels and actuators as designed
for Tu = 3.0 % were used for both cases, which also allows an evaluation of
the robustness of the controllers and optimization methods considered. Different
kernels were calculated for each actuator, a necessary step since the actuators present
significant differences in their impulse responses, illustrated in figures 6–8. However,
the kernel designed for Tu= 3.0 % was used in both cases.

As outlined in § 2.2, LQG has two objective functions, one for the control problem
and another for the estimation problem. The control part requires the definition
of the weights Q and R for the output z(t) and the actuation u(t), respectively,
and the estimation part requires the covariances V d and V n for the disturbance
and noise, respectively. There is no consensus in the control community on the
approach to define such weights. In this work, they have been chosen by means of
a brute-force method as introduced in a previous effort by this group (Sasaki et al.
2018a). Input–output simulations are performed for a series of combinations of the
weight matrices, and the pair resulting in the highest attenuation of the objective
functional (equation (2.5)) is chosen. The result is the same as the one obtained
when only the output signal is considered, for the evaluated set of weights, as the
output signal tends to dominate the functional when compared to the actuation signal.
The advantage of following this approach is that such input–output simulations are
performed by means of the linear reduced-order model, defined in § 2.3, as

z(t, x3)= gyz(t, x3) ? y(t, x3)+ guz(t, x3) ? (k(t, x3) ? y(t, x3)), (5.1)

where ? defines a double convolution, as per equation (2.7). This is very efficient
computationally, as the use of the ROM allows the evaluation of several weight
combinations in order to obtain the best result for the desired application. For the
cases evaluated herein, the predicted performance is in good agreement with that
resulting from the nonlinear simulation.

It is possible to show that the result of the functionals in (2.5) and (2.6) is
dependent only on the ratios between R and Q and between V n and V d. Therefore,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.893


Actuation for the control of streaky structures in boundary layers 883 A34-19

Actuator Tu= 3.0 % Tu= 3.5 % Tu= 3.0 % Tu= 3.5 %

fx2 -only z2
con/z

2
unc = 0.33 z2

con/z
2
unc = 0.34 Jcon/Junc = 0.36 Jcon/Junc = 0.41

Identified z2
con/z

2
unc = 0.21 z2

con/z
2
unc = 0.25 Jcon/Junc = 0.22 Jcon/Junc = 0.30

Optimal forcing z2
con/z

2
unc = 0.25 z2

con/z
2
unc = 0.33 Jcon/Junc = 0.26 Jcon/Junc = 0.34

TABLE 1. Summary of the closed-loop cases evaluated, attenuation of the objective
position and functional for the control definition.

Q and V d were set to unity and the computation was made for several combinations
of R and V n. It should be noted that the use of the second functional, J2, adds more
degrees of freedom for the resulting controller, influencing also the result of the
control functional, J1. For a broader discussion concerning the role of the penalizing
weights, the reader is referred to the accompanying work of Morra et al. (2019).

The resulting weights for the three kernels were then R = 50 and V n = 0.0005,
for the vertical forcing actuator, R = 1 and V n = 0.005, for the identified actuator,
and R = 5 and V n = 0.0005, for the optimal forcing actuator. The resulting low
values for sensor noise V n are in accordance with the ideal sensors used in the
simulation. The resulting value of R is required in order to regularize the kernel,
avoiding spurious actuation at high, usually uncontrollable, frequencies, which do not
contribute significantly to the total energy at the output position.

5.2. Attenuation at objective position
In order to better evaluate the performance of the control law, the following
performance index is defined:

I(t)=
36∑

m=1

z2
m(t). (5.2)

This index considers the sum of the square of the measured signals at each of the
36 sensors located in the objective position and it is therefore directly related to the
attenuation of the output. Figure 11 presents the value of these indices for the two
cases evaluated considering the three different actuators. It should be noted that the
performance index takes into account exclusively the wall-shear stress and therefore
does not represent a metric for the disturbances throughout the boundary layer. On
the other hand, this parameter serves as a good evaluation of the effectiveness of the
controllers themselves in reducing the quantity that is available for the minimization.

All three methods present an adequate attenuation of the objective, with the
identified actuator outperforming the other two. Table 1 summarizes the average
reduction for the different cases along with a comparison of the resulting LQG
control functional between controlled and uncontrolled cases. The better performance
observed for Tu = 3.0 % in comparison to Tu = 3.5 % is mainly due to the higher
turbulence intensity of the second case requiring higher actuation amplitudes, as may
be seen from figure 12, which accordingly leads to higher nonlinear effects originating
from the actuation itself. We have observed that the difference in the actuation
amplitude is sufficient to lead to a loss of performance of the linear actuation model,
which is given in terms of a linear impulse response. The loss of performance of
the reduced-order model itself is of lesser importance, as the correlation between

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.893


883 A34-20 K. Sasaki and others

1000 2000 3000 4000 5000
t

6000 7000 8000 9000

0.50

0.45

0.40

0.35

0.30

0.25

0.20

i

i

0.15

0.10

0.05

0

1000 2000 3000 4000 5000 6000 7000 8000 9000

0.20(a)

(b)

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0

Optimal forcing

Uncontrolled
fy-only

Identified forcing

Performance index for Tu = 3.0 %

Performance index for Tu = 3.5 %

FIGURE 11. Performance indices for the two Tu cases evaluated.

prediction and measurement for (250, 0) and (400, 0), as measurement and objective,
respectively, is 0.89.

The same kernel has also been tested at the Tu levels of 3.3 %, 4.0 % and
4.5 %, where the same trends have been observed, a corresponding diminishing
in the transition delay when the turbulence intensity increases. In order to test
the performance limits of the kernels, a case at Tu = 6.0 % was performed, where
z2

con/z
2
unc was approximately 0.75, and no transition delay was achieved. This is due to

the high amplitudes of actuation and velocity fluctuations between the actuation and
objective positions, leading to nonlinear behaviour. The continuously forcing FST also
prevents any transition delay, even though there is a minor effect of the controller in
attenuating the amplitude of the fluctuations.

The evaluation of higher Tu levels is out of the scope of this paper, particularly
because the mechanism for delaying transition, namely reducing the streak amplitude
to postpone their nucleation, is expected to be the same, as modelled in the work
of Kreilos et al. (2016). Evaluation of Tu levels lower than 3.0 % significantly
increases the length of the box necessary to observe transition, requiring much longer
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FIGURE 12. Energy budget for the different turbulence intensities and actuators evaluated.

simulations to obtain converged statistics, leading to high computational demands.
Partially converged results for Tu= 2.5 % indicate that the same trends would also be
observed; therefore, these results will not be shown in the current work.

In order to evaluate the energy spent in actuation, the following metric, which is
related to the energy budget for actuation, is defined:

Eu(t)=
∫ x1max

x10

∫ x2max

x20

∫ x3max

x30

|b(x1, x2, x3)a(t)|2 dx1 dx2 dx3. (5.3)

This metric considers both the amplitude modulation a(t), which is calculated by
the control law, and the spatial support of the forcing b. The behaviour of Eu(t) for
the different cases is shown in figure 12. The energy budget of the optimal forcing
actuator is approximately one order of magnitude lower than that corresponding to
the other two cases, a fact that is related to the streaks induced by it presenting the
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highest possible growth rates for the specific position where they are generated, as
illustrated in figure 10.

Therefore, in terms of energy budget versus attenuation at the objective position, the
optimal forcing actuator significantly outperforms the other two. For the same energy
of actuation, the optimal forcing actuator would present a better performance in terms
of the resulting functional and attenuation of the objective. In order to pursue such
a test, the actuation of the other two controllers would need to be lowered to the
level of that corresponding to the optimal forcing case, as an increase in the energy
of the optimal forcing would not be possible, since this would lead to nonlinear effects
related to the high levels of actuation; this can be obtained by setting a stronger
weight to the control action in the definition of the functional. Since the aim here
is to obtain the highest possible transition delay, this test will not be pursued.

5.3. Transition delay
We now evaluate the effectiveness of closed-loop control with the different actuators
in delaying transition. Figure 13 shows the friction coefficient Cf and maximum root-
mean square (r.m.s.) values for the three evaluated actuators for Tu= 3.0 % and 3.5 %.
The corresponding behaviour of the r.m.s. values of the streamwise velocity fluctuation
in the (x1, x2) plane are shown in figure 14 for the Tu= 3.0 % case, and in figure 15
four streamwise positions are shown in order to better highlight the effect of the
different actuation schemes; similar results are also observed for higher turbulence
intensity values.

In order to supply a comparison between the energy dispensed by the different
actuators and the corresponding savings obtained from the transition delay, the
following metric is defined:

Φ =
1Etrans − r.m.s.(Eact(t))

Eunc
, (5.4)

where
1Etrans = Eunc − Econ, (5.5)

Eunc and Econ supply the mean energy that is dissipated due to friction drag, which can
be accounted for by integrating the drag coefficient in the streamwise direction for the
uncontrolled and controlled cases, respectively. The term r.m.s.(Eact(t)) represents the
r.m.s. value of the energy consumed due to actuation, which can be computed from
the turbulent kinetic energy of the velocity field induced by the actuator,

Eact(t)= a(t)
∫ x1max

x10

∫ x2max

x20

∫ x3max

x30

(u2
+ v2
+w2) dx1 dx2 dx3. (5.6)

The metric defined in (5.4) supplies a means of comparison of the efficiency of the
actuators in delaying transition: the higher the value of this parameter, the higher the
energy gain with respect to actuation, with Φ = 0 representing an uncontrolled case.
It should also be noted that ideal actuators are being considered in this analysis, i.e.
no losses are being considered in the generation of the velocity field.

The resulting values for this parameter, along with the corresponding delays in
transition and total reduction in drag, obtained by considering the integrated value of
cf are summarized in table 2; the integration was performed from Rex = 0.5× 105 to
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FIGURE 13. Friction coefficient and maximum r.m.s. values for the streamwise velocity
fluctuation and the different actuation schemes considered in this work. The black dashed
lines in the friction coefficient plots give reference values for the laminar and turbulent
cases, respectively.
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FIGURE 14. Behaviour of the r.m.s. of the streamwise velocity fluctuation for the
uncontrolled and different controlled scenarios evaluated.

Actuator 1Rex Drag reduction (%) Φ

Tu= 3.0 % Tu= 3.5 % Tu= 3.0 % Tu= 3.5 % Tu= 3.0 % Tu= 3.5 %

fx2 -only 1.50× 105 0.80× 105 11 13 0.0656 −0.0525
Identified 4.52× 105 1.15× 105 21 19 0.2222 0.1529
Optimal forcing 1.35× 105 0.50× 105 9 8 0.1018 0.0771

TABLE 2. Summary of the results obtained in terms of the delay in transition to
turbulence and total integrated drag.

5.5 × 105 for the Tu = 3.5 % case and from Rex = 1.0 × 105 to 11.0 × 105 for the
Tu= 3.0 % case.

It is noticeable that all three actuators lead to significant transition delays with
an accompanying reduction in the integrated total drag. For comparison, in the
work of Monokrousos et al. (2008), which also deals with the control of complex
disturbances, induced by FST with Tu= 3.0 %, a transition delay of 1Rex= 1.0× 105

is obtained, with a corresponding reduction in the total drag of 5 % to 10 %, using
LQG as the control strategy with measurement and actuation strips that extended
over a length corresponding to 1Rex = 0.80 × 105 and 1Rex = 0.90 × 105, which
therefore corresponds to a set-up that is considerably more difficult to implement in
an experimental application.

The identified actuator considerably outperforms the other two concerning the
delay in transition, a feature observed from the friction coefficient and maximum
r.m.s. values in figure 13, which take much longer to increase to values typical of
turbulent boundary layers. The r.m.s. values in figure 14 indicate that the effect of
the identified actuator is more extended along the wall-normal direction, since, at
the position of actuation, there is a significant decrease of r.m.s. levels throughout
the boundary layer. Furthermore, the actuation energy of the identified actuator is
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FIGURE 15. The r.m.s. value of the streamwise velocity fluctuations at four streamwise
positions as a function of the wall-normal direction for the uncontrolled and different
actuators evaluated in this work. Value Rex=150 000 corresponds to the objective position.

similar to that of the fx2-only actuator and it is also more robust to the evaluated
changes in turbulence intensity, leading also to significant delays in transition for
the two evaluated cases. Parameter Φ indicates that such an actuator presents the
most efficient behaviour, leading to the best compromise between transition delay and
actuation energy.

As for the optimal forcing actuator, although it is capable of delaying the transition
in the two FST intensity cases, it presents the lowest performance in terms of the
transition delay. The r.m.s. values indicate that its effect is more localized, which
leads to an imperfect cancellation of the incoming streak. These characteristics will
be further explored in § 6 by means of an evaluation of the SPOD of the actuation
effect. In spite of these characteristics, the optimal forcing actuator leads to the lowest
actuation energy for the evaluated cases, approximately one order of magnitude lower
than the other two. This is related to the fact that it excites streaks with the highest
energy growths and it is therefore capable of leading to a cancellation, specifically
at the objective position, with less energy spent. This trend is also present in the
parameter Φ, which presents an intermediate behaviour between the identified and the
fx2-only actuator.

Finally, the fx2-only actuator presents an intermediate behaviour in terms of the
resulting delay in transition. However, it leads to the highest actuation energy, a fact
that is observed in the parameter Φ, which becomes negative for the highest Tu value,
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FIGURE 16. (a) Peak of the two-dimensional cross-correlation between estimated and
computed LES streamwise velocity fields. The x1 positions of input and output were fixed
at 250 and 400, respectively, and the wall-normal position was varied. The dashed line
indicates input–output positions at the same wall-normal positions. (b) The r.m.s. values of
the streamwise velocity fluctuation at x1= 400 as a function of the wall-normal direction.

indicating that the actuation is consuming more energy than that saved via transition
delay. The results of this section highlight the importance of the methods for actuator
design proposed in this work, which allow for much enhanced delays in transition,
with lower actuation energies.

Similar trends have been observed for the case of Tu= 4.5 %, where the observed
delays in transition are 1Rex = 0.14 × 105, 0.21 × 105 and 0.87 × 105 for the
vertical, optimal and identified forcings, where the last one continued to significantly
outperform the other two, leading to compelling delays in transition, even for such a
high level of FST. Evaluation of the case Tu= 2.5 % demonstrated that the identified
actuator managed to maintain the laminarity of the flow up to Rex = 106, where a
transitional region starts to occur. This case does not transition to turbulence within
the evaluated domain size. These results demonstrate that the kernels have been
tested under conditions much different from their design points, presenting reasonable
performances, which supplies further evidence of the robustness of the control law,
identification and optimization methods derived herein.

6. Discussion
Two approaches will be used to better understand the results of the previous section:

the SPOD of the open- and closed-loop cases; and the possibility of causal streak
cancellation, which is related to the different delays of the actuators in exciting
a response in the output. Both of these analyses are related to the fact that the
streamwise velocity fluctuations present their peak value above the wall, as will be
explored next. All results in this section are shown for the Tu = 3.0 % case. Trends
for Tu= 3.5 % are similar and will not be displayed for brevity.

6.1. Correlations along the wall-normal direction
We first consider the r.m.s. value of the streamwise velocity fluctuations along the wall-
normal direction, given in figure 16. It is noticeable that the maximum value of the
r.m.s. is above the wall, located at x2≈ 3. Therefore, in order to obtain a more global
effect on the field, the actuator should lead to changes over such higher wall-normal
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FIGURE 17. Eigenvalues of the SPOD modes calculated at position x1=400, for (ω,βk)=
(0, 0.37), for the open- (circles) and closed-loop cases (squares, diamonds and crosses, for
the blowing, identified and optimal forcing actuator, respectively).

positions rather than in the near-wall region only. Furthermore, the fluctuations at such
positions should be predictable given the considered input sensor, which corresponds
to measurements of wall-shear stress.

In order to evaluate if the streamwise velocity fluctuations at x2 = 3 may be
predicted from wall measurements, the peak of the two-dimensional cross-correlation
between the estimated (obtained via the two-dimensional transfer function) and LES
computed fields was calculated as a function of the wall-normal positions of input
and output measurements. The streamwise positions were kept at x1 = 250 and 400,
for input and output, respectively, in accordance with the y and z measurements. The
predicted field was obtained by means of the empirical transfer function approach,
as outlined in § 2. The result is shown in figure 16 and demonstrates that there
is a strong correlation between wall-shear stress measurements (x2,in → 0) and the
streamwise velocity fluctuations up to x2 ≈ 5, indicating that the currently considered
sensors are adequate for this type of application. Differences are therefore only
accountable for the considered actuators, as the method to determine the control law
was the same for all of them. In what follows, all the analysis is made with the input
sensor corresponding to wall-shear stress.

6.2. Spectral proper orthogonal decomposition in open-loop case
The SPOD is calculated at the objective position, x1 = 400, in the plane defined by
the wall-normal and spanwise coordinates. The decomposition is made per (ω, βk)

pair and the results shown here will consider (ω, βk)= (0, 0.37), which corresponds
approximately to the most amplified case used in the actuator optimization techniques.
The eigenvalues resulting from such decomposition, for the open- and closed-loop
cases, considering the different actuation strategies evaluated in this paper, are shown
in figure 17.

The first mode is approximately two orders of magnitude higher than the second
one, a fact that indicates its dominance in the flow, at the evaluated streamwise
position. The three evaluated actuators lead to an attenuation of such a mode in the
closed-loop case, along with the subsequent modes higher than two. The identified
actuator presents the best performance, leading to a reduction of approximately five
times in the magnitude of the first mode eigenvalue.
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FIGURE 18. First SPOD mode for the uncontrolled (solid blue line) and response of
different actuation strategies evaluated in this work (red dashed, black dash-dotted and
green dotted for the fx2 -only, identified and optimal forcing actuator). The evaluation was
made at x1 = 400, which corresponds to the objective position.

In order to better distil the effect of each actuator in the flow, simulations were
performed without FST and with the actuators with a white-noise time modulation.
SPOD was then applied to the resulting data at the position of the objective at the
(ω, βk) pair considered here; the objective is to extract the exact structures that are
being excited by the actuators and compare them to the one corresponding to the
FST-induced streaks. Figure 18 presents the first SPOD mode for the different cases
as a function of the wall-normal direction, for the streamwise velocity fluctuation,
which is the velocity component that dominates the fluctuation. The real part of the
velocity fluctuation was plotted; the same conclusions hold for the absolute value of
the fluctuation.

It is clear that, whereas the identified actuator leads to fluctuations in a compelling
agreement with the fluctuations inside the boundary layer, the other two excite
‘thinner’ structures with a peak value that occurs closer to the wall than the peak of
the streaks inside the boundary layer. This behaviour leads to an imperfect cancellation
of the incoming streak. Since a destructive interference is the physical mechanism
behind flow control of convectively unstable flows (Sasaki et al. 2018a; Morra et al.
2019), the fx2-only and optimal forcing actuators lead to a lower performance in
terms of transition delay. As illustrated in figure 15, it is observed that the imperfect
cancellation that results from these two actuators leads to a faster recovery of the
strongest streak downstream of the position of the objective, in comparison to the
identified actuator case.

It should also be noted that the identified actuator presents a peak in its spatial
support which is at a higher wall-normal location than the other two (as shown in
figure 9); this is probably related to the higher peak of the streak it is identifying
inside the flow.

The other two velocity components are not shown, as the streamwise velocity is
the foremost contributor to the total energy (v and w correspond to approximately
0.4 % and 0.1 % of the energy at the objective position). Accordingly, it is observed
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FIGURE 19. Behaviour of the impulse responses of the estimated field and different
actuators considered here. The measurement was located at the wall (left column) and at
x2= 3 (right column), and the streamwise position was located at x1= 400, corresponding
to the objective of the control law. The colour bar was adjusted for each plot in order to
better visualize the behaviour. The dashed line indicates the time delay for the maximum
of the impulse response.

that these two velocity components do not play a significant role in the optimization
procedure for obtaining the identified actuator and in the closed-loop behaviour
performance.

6.3. The role of causality in streak cancellation
Figure 19 shows the impulse responses for the estimation – taken between (x1, x2)=
(250, 0), using wall-shear stress as the measurement, and (400, ε) or (400, 3), with
streamwise velocity as the output measurement, where ε is the first point of the
grid above the wall, using the empirical transfer function – and actuation – taken
between (x1, x2)= (325, 0) and (400, ε) or (400, 3), considering streamwise velocity
as the output measurement. The impulse response for estimation is representative of
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open-loop disturbances, whereas the one for actuation highlights properties of streaks
induced by the control law.

A few characteristics can be observed in figure 19. First, the estimation impulse
responses, taken for an input further upstream, present a time delay comparable to
the actuation cases, indicating that the group velocity of open-loop streaks is higher
than that corresponding to the actuator-induced disturbances. The delay changes
between wall and x2 = 3 measurements, indicating a tilting of the structures, which
reach the higher wall-normal position at x1 = 400 before reaching the wall at the
same streamwise position. Finally, from the time delays of impulse responses, it is
inferred that the three actuators induce streaks with different group velocity, with
the identified case presenting the highest value and optimal forcing the lowest. The
relevance of such time delays for closed-loop control are related to the possibility of
a causal cancellation of incoming disturbances, as discussed by Sasaki et al. (2018b),
and can be summarised, in simplified manner, as follows. Once a given structure is
detected by the upstream sensors y, it is estimated, through the transfer functions
in figure 19, that it will reach the downstream objective z after a time delay τe.
The actuator should cancel this disturbance, but this cannot occur instantly, since
the actuation-induced structures take a time delay τa to reach the objective location.
If τa < τe such cancellation is feasible, whereas in the opposite case it becomes
impossible to cancel the incoming streaks; in the latter situation, once an upstream
streak is detected in y, it is already too late to attempt to cancel it in u.

Considering the time delays for which the impulse response peaks, all actuators
are able to generate disturbances that reach the objective position located at the wall
before the one related to the estimated field, which can be seen by the characteristic
time delays τa, lower than τe in figure 19 for all cases. The same is not true when
we consider the output at x2 = 3, particularly for the optimal forcing actuator. This
characteristic will prevent the optimal forcing case of acting where the highest energy
of the streak is present, at the objective position.

These characteristics are summarized in figure 20, where the streamwise position is
given as a function of the time delay for it to be reached for the estimation and each
actuator. The delay was considered as the time when the peak value is reached, for
each impulse response at the considered position. The slope of lines in the plot can
thus be related to the group velocity of disturbances in the open-loop case, given by
the estimation transfer function, and of the ones resulting from the three actuators. The
values at the wall (considered as x2 = ε) and at x2 = 3 are shown in figure 20. The
input measurements were considered as x1 = 250, for estimation, and x2 = 325, for
actuation. For all actuators and both wall-normal positions, it is noticeable that the
impulse response of the estimation has a higher velocity. Among the three actuators,
the identified one leads to structures with higher group velocity, which is particularly
clear for the x2= 3 case, the most important one in terms of the energy content of the
fluctuations. This higher velocity can be related to generation of streaks at higher wall-
normal positions (figure 18), and may further justify the effectiveness of the identified
actuator.

It should be noted that when the curve corresponding to the estimated field
surpasses those of the impulses, these positions correspond to uncontrollable cases,
as the control-induced streaks will reach a downstream position after the incoming
structures one wishes to attenuate. The considered objective position of x1 = 400 is
highlighted and the impulse responses of all actuators reach it before the estimated
field, which therefore leads to a causal kernel that is capable of the attenuations
reported here, which result in a good attenuation of the objective quantity.
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FIGURE 20. Streamwise position for the different actuators and estimated field as a
function of time. Input positions (1t = 0) were kept fixed at (x1, x2) = (250, 0), with
wall-shear stress, and (x1, x2) = (325, 0), using streamwise velocity, for estimation and
actuation cases, respectively. The transverse position of the measured impulse corresponds
to (a) x2 = ε and (b) x2 = 3.
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However, when one considers the x2= 3 case, where most of the fluctuation energy
is contained, the streamwise objective position of x1 = 400 does not correspond to
a causal behaviour when the optimal forcing actuator is considered, which explains
why it presents the worst performance among the different spatial supports considered
here. The higher group velocity of streaks for larger x2 prevents a perfect cancellation
particularly for the optimal forcing and vertical forcing-only actuators, which present
considerably lower values of group velocity.

One could try to compensate for the lower group velocity of the actuator-induced
streaks by moving the objective position upstream, closer to the actuator. This would
cause all schemes to be causal, both at the wall and at x2= 3. However, since the FST
is continuously forcing the boundary layer, it is expected that the lower group velocity
of the actuator-induced structures, particularly for the vertical force and optimal cases,
will eventually play a role in downstream areas of the flow.

7. Conclusions
Three methodologies have been considered for the design of localized actuators for

the control of streaky structures, induced by FST. A set-up close to that of practical
applications was considered, where a large number of OSS modes was used to
model FST. This makes it infeasible to compute individual impulse responses of each
disturbance, and an empirical transfer function was derived to obtain a reduced-order
model, for which application of a LQG led to control laws. Localized sensors were
also considered in the simulation, which further increases the similarity of the work
to an actual experimental implementation.

Two of the methods for actuator design corresponded to optimization procedures:
either the energy of the actuator-induced disturbances at the position of the
objective, or the difference with respect to a previously measured structure between
actuator-induced and open-loop disturbances, was considered as the cost function,
which was maximized in the first case (leading to an optimal forcing) and minimized
in the second (with an identified, tailored actuator that optimally targeted open-loop
streaks). The resulting direct–adjoint iteration algorithm was computationally efficient
and led to desired results when applied in the nonlinear simulation. A third actuator,
corresponding to a vertical forcing only, served as a baseline case, in line with the
recent results of Shahriari et al. (2018) where a ring of plasma actuators was used
to excite a vertical body force in a boundary layer.

Closed-loop control with all the actuators led to significant delay in transition,
and this was shown to be robust to mild changes in the FST level, a desired
characteristic for real-life applications. All three actuators have led to improvements
in comparison to other recent works, such as Monokrousos et al. (2008), and in a
more realistic set-up. The optimization/minimization techniques allowed a compelling
reduction in the actuator energy (corresponding to the optimal forcing case), or a
significant increase in the transition delay (for the identified actuator), estimated to
be approximately four times larger than in Monokrousos et al. (2008), for example.
To the best of the authors’ knowledge, this is currently the best performance obtained
in terms of transition delay in the control of structures induced by FST in an
experimentally implementable set-up. The techniques outlined here for actuator
design also allowed significant improvements in the energy saved via transition delay,
in comparison to that consumed by actuation, leading to results much further from
the break-even point, even for the highest turbulence intensities considered.

Differences between the three cases were understood in terms of the SPOD
of estimation and actuation fields, in the open-loop case, which highlighted the
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dissimilarities between the structures induced by the actuators and the one actually
present in a boundary layer. Here, an important difference between the control of TS
waves and streaks appears. Whereas, in the former case, any actuator leads to exactly
the same TS waves at downstream positions, as these are the only structures in spatial
growth, for streaks, a whole family of disturbances can be generated by actuators. It
thus becomes important to target precisely the streaks that are actually expected in a
given transitional boundary layer, and thus the identified actuator obtains a closed-loop
performance superior to the other ones, in terms of the resulting transition delay, since
it cancels more accurately the open-loop streaks.

The distinct velocities of structures induced by the three actuators and the streaks
induced by the FST, along with the tilting of the structures in the wall-normal
direction, also play a role in this type of application, where it may become impossible
to obtain a causal cancellation of incoming disturbances, even if the actuator is
downstream of the input measurement. Causality will also depend on the wall-normal
position under consideration, a feature that had not yet been observed or quantitatively
computed.

Finally, an evaluation of the correlations along the wall-normal direction indicated
that wall measurements were adequate for the prediction of the output signals. Such
a technique allowed similar conclusions to observability tools without the need to
perform adjoint simulations. These analysis were possible by means of the empirically
calculated impulse responses, which permitted an exploration of the parameters of the
problem, reducing the number of required nonlinear simulations.

Concerning the design of actuators for experimental applications, it was shown that
a vertical forcing only, which is currently possible to implement, should be adequate
for the control of streaky structures. Better results may be obtained in terms of both
the transition delay and the energy budget of actuation when access to the open-
loop data is available prior to the design of the actuator, where the methods outlined
here for the evaluation of the forcing and optimization should aid in the design of
new actuators for flow control, which is currently a challenge in the flow control
community.
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Appendix A. Calculation of spectral proper orthogonal decomposition modes
from data

We briefly outline the approach to compute SPOD modes from snapshots taken from
a simulation or experimental data. As in the main body of the paper, q(x, y, z, t) =
(u(x1, x2, x3, t), v(x1, x2, x3, t),w(x1, x2, x3, t)), which is then Fourier-transformed from
x3 to βk,

q̂(x1, x2, β, t)=
∫ x2max /2

−x2max /2
q(x1, x2, x3, t)e−iβζ dζ . (A 1)
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The spanwise direction is discretized and the continuous Fourier transform becomes a
discrete Fourier transform (DFT), which is evaluated at the discrete wavenumbers βk.
Given the periodicity of this coordinate, the DFT is regarded as the discretization of
the coefficients of the corresponding Fourier series.

Considering now the discretization in time, the quantity q̂k(βk) represents the
instantaneous state of q̂(βk, t). If a total number of N snapshots is used, the signal
may be regarded as

Q̂(βk)= [q̂1(βk) q̂2(βk) . . . q̂N(βk)], (A 2)

where Q̂(βk) is Ns × N, with Ns representing the number of spatial grid points
times the number of physical quantities considered (in this case, the three velocity
components and pressure). Application of the DFT directly into the lines of matrix
Q̂(βk) should not be performed, as the result will not converge with the number of
snapshots (Bendat & Piersol 2011), and the order of magnitude of the error could
be as high as the corresponding magnitude of the spectrum. Therefore, in order to
obtain converged values of the spectral density, for calculation of the spectral density
tensor, it is necessary to average the spectra over multiple realizations of the flow.
This may be accomplished by application of Welch’s method (Welch 1967).

Start by partitioning the full signal into Nb blocks, each with Nf elements; the nth
block is then given as

Q̂
(n)
(βk)= [q̂

(n)
1 (βk) q̂(n)2 (βk) . . . q̂(n)Nf

(βk)], (A 3)

such that each block can be regarded as a realization of the flow. Overlapping the
blocks with adjacent elements is possible and allows a higher number of blocks for
the same length of the original signal, permitting a faster convergence of the statistics.
The kth entry in the nth block is then given as q̂(n)k (βk)= q̂k+(n−1)(Nf−No)

(βk), where No

is the number of overlapping snapshots. The DFT is then calculated at each block,

ˆ̂Q(n)(βk)= [ˆ̂q(n)1 (βk) ˆ̂q(n)2 (βk) . . . ˆ̂q(n)Nf
(βk)], (A 4)

where the kth element of the block is then given as

ˆ̂q(n)k (βk)=
1√
Nf

Nf∑
j=1

wj
ˆ̂q(n)j (βk)e−2πi(k−1)[( j−1)/Nf ], (A 5)

with k= 1, . . . , Nf and n= 1, . . . , Nb. Equation (A 5) represents the discrete Fourier
transform of the block, with the addition of the weights wj, which allow the
application of a window function, used to reduce spectral leakage due to the
non-periodicity of the block. The normalization factor 1/Nf ensures the transform is
unitary for a square window. Here ˆ̂q(n)k (βk) is the kth element of the DFT of the nth
block, with a corresponding frequency ωk,

ωk = 2π
k− 1
n1T

, k 6 n/2, (A 6)

or
ωk = 2π

k− 1− n
n1t

, k> n/2. (A 7)
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Finally, the cross-spectral density tensor Γ (x, x′, ω, βk) can be estimated at a
frequency ωk and spanwise wavenumber βk by averaging the blocks,

Γωk(βk)=
1t
sNb

Nb∑
n=1

ˆ̂q(n)k (βk)( ˆ̂q(n)k (βk))
∗, (A 8)

and s=
∑Nf

j=1 w2
j . Each Fourier coefficient at a frequency ωk for each block, at a given

βk, can be arranged in a matrix form,

ˆ̂Qωk(βk)=
√

k[ ˆ̂q(1)k (βk) ˆ̂q(2)k (βk) . . . ˆ̂q(Nb)
k (βk)], (A 9)

where k=1t/(sNb) and ˆ̂Qωk(βk) is N × Nb. The cross-spectral density tensor is then
written compactly as

Γωk(βk)=
ˆ̂Qωk(βk)(

ˆ̂Qωk(βk))
∗. (A 10)

The calculation of the cross-spectral density tensor then converges as the number of
blocks and snapshots at each block are increased together (Bendat & Piersol 2011).

Defining the positive-define Hermitian matrix W , N ×N, to account for the weight
and the numerical quadrature for performing an integral on a discrete grid, the SPOD
eigenvalue problem reduces to an N×N matrix eigenvalue problem, at each frequency
and transverse wavenumber,

Γωk(βk)Wψωk(βk)=ψωk(βk)λωk(βk). (A 11)

The SPOD modes are then given in the columns of ψωk(βk), ranked according to
their corresponding eigenvalues, which are in the diagonal matrix ψωk(βk).

Appendix B. Derivation of the optimization schemes

In this section, the two schemes for the calculation of the actuators considered
in §§ 4.2 and 4.3 will be outlined. We follow the works of Andersson et al. (1999)
and Levin & Henningson (2003) in a scheme appropriate for algebraically growing
disturbances along the streamwise direction, for a slowly divergent mean flow. The
pressure and velocity fluctuations follow the boundary layer equations, which, written
in matrix form, are given as

A q̂+B
∂ q̂
∂x2
+ C

∂2q̂
∂x2

2
+D

∂ q̂
∂x1
= F̂ , (B 1)

where F̂ = (0, F̂x1, F̂x2, F̂x3) is a forcing applied in the three directions and
q̂= (û, v̂, ŵ, p̂), and the hat indicates quantities given in the (ω, β) domain. Equation
(B 1) results from the application of the ansatz q= q̂(x, y)e(iβz−iωt) into the linearized
Navier–Stokes equations. The operators are then given as

A=

 0 0 iβ 0
−iω+ β2/Re+ dU/dx1 dU/dx2 0 0

0 −iω+ β2/Re+ dV/dx2 0 0
0 0 −iω+ β2/Re iβ

, (B 2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

89
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.893


883 A34-36 K. Sasaki and others

B=

0 I 0 0
V 0 0 0
0 V 0 I
0 0 V I

, (B 3)

C =

 0 0 0 0
−I/Re 0 0 0

0 −I/Re 0 0
0 0 −I/Re 0

, (B 4)

D=

 I 0 0 0
U 0 0 0
0 U 0 0
0 0 U 0

, (B 5)

where U and V are the mean velocity components in the streamwise and wall-normal
direction, respectively, and I is the identity matrix. The same non-dimensionalizations
as in the remainder of the paper are considered here. It should also be noted that the
streamwise wavenumber, normally referred to as α, is not present in these equations,
as there will be no exponential dependence of the fluctuations and all streamwise
variation is to be absorbed in q̂(x1, x2, ω, β), which implies that TS waves are not
considered in this ansatz. These equations are appropriate for algebraically growing
disturbances, such as the streaky structures induced by the FST.

Equation (B 1) can be written in compact form as

Lq̂= F̂ , (B 6)

where the spatial, frequency and wavenumber dependences have been absorbed into
L as

L=A+BDx2 + CD2
x2
+DDx1, (B 7)

where the derivative operators Dx2 and Dx1 represent discretized derivative operations
in the wall-normal and streamwise directions, respectively.

Equation (B 1) is integrated in the streamwise direction using a first- or second-order
explicit Euler method. We solve the problem subject to an initial condition at x1 = 0,
and, since the equation is parabolic, downstream spatial marching can be performed.
The discretization over the wall-normal direction is made by means of Chebyshev
polynomials considering 300 points. Dirichlet boundary conditions are applied to the
velocity components at the wall and at x2→∞.

The objective is to minimize a cost function that considers the difference between
the calculated fluctuation, at the objective position, and the SPOD of the field in the
open-loop case. A similar approach has been used by Tissot et al. (2017) to identify
forcing terms in a turbulent jet. The considered cost function is then

Ef =
1
2

∫
∞

0
‖q̂− q̂SPOD‖

2
|x1=x1f

dx2. (B 8)

It should be noted that, by considering q̂SPOD = 0 and performing a maximization,
rather than a minimization, the usual procedure to obtain the optimal forcing is
recovered. This will be treated as a particular case of this procedure.

We then follow the approach of Pralits et al. (2000) by defining an extended
Lagrangian functional that includes the cost function and the constraint, which is
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given in terms of (B 6), with the addition of a Lagrange multiplier, which plays the
role of the adjoint variable, q̂∗:

J = Ef − Re(〈q̂∗,Lq̂− F̂ 〉). (B 9)

The angle brackets represent the inner product, which is defined for two arbitrary
functions as

〈φ, ψ〉 =

∫ x1f

x10

∫
∞

0
φ(x1, x2)ψ(x1, x2) dx2 dx1. (B 10)

We then take the variation of (B 9), which leads to

δJ =
∫
∞

0
(q̂− q̂SPOD)|x1=x1f

δq̂ dx2 − 〈q̂
∗
,Lδq̂− δF̂ 〉 − 〈δq̂∗,Lq̂− F̂ 〉, (B 11)

corresponding to the sensitivity of the Lagrangian functional to infinitesimal changes,
δq̂, δF̂ and δq̂∗. When the variation becomes zero, the Lagrangian is minimized or
maximized. The third term 〈δq̂∗,Lq̂− F̂ 〉 is equal to zero, given that the state equation
in (B 6) is satisfied, as desired. Zeroing the second term will result in the adjoint
problem and corresponding boundary and initial conditions, as follows.

The operators are moved to the right side of the inner product by considering the
following property of the adjoint,

〈q̂∗,A q̂〉 = 〈A∗q̂∗, q̂〉, (B 12)

where the star ∗, refers to a conjugate transpose, when applied to a matrix operator.
The derivatives are moved from the direct to the adjoint problem by integrations by
parts. We then obtain

〈q̂∗,Lδq̂− δF̂ 〉 = 〈(A∗ −B∗x2
−D∗x1

)q̂∗ −B∗q̂∗x2
+ C∗q̂∗x2x2

−D∗q̂∗x1
, q̂〉 − 〈q̂∗, δF̂ 〉 + b.c.,

(B 13)
where the subscripts x1 and x2 indicate that the corresponding operator has been
derived with respect to x1 or x2. Setting this to zero for arbitrary δq̂ leads to the
adjoint boundary layer equations, given by

(A∗ −B∗x2
−D∗x1

)q̂∗ −B∗q̂∗x2
+ C∗q̂∗x2x2

−D∗q̂∗x1
= 0, (B 14)

where the subscripts x1 and x2 represent derivatives along the corresponding directions.
The term b.c., standing for boundary conditions, corresponds to four integrals. Once

set to zero, this term will supply the boundary conditions for the adjoint boundary
layer equations. Writing the first three explicitly, we have∫ x1f

x10

〈B∗q̂∗, δq̂〉|x2max
0 dx=

∫ x1f

x10

(Vû
∗

δû+ (p̂
∗

+ V v̂
∗

)δv̂ + Vŵ
∗

δŵ+ v̂
∗

δp̂)|x2max
0 dx1 = 0,

(B 15)∫ x1f

x10

〈C∗q̂∗, δq̂y〉|
x2max
0 dx1 =

∫ x1f

x10

(−û
∗

δûx2 − v̂
∗

δv̂x2 − ŵ
∗

δŵx2)|
x2max
0 dx1 = 0, (B 16)∫ x1f

x10

〈C∗q̂∗x2
, δq̂〉|x2max

0 dx1 =

∫ x1f

x10

(−û
∗

x2
δû− v̂

∗

x2
δv̂ − ŵ

∗

x2
δŵ)|x2max

0 dx1 = 0. (B 17)
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The boundary conditions are then given as

û
∗

= v̂
∗

= ŵ
∗

|x2=0 = 0 (B 18)

and
û
∗

= v̂
∗

= ŵ
∗

|x2=x2max
= 0. (B 19)

Finally, zeroing the fourth boundary term, which comes from the streamwise
derivative, supplies the initial condition for the adjoint variables, set in the final point
of the domain, which corresponds to the objective position∫

∞

0
((p̂
∗

+Uû
∗

)δû+Uv̂
∗

δv̂ +Uŵ
∗

δŵ)|
x1f
x10

dx2 =

∫
∞

0
(q̂− q̂SPOD)|x1=x1f

δq̂ dx2. (B 20)

The initial conditions for the direct problem are zero and at the final point of
calculation x1 = x1f , which therefore implies that

û∗(x1 = x1f )= û(x1 = x1f )− ûSPOD(x1 = x1f ), (B 21)
v̂∗(x1 = x1f )= v̂(x1 = x1f )− v̂SPOD(x1 = x1f ), (B 22)
ŵ∗(x1 = x1f )= ŵ(x1 = x1f )− ŵSPOD(x1 = x1f ), (B 23)

and p̂∗(x1 = x1f )= 0.
Finally, the variation of J remains with a single term:

δJ = 〈q̂∗, δF̂ 〉 =
∫ x1f

x10

∫
∞

0
q̂∗(x1, x2)δF̂ dx2 dx1. (B 24)

Since no source terms are being considered on the wall, the variation of J may be
written in terms of the gradient of the objective with respect to the forcing term:

δJ =
∫ x1f

x10

∫
∞

0
∇F Ef δF̂ dx2 dx1, (B 25)

which implies that
∇F Ef = q̂∗. (B 26)

Equation (B 26) states that the gradient of the parameter to be optimized with
respect to the forcing is equal to the adjoint variable and it therefore permits one to
find the desired forcing by means of a gradient optimization scheme:

F̂
n+1
= F̂

n
+ γ∇F Ef δF̂

n
. (B 27)

The cost function, equation (B 8), will define the two actuators considered in this
paper. If one considers q̂SPOD = 0, the optimization procedure will obtain the highest
energy, and by setting γ >0, this is referred to as the optimal forcing. If q̂SPOD is taken
as the SPOD of the actual field, induced by the FST in the open-loop case, then we
take γ < 0, corresponding to a minimization, which is referred to as the identified
actuator, which will target the specific structure inside the boundary layer. Other than
the value of λ, the only change between the two methods is the terminal condition
for the adjoint, equations (B 21)–(B 23).

The algorithm for the power iterations using the adjoint can then be written as
follows:
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(a) Start with a random force field and zero initial conditions and integrate the direct
problem, equation (B 1), from the position of actuation until the objective.

(b) Take the final condition for the adjoint problem from (B 21)–(B 22) and integrate
equation (B 14) backwards, from the position of the objective up to the position
of actuation.

(c) Update the forcing field using (B 27) and calculate the cost function (B 8).
Evaluate the convergence and either repeat from the first step or terminate the
method.

It could be advantageous to work with an actuator that is concentrated in the
streamwise direction. To obtain this result, a Gaussian mask of the type

M(x1)= exp(−(x1 − x10)
2/L2

x1
) (B 28)

may be used to multiply the forcing in (B 27) at each iteration. This leads to a slower
convergence of the algorithm; however, it was not found to be prohibitive.

Finally, the spanwise spatial support of the forcings was chosen to be also in the
form of a Gaussian, which is multiplied by the final result of the forcing. The values
of (ω, β) were chosen in accordance with the most amplified structures in the flow.
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