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Two-Weight Estimates
for Singular Integrals Defined on Spaces
of Homogeneous Type
D. E. Edmunds, V. Kokilashvili and A. Meskhi

Abstract. Two-weight inequalities of strong and weak type are obtained in the context of spaces of homoge-
neous type. Various applications are given, in particular to Cauchy singular integrals on regular curves.

Introduction

The question of the boundedness of integral transforms defined on spaces of homogeneous
type (SHT) arises naturally when studying boundary-value problems for partial differential
equations with variable coefficients. For example, when the underlying domain is strongly
pseudo-convex, one is led to use the concept of the Heisenberg group (and more general
structures) as a model for the boundary of the domain in the theory of functions of several
complex variables. Such problems indicate a strong need for structures more general than
spaces of functions on Euclidean space. The space domain might, for instance, be most
conveniently endowed with a quasimetric induced by a differential operator or tailored to
suit the kernel of a given integral operator (see [19], Chapters I, XII and XIII).

On the other hand, it is well-known that the solubility of boundary-value problems
for elliptic partial differential equations in domains with non-smooth boundaries depends
crucially on the geometry of the boundary. In [9], Chapter IV it is shown that the presence
of angular points (involving cusps) can result in non-existence or non-uniqueness of so-
lutions of Dirichlet and Neumann problems for harmonic functions from Smirnov classes
and boundary functions in appropriate Lebesgue spaces. In this connection, two-weight
inequalities for singular integrals with pairs of weights like those considered in the sequel
enable one to identify, for the boundary functions, the weighted Lebesgue spaces for which
the problem becomes soluble.

Two-weight inequalities of strong type with monotonic weights for Hilbert transforms
have been established in [15]. Analogous problems for singular integrals in Euclidean
spaces were considered in [7] and were generalised in [6] for singular integrals on Heisen-
berg groups. For Calderón-Zygmund singular integrals, conditions for a pair of radial
weights ensuring the validity of two-weight inequalities of strong type have been obtained
by the first two authors [4] (see also [17]) and generalised for homogeneous groups and
on spaces of homogeneous type with some additional assumptions by the last two authors
[11], [12]. Moreover, these last papers contain weak type inequalities as well.

In this paper we derive various two-weight inequalities of strong and weak type. The
sufficient conditions given are optimal in the sense that for Hilbert transforms these are also
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necessary, see for example [15] and [4]. Some very special cases of the problems discussed
in this paper were studied in [5], Chapter IX.

The paper is organised as follows: In Section 1 we establish two-weight criteria for
Hardy-type transforms, while Section 2 is devoted to the various two-weight strong type
inequalities in an SHT setting. Section 3 contains two-weight weak type inequalities for
singular integrals. In Section 4 applications to Cauchy singular integrals on regular curves
and some examples are given. Constants (often different constants in the same series of
inequalities) will generally be denoted by b or c.

1 Basic Ingredients

In this section we are going to establish two-weight criteria for some extensions of Hardy-
type transforms defined on an arbitrary measure space (X, µ) with σ-finite measure µ. Let
us suppose there is a function d : X × X → [0,∞) such that there exists some x0 ∈ X for
which d(x0, ·) : X → [0,∞) is µ-measurable and

0 < µ{x : t1 < d(x0, x) < t2}

whenever 0 < t1 < t2 < a, where a := sup{d(x0, x) : x ∈ X}.
Given a µ-measurable function w : X → R which is positive µ-a.e., and p ∈ [1,∞), we

denote by Lp
w(X) the space of µ-measurable functions f : X → R with finite norm

‖ f |Lp
w(X)‖ =

(∫
X
| f (x)|pw(x) dµ

)1/p
.

We shall prove the following two theorems:

Theorem 1.1 Let 1 < p ≤ q < ∞, µ{x ∈ X : d(x0, x) = 0} = 0 and let v (resp. w) be
a.e. positive and measurable on (0, a) (resp. µ-a.e. positive and µ-measurable on X). Then
the inequality

(∫ a

0
v(t)
∣∣∣
∫
{x:d(x0,x)<t}

f (x) dµ
∣∣∣q dt
)1/q
≤ c
(∫

X
| f (x)|pw(x) dµ

)1/p
, f ∈ Lp

w(X)(1.1)

holds with some c > 0 independent of f if, and only if,

B := sup
0<t<a

(∫ a

t
v(τ ) dτ

)1/q(∫
{x:d(x0,x)<t}

w1−p ′(x) dµ
)1/p ′

<∞.(1.2)

In addition, if c is the best constant in (1.1), then

B ≤ c ≤ 4B.

Theorem 1.2 Let 1 < p ≤ q < ∞, µ{x ∈ X : d(x0, x) = a} = 0 and let v and w be as in
Theorem 1.1. Then the inequality

(∫ a

0
v(t)
∣∣∣
∫
{x:d(x0,x)>t}

f (x) dµ
∣∣∣q dt
)1/q
≤ c
(∫

X
| f (x)|pw(x) dµ

)1/p
, f ∈ Lp

w(X)(1.3)
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holds with a constant c independent of f if, and only if,

B1 := sup
0<t<a

(∫ t

0
v(τ ) dτ

)1/q(∫
{x:d(x0,x)>t}

w1−p ′(x) dµ
)1/p ′

<∞.(1.4)

Moreover, for the best constant c in (1.3) we have

B1 ≤ c ≤ 4B1.

The proofs of these theorems are based on the two following simple lemmas.

Lemma 1.1 Let 1 < p ≤ q <∞, and let v and w be as in Theorem 1.1. Then the following
statements are equivalent:

(i) there is a constant c > 0 such that for all f ∈ Lp
w(X),

(∫ a

0
v(t)
∣∣∣
∫
{x:d(x0,x)<t}

f (x) dµ
∣∣∣q dt
)1/q
≤ c
(∫

X
| f (x)|pw(x) dx

)1/p
;

(ii) there is a constant c > 0 such that for all g ∈ Lq ′

v1−q ′ (0, a),

(∫
X

w1−p ′(x)
∣∣∣
∫ a

d(x0,x)
g(t) dt

∣∣∣p
′

dµ
)1/p ′

≤ c
(∫ a

0
|g(t)|q

′

v1−q ′(t) dt
)1/q ′

.

Lemma 1.2 Let 1 < p ≤ q < ∞ and let v and w be as in Theorem 1.1. Then the following
two assertions are equivalent:

(i) there exists a constant c > 0 such that

(∫ a

0
v(t)
∣∣∣
∫
{x:d(x0,x)>t}

f (x) dµ
∣∣∣q dt
)1/q
≤ c
(∫

X
| f (x)|pw(x) dµ

)1/p

for arbitrary f ∈ Lp
w(X);

(ii) there exists a constant c > 0 such that

(∫
X

w1−p ′
∣∣∣
∫ d(x0,x)

0
g(t) dt

∣∣∣p
′

dµ
)1/p ′

≤ c
(∫ a

0
|g(t)|q

′

v1−q ′(t) dt
)1/q ′

for any g ∈ Lq ′

v1−q ′ (0, a).

Proof of Lemma 1.1 We shall show that (i) implies (ii). We have

A :=
(∫

X
w1−p ′(x)

∣∣∣
∫ a

d(x0,x)
g(t) dt

∣∣∣p
′

dµ
)1/p ′

= sup
∣∣∣
∫

X

(∫ a

d(x0,x)
g(t) dt

)
f (x) dµ

∣∣∣,
where the supremum is taken over all f for which

∫
X
| f (x)|pw(x) dx ≤ 1.
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Then change of order of integration, Hölder’s inequality and condition (i) give us:

A ≤ sup

(∫ a

0
|g(t)|

(∫
{x:d(x0,x)<t}

| f (x)| dµ
)

dt

)

≤ sup
(∫ a

0
|g(t)|q

′

v1−q ′(t) dt
)1/q ′

(∫ a

0
v(t)
(∫

d(x0,x)<t
| f (x)| dµ

)q
dt

)1/q

≤ c
(∫ a

0
|g(t)|q

′

v1−q ′(t) dt
)1/q ′

.

Analogously we can show that (ii) implies (i).
As the proof of Lemma 1.2 is similar we omit it.

Proof of Theorem 1.1 First we prove that (1.2) implies (1.1). Thanks to Lemma 1.1 it is
sufficient to prove that under condition (1.2) we have the inequality

(∫
X

w1−p ′(x)
∣∣∣
∫ a

d(x0,x)
g(t) dt

∣∣∣p
′

dµ
)1/p ′

≤ c
(∫ a

0
|g(t)|q

′

v1−q ′(t) dt
)1/q ′

for any g ∈ Lq ′

v1−q ′ (0, a) with a constant c independent of g.

Let g ≥ 0, g ∈ Lq

v1−q ′ (0, a). Then for arbitrary t ∈ (0, a) we have

∫ a

t
g(τ ) dτ ≤

(∫ a

t
|g(τ )|q

′

v1−q ′(τ ) dτ
)1/q ′(∫ a

t
v(τ ) dτ

)1/q
<∞.

Then the function

I(t) =

∫ a

t
g(τ ) dτ

is continuous and decreasing on (0, a). Moreover, I(t)→ 0 as t → a.
Now suppose

∫ a

0
g(τ ) dτ ∈ (2m, 2m+1]

for some integer m. Then for each integer k ≤ m there exists tk ∈ (0, a) such that

2k =

∫ tk

tk+1

g(τ ) dτ for k ≤ m− 1

and

2m =

∫ a

tm

g(τ ) dτ .
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The sequence {tk}m
−∞ decreases; let α = limk→−∞ tk. Then we have [0, a] =⋃m

k=−∞[tk+1, tk) ∪ [α, a], where tm+1 = 0. Thus

X = {x : 0 ≤ d(x0, x) ≤ a}

=

m⋃
k=−∞

{x ∈ X : tk+1 ≤ d(x0, x) < tk} ∪ {x : α ≤ d(x0, x) ≤ a}.

If ∫ a

0
g(τ ) dτ =∞

then in this case m =∞ and

X =
⋃
k∈Z

{x : tk+1 ≤ d(x0, x) < tk} ∪ {α ≤ d(x0, x) ≤ a}.

Now let t ∈ [tk+1, tk); then I(t) =
∫ a

t g(τ ) dτ ≤
∫ a

tk+1
g(τ ) dτ = 2k+1 as k ≤ m. For

t ∈ [α, a] we have ∫ a

t
g(τ ) dτ ≤

∫ a

α

g(τ ) dτ ≤

∫ a

tk

g(τ ) dτ = 2k

for arbitrary k ≤ m, and consequently I(t) = 0. Further
(∫

X
w1−p ′(x)

(∫ a

d(x0,x)
g(t) dt

)p ′

dµ

)q ′/p ′

=

(∫
0≤d(x0,x)≤a

w1−p ′(x)
(∫ a

d(x0,x)
g(t) dt

)p ′

dµ

)q ′/p ′

=
(∑

k≤m

∫
{tk+1≤d(x0,x)<tk}

w1−p ′(x)
(∫ a

d(x0,x)
g(t) dt

)p ′

dµ
)q ′/p ′

≤

(∑
k≤m

2(k+1)p ′
(∫
{x:tk+1≤d(x0,x)<tk}

w1−p ′(x) dµ
))q ′/p ′

.

This last expression can be estimated from above by

4q ′
∑
k≤m

2(k−1)q ′
(∫
{x:tk+1≤d(x0,x)<tk}

w1−p ′(x) dµ
)q ′/p ′

= 4q ′
∑
k≤m

(∫ tk−1

tk

g(τ ) dτ
)q ′(∫

{x:tk+1≤d(x0,x)<tk}
w1−p ′(x) dµ

)q ′/p ′

≤ 4q ′
∑
k≤m

(∫ tk−1

tk

gq ′(τ )v1−q ′(τ ) dτ
)(∫ a

tk

v(τ ) dτ
) q ′

q
(∫
{x:d(x0,x)<tk}

w1−p ′(x) dµ
) q ′

p ′

≤ 4q ′Bq ′
∑
k≤m

∫ tk−1

tk

gq ′(τ )v1−q ′(τ ) dτ = 4q ′Bq ′
∫ a

0
gq ′(τ )v1−q ′(τ ) dτ .
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This proves the sufficiency part of Theorem 1.1.
Now it remains to prove that (1.1) implies (1.2). Let s ∈ (0, a). If in (1.1) we take

f = w1−p ′χ{x:d(x0,x)<s} then we have

c
(∫
{x:d(x0,x)<s}

w1−p ′(x) dµ
)1/p

≥

(∫ a

0
v(t)
(∫
{x:d(x0,x)<t}

f (x) dµ
)q

dt

)1/q

≥

(∫ a

s
v(t)
(∫
{x:d(x0,x)<t}

f (x) dµ
)q

dt

)1/q

≥
(∫
{x:d(x0,x)<s}

w1−p ′(x) dµ
)(∫ a

s
v(t) dt

)1/q
.

Finally, from the above we obtain

(∫ a

s
v(τ ) dt

)1/q(∫
{x:d(x0,x)<s}

w1−p ′(x) dµ
)1/p ′

≤ c

for any s ∈ (0, a) and the proof is complete.

Proof of Theorem 1.2 To show that (1.4) implies (1.3), by Lemma 1.2 it is sufficient to
prove that (1.4) guarantees the validity of the inequality

(∫
X

w1−p ′(x)
∣∣∣
∫ d(x0,x)

0
g(t) dt

∣∣∣p
′

dµ
)1/p ′

≤ c
(∫ a

0
|g(t)|q

′

v1−q ′(t) dt
)1/q ′

for arbitrary g ∈ Lq ′

v1−q ′ (0, a) with a constant c independent of g.

Let g ≥ 0, g ∈ Lq ′

v1−q ′ (0, a). Then it is easy to see that

J(t) =

∫ t

0
g(τ ) dτ <∞

for any t ∈ (0, a).
The function J is continuous, increases on (0, a) and limt→0 J(t) = 0.
Now let

∫ a

0
g(τ ) dτ ∈ (2m, 2m+1]

for some integer m. Then by continuity of J, given any integer k, k ≤ m, there exists tk,
tk ∈ (0, a), such that

2k =

∫ tk

0
g(τ ) dτ =

∫ tk+1

tk

g(τ ) dτ for k ≤ m− 1
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and

2m =

∫ tm

0
g(τ ) dτ .

The sequence {tk}m
k=−∞ increases; let limk→−∞ tk = β. Then

X = {x : 0 ≤ d(x0, x) ≤ a}

= {x : 0 ≤ d(x0, x) ≤ β} ∪
( m⋃

j=−∞

{x : t j < d(x0, x) ≤ t j+1}
)
,

where tm+1 = a.
If t ∈ [0, β] then I(t) =

∫ t
0 g(τ ) dτ ≤

∫ tk

0 g(τ ) dτ = 2k for arbitrary k, k ≤ m, and so
I(t) = 0. If t ∈ (t j , t j+1] for j ≤ m then

I(t) ≤

∫ t j+1

0
g(τ ) dτ = 2 j+1.

Now we have

(∫
X

w1−p ′(x)
(∫ d(x0,x)

0
g(t) dt

)p ′

dµ

)q ′/p ′

=

(∫
0≤d(x0,x)≤a

w1−p ′(x)
(∫ d(x0,x)

0
g(t) dt

)p ′

dµ

)q ′/p ′

=

(∑
j≤m

∫
{x:t j<d(x0,x)≤t j+1}

w1−p ′(x)
(∫ d(x0,x)

0
g(τ ) dτ

)p ′

dµ

)q ′/p ′

≤
∑
j≤m

(∫
{x:t j<d(x0,x)≤t j+1}

w1−p ′(x)
(∫ d(x0,x)

0
g(τ ) dτ

)p ′

dµ

)q ′/p ′

.

This last expression can be estimated from above by

∑
j≤m

(∫ t j+1

0
g(τ ) dτ

)q ′(∫
{x:t j<d(x0,x)≤t j+1}

w1−p ′(x) dµ
)q ′/p ′

=
∑
j≤m

2( j+1)q ′
(∫
{x:t j<d(x0,x)≤t j+1}

w1−p ′(x) dµ
)q ′/p ′

≤ 4q ′
∑
j≤m

(∫ t j

t j−1

gq ′(τ )v1−q ′(τ ) dτ
)(∫ t j

t j−1

v(τ ) dτ
) q ′

q
(∫
{x:t j<d(x0,x)≤t j+1}

w1−p ′(τ ) dµ
) q ′

p ′

≤ 4q ′Bq ′
(∫ a

0
gq ′(τ )v1−q ′(τ ) dτ

)
.
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This shows that (1.4) implies (1.3). For the proof of the necessity part it is sufficient to take
f = w1−p ′χ{x:d(x0,x)>s} in (1.3).

We remark that Theorems 1.1 and 1.2 extend results contained in [13], [14] and [10].
We conclude this section with two results dealing with limiting cases.

Proposition 1.1 Let a =∞ and suppose that v and w are as in Theorem 1.1. If

sup
0<t<∞

(∫ ∞
t

v(τ ) dτ
)

ess sup
{x:d(x0,x)<2t}

1

w(τ )
<∞,

then there exists c > 0 such that for arbitrary f ∈ L1
w(X) we have

∫ ∞
0

v(t)
∣∣∣
∫
{x:d(x0,x)<t}

f (x) dµ
∣∣∣ dt ≤

∫
X
| f (x)|w(x) dµ.

Proof Change of order of integration and simple estimations give us

∫ ∞
0

v(t)
∣∣∣
∫
{x:d(x0,x)<t}

f (x) dµ
∣∣∣ dt

≤

∫ ∞
0

v(t)
(∫
{x:d(x0,x)<t}

| f (x)| dµ
)

dt

=

∫
X
| f (x)|

(∫ ∞
d(x0,x)

v(t) dt
)w(x)

w(x)
dµ

≤

∫
X
| f (x)|

(∫ ∞
d(x0,x)

v(t) dµ
)(

ess sup
{y:d(x0,y)<2d(x0,x)}

1

w(y)

)
w(x) dµ

≤ c

∫
X
| f (x)|w(x) dµ.

Analogously we can prove

Proposition 1.2 Let v and w be as in Theorem 1.1. If

sup
0<t<a

(∫ t

0
v(τ ) dτ

)
ess sup

{x:d(x0,x)>t/2}

1

w(x)
<∞

then we have, for all f ∈ L1
w(X),

∫ a

0
v(t)
∣∣∣
∫
{x:d(x0,x)>t}

f (x) dµ
∣∣∣ dt ≤ c

∫
X
| f (x)|w(x) dµ

with a constant c independent of f .
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2 Singular Integrals on SHT: Strong-Type Inequalities

A space of homogeneous type (SHT) (X, d, µ) is a topological space X, endowed with a
complete measure µ, such that (a) the space of compactly supported continuous functions
is dense in L1(X, µ), and (b) there exists a non-negative real-valued function (quasimetric)
d : X × X → R satisfying

(i) d(x, x) = 0 for all x ∈ X;
(ii) d(x, y) > 0 for all x �= y, x, y ∈ X;
(iii) there is a constant a0 > 0 such that d(x, y) ≤ a0d(y, x) for all x, y ∈ X;
(iv) there is a constant a1 ≥ 1 such that d(x, y) ≤ a1

(
d(x, z) + d(z, y)

)
for all x, y, z ∈ X;

(v) for every neighbourhood V of x in X there exists r > 0 such that the ball B(x, r) =
{y ∈ X : d(x, y) < r} is contained in V ;

(vi) the balls B(x, r) are measurable for every x ∈ X and every r > 0;
(vii) there is a constant b > 0 such that µ

(
B(x, 2r)

)
≤ bµ

(
B(x, r)

)
< ∞ for every x ∈ X

and every r, 0 < r <∞.

In addition we shall suppose that there exists a point x0 ∈ X such that if a =
sup{d(x0, x) : x ∈ X}, then for arbitrary t1 and t2, 0 < t1 < t2 < a, we have

µ
(
B(x0, t2) \ B(x0, t1)

)
> 0.

For the definition, various examples and properties of SHT see [2], [20]. There are numer-
ous interesting examples of SHT, such as Euclidean space with an anisotropic distance and
Lebesgue measure, any compact C∞ Riemannian manifold with the Riemannian metric
and volume, and the boundary of any bounded Lipschitz domain in Rn with the induced
Euclidean metric and Lebesgue measure. From now on in this section, X will stand for an
SHT with the properties listed above.

We shall also need the Muckenhoupt class Ap(X). A µ-measurable, locally integrable
function w : X → R which is positive µ-a.e. is called a weight. If 1 < p < ∞, then Ap(X)
is the set of all weights w such that

sup

(
1

µ(B)

∫
B

w(x) dµ

)(
1

µ(B)

∫
B

w−1/(p−1)(x) dµ

)p−1

<∞,

where the supremum is taken over all balls B ⊂ X. The Muckenhoupt class A1(X) is the set
of all weights w such that

sup

(
1

µ(B)

∫
B

w(x) dµ

)(
ess sup

x∈B

1

w(x)

)
<∞,

where again the supremum is taken over all balls B in X. Moreover, the maximal operator
M is defined by

(M f )(x) = sup
(
µ(B)
)−1
∫

B
| f (y)| dµ(y), x ∈ X,

where the supremum is taken over all balls B in X containing x.
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Now we pass to the definition of singular integrals on SHT (see for example [2]). Let
k : (X × X) \ {(x, x) : x ∈ X} → R be a measurable function satisfying the conditions:

|k(x, y)| ≤
c

µ
(
B(x, d(x, y)

) , for all x, y ∈ X, x �= y,

and

|k(x1, y)− k(x2, y)| + |k(y, x1)− k(y, x2)| ≤ cω

(
d(x2, x1)

d(x2, y)

)
1

µ
(

B
(
x2, d(x2, y)

)) ,

for every x1, x2, y ∈ X such that d(x2, y) > bd(x1, x2). Here ω is a positive, non-decreasing
function on (0,∞), satisfying the well-known∆2−condition (that is, ω(2t) ≤ cω(t) for all
t > 0 and some c > 0 independent of t) and the Dini condition

∫ 1

0

ω(t)

t
dt <∞.

We assume as well that for some p0, 1 < p0 <∞, and all f ∈ Lp0
µ (X) the limit

K f (x) = lim
ε→0+

∫
X\B(x,ε)

k(x, y) f (y) dµ

exists a.e. and that the operator K is bounded in Lp0
µ (X). For the definition of singular

integrals and other remarks see [19], Chapter I, pp. 29–36 and also [5], p. 295. The bound-
edness of the operator K under the above conditions for some p0 ∈ (1,∞) guarantees the
existence of the principal value K f a.e. for all f ∈ Lp

µ(X) and the boundedness of K in
Lp
µ(X) for all p ∈ (1,∞) (see, for example, [19], Chapter V, 6.17, p. 223 and also [8]).

Lemma 2.1 Let 1 < p < ∞, suppose that µ{x0} = 0, let w be a weight function on X, let
ρ ∈ Ap(X) and suppose that the following conditions are satisfied:

(1) there exists an increasing function σ on (0, 4a1a), such that for some positive constant c1,

ρ(x)σ
(

2a1d(x0, x)
)
≤ c1w(x) a.e.;

(2) for arbitrary t, 0 < t < a, we have that

∫
B(x0,t)

w1−p ′(x) dµ <∞.

Then Kφ(x) exists µ-a.e. for any ϕ ∈ Lp
w(X).

Proof Let 0 < α < a
a1

and put

Sα =
{

x ∈ X : d(x0, x) ≥
α

2

}
.
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Let us suppose φ ∈ Lp
w(X). Then

φ(x) = φ1(x) + φ2(x),(2.1)

where φ1 = φχSα and φ2 = φ− φ1. Using condition (1) it is easy to see that

∫
X
|φ1(x)|pρ(x) dµ =

σ(α2 )

σ(α2 )

∫
Sα

|φ(x)|pρ(x) dµ

≤
1

σ(α2 )

∫
Sα

|φ(x)|pρ(x)σ
(

2a1d(x0, x)
)

dµ

≤
c1

σ(α2 )

∫
Sα

|φ(x)|pw(x) dµ <∞

for arbitrary α, 0 < α < a
a1

. Consequently for such α, Kφ1 ∈ Lp
ρ(X) (see, for example, [8]

and [19], Section 6.13, p. 21) and Kφ1(x) exists µ-a.e. on X.
Now let x be such that d(x0, x) > αa1 (the constant a1 appears in the definition of X). If

y ∈ X and d(x0, y) < α
2 then

d(x0, x) ≤ a1

(
d(x0, y) + d(y, x)

)
≤ a1

(
d(x0, y) + a0d(x, y)

)
.

Hence

d(x, y) ≥
1

a0a1
d(x0, x)−

1

a0
d(x0, y) ≥

α

a0
−

α

2a0
=

α

2a0
.

In addition

µ
(

B
(

x0, d(x, y)
))
≤ cµ

(
B
(
x, d(x, y)

))
.

In fact for z ∈ B
(
x0, d(x, y)

)
we have

d(x, z) ≤ a1

(
d(x, x0) + d(x0, z)

)
≤ a1

(
d(x, x0) + d(x, y)

)
.

On the other hand

d(x, x0) ≤ a1

(
d(x, y) + d(y, x0)

)
≤ a1

(
d(x, y) + a0d(x0, y)

)

≤ a1

(
d(x, y) +

a0α

2

)
≤ a1

(
d(x, y) + a2

0d(x, y)
)
= a1(1 + a2

0) d(x, y)

and

d(x, z) ≤ a1

(
a1(1 + a2

0) d(x, y) + d(x, y)
)
= a1

(
1 + a1(1 + a2

0)
)

d(x, y).
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Hence

B
(
x0, d(x, y)

)
⊂ B
(

x, a1(1 + a1(1 + a2
0)
)

d(x, y)
)
.

By the doubling condition (vii) above we conclude that

µ
(

B
(
x0, d(x, y)

))
≤ cµ

(
B
(
x, d(x, y)

))
.(2.2)

For Kφ2 by (2.2) and the Hölder inequality we have

|Kφ2(x)| =
∣∣∣
∫

X
φ2(y)k(x, y) dµ

∣∣∣ ≤ c

∫
B(x0,

α
2 )

|φ(y)|

µ
(

B
(
x, d(x, y)

)) dµ

≤ c

∫
B(x0,

α
2 )

|φ(y)|

µ
(

B
(
x0, d(x, y)

)) dµ ≤
c

µ
(
B(x0,

α
2a0

)
)
∫

B(x0,
α
2 )
|φ(y)| dµ

≤
c

µB(x0,
α

2a0
)

(∫
B(x0,

α
2 )
|φ(y)|pw(y) dµ

)1/p(∫
B(x0,

α
2 )

w1−p ′(y) dµ
)1/p ′

<∞.

Thus Kφ(x) is absolutely convergent for arbitrary x such that d(x0, x) > αa1. We can take
α arbitrarily small and as µ{x0} = 0 we conclude that Kφ2(x) converges absolutely µ-a.e.
on X. By (2.1), Kφ(x) exists a.e. on X.

Theorem 2.1 Let 1 < p < ∞, suppose that µ{x0} = 0, let σ be a positive continuous
increasing function on (0, 4a1a), let ρ ∈ Ap(X) and suppose that w is a weight function on X.
Let v(x) = σ

(
d(x0, x)

)
ρ(x) and suppose that the following conditions are fulfilled:

(i) there exists c > 0 such that

σ
(
2a1d(x0, x)

)
ρ(x) ≤ cw(x) µ-a.e.;(2.3)

(ii)

sup
0<t<a

(∫
X\B(x0,t)

v(x)(
µ
(

B
(
x0, d(x0, x)

)))p

)(∫
B(x0,t)

w1−p ′(x) dµ
)p−1

<∞.(2.4)

Then there exists a constant c > 0 such that for any f ∈ Lp
w(X) we have

∫
X
|K f (x)|pv(x) dµ ≤ c

∫
X
| f (x)|pw(x) dµ.(2.5)
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Proof Without loss of generality we can suppose that σ may be represented by

σ(t) = σ(0+) +

∫ t

0
φ(τ ) dτ , φ ≥ 0.

In fact there exists a sequence of absolutely continuous functions σn such that σn(t) ≤ σ(t)
and limn→∞ σn(t) = σ(t) for any t ∈ (0, 4a1a). For such functions we may take

σn(t) = σ(0+) + n

∫ t

0

[
σ(τ )− σ

(
τ −

1

n

)]
dτ .

We have∫
X
|K f (x)|pv(x) dµ = σ(0+)

∫
X
|K f (x)|pρ(x) dµ

+

∫
X
|K f (x)|pρ(x)

(∫ d(x0,x)

0
φ(t) dt

)
dµ = I1 + I2.

If σ(0+) = 0 then I1 = 0. If σ(0+) �= 0 by the boundedness of K in Lp
ρ(X) thanks to

(2.3)

I1 ≤ cσ(0+)

∫
X
| f (x)|pρ(x) dµ(2.6)

≤ c

∫
X
| f (x)|pρ(x)σ

(
2a1d(x0, x)

)
dµ ≤ c

∫
X
| f (x)|pw(x) dx.

After changing the order of integration in I2 we have

I2 =

∫ a

0
φ(t)
(∫
{x:d(x0,x)>t}

|K f (x)|pρ(x) dµ
)

dt

≤ c

∫ a

0
φ(t)
(∫
{x:d(x0,x)>t}

ρ(x)
∣∣∣
∫
{y:d(x0,y)> t

2a1
}

f (y)k(x, y) dµ
∣∣∣p dµ

)
dt

+ c

∫ a

0
φ(t)
(∫
{x:d(x0,x)>t}

ρ(x)
∣∣∣
∫
{y:d(x0,y)≤ t

2a1
}

f (y)k(x, y) dµ
∣∣∣p dµ

)
dt

= I21 + I22.

Using the boundedness of K in Lp
ρ(x) we obtain

I21 ≤ c

∫ a

0
φ(t)
(∫
{y:d(x0,y)> t

2a1
}
| f (y)|pρ(y) dµ

)
dt(2.7)

≤ c

∫
X
| f (y)|pρ(y)

(∫ 2a1d(x0,y)

0
φ(t) dt

)
dµ

≤ c

∫
X
| f (y)|pρ(y)σ

(
2a1d(x0, y)

)
dµ

≤ c

∫
X
| f (y)|pw(y) dµ.
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Now we estimate I22. When d(x0, x) > t and d
(

x0, y
)
≤ t

2a1
we have

d(x0, x) ≤ a1

(
d(x0, y) + d(y, x)

)
≤ a1

(
d(x0, y) + a0d(x, y)

)

≤ a1

( t

2a1
+ a0d(x, y)

)
≤ a1

(
d(x0, x)

2a1
+ a0d(x, y)

)
.

Hence

d(x0, x)

2a1a0
≤ d(x, y)

and

µ
(

B
(
x, d(x0, x)

))
≤ bµ

(
B
(

x,
d(x0, x)

2a1a0

))
≤ bµ

(
B
(
x, d(x, y)

))
.(2.8)

As in the preceding Lemma 2.1 we conclude that

µ
(

B
(
x0, d(x0, x)

))
≤ bµ

(
B
(
x, d(x0, x)

))

and therefore from (2.8) we have

µ
(

B
(
x0, d(x0, x)

))
≤ bµ

(
B
(
x, d(x, y)

))
.(2.9)

Using (2.9) we derive the inequalities

I22 ≤ c

∫ a

0
φ(t)

(∫
{x:d(x0,y)>t}

ρ(x)

(∫
{y:d(x0,y)≤ t

2a1
}

| f (y)|

µ
(

B
(
x, d(x, y)

))
)p

dµ

)
dt

≤ c

∫ a

0
φ(t)

(∫
{x:d(x0,x)>t}

ρ(x)(
µ
(

B
(
x0, d(x0, x)

)))p

)(∫
B(x0,t)

| f (y)| dµ
)p

dt.

It is easy to see that for any s, 0 < s < a, we have

∫ a

s
φ(t)

(∫
{x:d(x0,x)>t}

ρ(x)(
µ
(

B
(
x0, d(x0, x)

)))p dµ

)
dt

≤

∫
{x:d(x0,x)≥s}

ρ(x)(
µ
(

B
(
x0, d(x0, x)

)))p ·
(∫ d(x0,x)

s
φ(t) dt

)
dµ

≤

(∫
{x:d(x0,x)≥s}

ρ(x)σ
(

d(x0, x)
)

(
µ
(

B
(
x0, d(x0, x)

)))p

)
dµ.
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Now applying Theorem 1.1 we conclude that

I22 ≤ c

∫
X
| f (x)|pw(x) dµ.

Finally from the last estimate and (2.7) we obtain (2.5).

Corollary 2.1 Let 1 < p < ∞, suppose that µ{x0} = 0, let σ and u be positive, in-
creasing functions on (0, 4a1a), let ρ ∈ Ap(X) and put v(x) = σ

(
d(x0, x)

)
ρ(x), w(x) =

u
(

d(x0, x)
)
ρ(x). Then the inequality (2.5) is valid under the following two conditions:

there exists a positive number b such that

σ
(

2a1t
)
≤ bu(t)(2.10)

for any t ∈ (0, 2a);

sup
0<t<a

(∫
X\B(x0 ,t)

v(x)(
µ
(

B
(
x0, d(x0, x)

)))p dµ

)(∫
B(x0,t)

w1−p ′(x) dµ
)p−1

<∞.(2.11)

Now we are going to consider the case when the weight on the left side is decreasing. We
shall assume that throughout the rest of Section 2 and in Section 3,

a = sup{d(x0, x) : x ∈ X} =∞.

Lemma 2.2 Let 1 < p < ∞, let σ be a positive decreasing function on (0,∞), let ρ ∈ Ap

and let w be a weight function. Suppose the following conditions are fulfilled:

(i) there exists a positive constant b such that

σ

(
d(x0, x)

2a1

)
ρ(x) ≤ bw(x) a.e.(2.12)

(ii)

∫
X\B(x0,t)

w1−p ′(x)

(
µ
(

B
(
x0, d(x0, x)

)))−p ′

dµ <∞(2.13)

for any t > 0.

Then Kφ(x) exists µ-a.e. for arbitrary φ ∈ Lp
w(X).

Proof Fix arbitrarily α > 0 and let

Sα = {x : d(x0, x) ≥ α}.
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Write

φ(x) = φ1(x) + φ2(x),

where φ1(x) = φ(x)χSα(x) and φ2(x) = φ(x)− φ1(x).
For φ2 we have

∫
X
|φ2(x)|pρ(x) dµ =

σ(α)

σ(α)

∫
B(x0,α)

|φ(x)|pρ(x) dµ

≤
1

σ(α)

∫
B(x0,α)

|φ(x)|pρ(x)σ
(

d(x0, x)
)

dµ

≤
c1

σ(α)

∫
B(x,α)

|φ(x)|pw(x) dµ <∞.

Hence φ2 ∈ Lp
ρ(X) and so Kφ2 ∈ Lp

ρ(X). From this we see that Kφ2(x) exists almost
everywhere.

Now let x ∈ X be such that d(x0, x) < α
2a1

. If d(x0, y) ≥ α then

d(x0, y) ≤ a1

(
d(x0, x) + d(x, y)

)

and so

d(x, y) ≥
1

a1
d(x0, y)− d(x0, x) ≥

α

a1
−

α

2a1
=

α

2a1
.

Moreover, it is easy to prove that

µ
(

B
(

x0, d(x0, y)
))
≤ bµ

(
B
(
x, d(x, y)

))
.

From these inequalities we obtain estimates for φ1:

|Kφ1(x)| ≤ c

∫
Sα

|φ(y)|

µ
(

B
(
x, d(x, y)

)) dµ ≤ c

∫
Sα

|φ(y)|

µ
(

B
(
x0, d(x0, y)

)) dµ

≤ c
(∫

Sα

|φ(y)|pw(y) dµ
)1/p
(∫

Sα

w1−p ′
(
µ
(

B
(
x0, d(x0, y)

)))−p ′

dµ

)1/p ′

<∞.

As we may take α arbitrarily large we conclude that Kφ1(x) and consequently Kφ(x), exist
a.e.

Theorem 2.2 Let 1 < p < ∞, suppose that µ{x0} = 0, let σ be a positive continuous
decreasing function on (0,∞), let ρ ∈ Ap(X), v(x) = σ

(
d(x0, x)

)
ρ(x) and suppose that w is

a weight function. Assume that the following two conditions are fulfilled:
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(i) there exists a positive c such that

σ

(
d(x0, x)

2a1

)
ρ(x) ≤ cw(x);(2.14)

(ii)

sup
t>0

(∫
B(x0,t)

v(x) dµ
)(∫

X\B(x0,t)
w1−p ′(x)

(
µ
(

B
(
x0, d(x0, x)

)))−p ′

dµ

)p−1

<∞.

(2.15)

Then the inequality (2.5) is valid.

Proof Without loss of generality we suppose that σ is representable as

σ(t) = σ(+∞) +

∫ ∞
t

φ(τ ) dτ .

In fact there exists a sequence of decreasing absolutely continuous functions such that
σn(t) ≤ σ(t) and limn→∞ σn(t) = σ(t) for any t . For example, we may take

σn(t) = σ(+∞) + n

∫ ∞
t

[
σ(τ )− σ

(
τ +

1

n

)]
dτ .

It is easy to see that

σn(t) = n

∫ t+ 1
n

t
σ(τ ) dτ .

Moreover limn→∞ σn(t) = σ(t) for any t by virtue of the continuity of σ. On the other
hand σn(t) ≤ σ(t) for any t > 0. Hence

∫
X
|K f (x)|pv(x) dx = σ(+∞)

∫
X
|K f (x)|pρ(x) dµ

+

∫
X
|K f (x)|p

(∫ ∞
d(x0,x)

φ(t) dt
)

dµ = I1 + I2.

If σ(+∞) = 0 then I1 = 0. But if σ(+∞) �= 0 by virtue of the boundedness of K in Lp
ρ(X)

we have

I1 ≤ cσ(+∞)

∫
X
| f (x)|pρ(x) dµ(2.16)

≤ c

∫
X
| f (x)|pρ(x)σ

(
d(x0, x)

2a1

)
dµ ≤ c

∫
X
| f (x)|pw(x) dµ.
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Now we pass to I2:

I2 ≤

∫ ∞
0

φ(t)
(∫

B(x0,t)
|K f (x)|pρ(x) dµ

)
dt

≤ c

∫ ∞
0

φ(t)
(∫

B(x0,t)
ρ(x)
∣∣∣
∫

B(x0,2a1t)
f (y)k(x, y) dµ

∣∣∣p dµ
)

+ c

∫ ∞
0

φ(t)
(∫

B(x0,t)
ρ(x)
∣∣∣
∫

X\B(x0 ,2a1t)
f (y)k(x, y) dµ

∣∣∣p dµ
)

dt = I21 + I22.

Again since K is bounded in Lp
ρ(X) we obtain:

I21 ≤ c

∫ ∞
0

φ(t)
(∫

B(x0,2a1t)
| f (y)|pρ(y) dµ

)
dt(2.17)

= c

∫
X
| f (y)|pρ(y)

(∫ ∞
d(x0,x)

φ(t) dt
)

dµ ≤ c

∫
X
| f (y)|pw(y) dµ.

It remains to estimate I22. When x ∈ B(x0, t) and y ∈ X \ B(x0, 2a1t) we have

µ
(

B
(

x0, d(x0, y)
))
≤ bµ

(
B
(
x, d(x, y)

))
.

In fact,

d(x0, y) ≤ a1

(
d(x0, x) + d(x, y)

)
≤ a1

(
t + d(x, y)

)
≤ a1

(
d(x0, y)

2a1
+ d(x, y)

)
.

Hence

d(x0, y)

2a1
≤ d(x, y)

and

µ
(

B
(
x, d(x0, y)

))
≤ bµ

(
B
(
x, d(x, y)

))
.(2.18)

In addition

µ
(

B
(
x0, d(x0, y)

))
≤ bµ

(
B
(
x, d(x0, y)

))
.(2.19)

For if z ∈ B
(
x0, d(x0, y)

)
, then

d(x, z
)
≤ a1

(
d(x, x0) + d(x0, z)

)
≤ a1

(
a0d(x0, x) + d(x0, y)

)

≤ a1

(
a0t + d(x0, y)

)
≤ a1

(
a0

d(x0, y)

2a1
+ d(x0, y)

)

= a1

( a0

2a1
+ 1
)

d(x0, y).
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From this by the doubling condition we obtain (2.19). Using the inequalities obtained
we derive the estimates:

I22 ≤ c

∫ ∞
0

φ(t)
(∫

B(x0,t)
ρ(x) dµ

)(∫
X\B(x0,2a1t)

| f (y)|µ
(

B
(
x0, d(x0, y)

))
dµ

)p

dt

≤ c

∫ ∞
0

φ(t)
(∫

B(x0,t)
ρ(x) dµ

)(∫
{y:d(x0,y)>t}

| f (y)|µ
(

B
(
x0, d(x0, y)

))
dµ

)p

dt.

In addition ∫ s

0
φ(t)
(∫

B(x0,t)
ρ(x) dµ

)
dt =

∫
B(x0,s)

ρ(x)
(∫ s

d(x0,x)
φ(t) dt

)
dµ.

Now application of Theorem 1.2 gives the desired inequality (2.5).

Corollary 2.2 Let 1 < p < ∞, µ{x0} = 0, let σ and u be positive decreasing func-
tions on (0,∞) with σ continuous, let ρ ∈ Ap(X), put v(x) = σ

(
d(x0, x)

)
ρ(x), w(x) =

u
(

d(x0, x)
)
ρ(x) and suppose that the following two conditions are fulfilled:

(i) there exists a positive number b1 such that

σ
( t

2a1

)
≤ b1u(t)(2.20)

for any t > 0;
(ii)

sup
t>0

(∫
B(x0,t)

v(x) dµ
)(∫

X\B(x0,t)
w1−p ′(x)

(
µ
(

B
(
x0, d(x0, x)

)))−p ′

dµ

)p−1

<∞.

(2.21)

Then (2.5) is valid.

In the sequel we investigate the cases when the condition (2.11) ((2.21)) implies (2.10)
((2.20)).

We prove a preliminary

Lemma 2.3 Let 1 < p < ∞, let ρ ∈ Ap(X) and suppose 0 < c1 ≤ c2 < c3 < ∞. Then
there exists a positive number c such that for any t > 0 we have

∫
B(x0,c3t)\B(x0,c2t)

ρ(x) dµ ≤ c

∫
B(x0,c1t)

ρ(x) dµ.

Proof By the definition of the maximal function M and the doubling condition we have

Mφ(x) ≥

(
1

µ
(
B(x0, c3t)

)
∫

B(x0,c3t)
|φ(y)| dµ

)
χB(x0,c3t)\B(x0,c2t)(x)(2.22)

≥

(
b1

µ
(
B(x0, c1t)

)
∫

B(x0,c1t)
|φ(y)| dµ

)
χB(x0,c3t)\B(x0,c2t)(x)
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for any φ ∈ Lp
ρ(X). From (2.22), in view of the boundedness of the operator M in Lp

ρ(X)
(see [19]) we obtain

∫
B(x0,c3t)\B(x0,c2t)

(
1

µ
(
B(x0, c1t)

)
∫

B(x0,c1t)
|φ(y)| dµ

)p

ρ(x) dµ ≤ c

∫
X
|φ(y)|pρ(y) dµ.

If in the last inequality we take φ(y) = χB(x0,c1t)(y), the desired estimate follows.

Definition Let a = ∞. A measure µ satisfies the reverse doubling condition (µ ∈ RD) if
there exist constants η1 > 1 and η2 > 1 such that

µ
(
B(x, η1r)

)
≥ η2µ

(
B(x, r)

)
for any x ∈ X and all r > 0.

For this definition and its connection with the doubling condition see, for example, [18]
and also [20], p. 11. As a measure with the doubling condition satisfies the reverse doubling
condition as well therefore we are able to show that from (2.11) ((2.21)) automatically
follows (2.10) ((2.20)).

Theorem 2.3 Let 1 < p < ∞, suppose that µ{x0} = 0, let σ and u be positive increasing
functions on (0,∞) with σ continuous, let ρ ∈ Ap(X), put v(x) = σ

(
d(x0, x)

)
ρ(x), w(x) =

u
(
d(x0, x)

)
ρ(x) and suppose that

sup
t>0

(∫
X\B(x0 ,t)

v(x)(
µ
(

B
(
x0, d(x0, x)

)))p dµ

)(∫
B(x0,t)

w1−p ′(x) dµ
)p−1

<∞.(2.23)

Then (2.5) holds.

Proof By Corollary 2.1 it is sufficient to prove that (2.23) implies that, given β > 1, there
is a positive constant b such that

σ(βt) ≤ bu(t)(2.24)

for all t > 0.
Let η ≥ η1 > 0, where η1 is as in the definition of the (RD) condition. In view of (RD)

we have

µ
(
B(x0, ηβt) \ B(x0, βt)

)
= µ
(

B(x0, ηβt)
)
− µ
(
B(x0, βt)

)

≥ µ
(

B(x0, ηβt)
)
−

1

η2
µ
(
B(x0, ηβt)

)

≥
(

1−
1

η2

)
µ
(
B(x0, ηβt)

)
.

Hence

µ
(
B(x0, ηβt) \ B(x0, βt)

)
≥ bµ

(
B(x0, ηβt)

)
.(2.25)
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Since σ and u are monotone, we have(∫
X\B(x0,t)

v(x)

(
µ
(

B
(
x0, d(x0, x)

)))−p

dµ

)
(2.26)

≥

∫
X\B(x0,βt)

σ
(
d(x0, x)

)
ρ(x)

(
µ
(

B
(
x0, d(x0, x)

)))−p

dµ

≥

∫
B(x0,ηβt)\B(x0,βt)

σ
(
d(x0, x)

)
ρ(x)(

µ
(

B
(
x0, d(x0, x)

)))p dµ

≥ σ(βt)

∫
B(x0,ηβt)\B(x0,βt)

ρ(x)(
µ
(

B
(
x0, d(x0, x)

)))p dµ

and (∫
B(x0,t)

w1−p ′(x) dµ
)p−1

=
(∫

B(x0,t)
u1−p ′

(
d(x0, x)

)
ρ1−p ′(x) dµ

)p−1
(2.27)

≥
1

u(t)

(∫
B(x0,t)

ρ1−p ′(x) dµ
)p−1

.

Using Hölder’s inequality, Lemma 2.3, (2.25), (2.26) and (2.27) it follows that

σ(βt)

u(t)
=
σ(βt)

u(t)

(
1

µ
(
B(x0, ηβt) \ B(x0, βt)

)
∫

B(x0,ηβt)\B(x0,βt)
ρ1/p(x)ρ−1/p(x) dµ

)p

≤
σ(βt)

u(t)
(
µ
(

B(x0, ηβt) \ B(x0, βt)
))p

∫
B(x0,ηβt)\B(x0,βt)

ρ(x) dµ

·
(∫

B(x0,ηβt)\B(x0,βt)
ρ1−p ′(x) dµ

)p−1

≤ b
σ(βt)

u(t)
(
µ
(
B(x0, ηβt)

))p

∫
B(x0,ηβt)\B(x0,βt)

ρ(x) dµ
(∫

B(x0,t)
ρ1−p ′(x) dµ

)p−1

≤ b
σ(βt)

u(t)

(∫
B(x0,ηβt)\B(x0,βt)

ρ(x)
(
µ
(
B(x0, ηβt)

))−p
dµ

)(∫
B(x0,t)

ρ1−p ′(x) dµ
)p−1

≤ b
σ(βt)

u(t)

(∫
B(x0,ηβt)\B(x0,βt)

ρ(x)

(
µ
(

B
(
x0, d(x0, x)

)))−p

dµ

)

·
(∫

B(x0,t)
ρ1−p ′(x) dµ

)p−1

≤ b

(∫
X\B(x0,t)

v(x)(
µ
(

B
(

x0, d(x0, x)
)))p dµ

)(∫
B(x0,t)

w1−p ′(x) dµ
)p−1

≤ c.
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Finally by Corollary 2.1 we obtain (2.5).
Analogously we can prove

Theorem 2.4 Let 1 < p < ∞, suppose µ{x0} = 0, let σ and u be positive decreasing func-
tions, σ be continuous, ρ ∈ Ap(X) and put v(x) = σ

(
d(x0, x)

)
ρ(x), w(x) = u

(
d(x0, x)

)
ρ(x).

Suppose that

sup
t>0

(∫
B(x0,t)

v(x) dµ
)(∫

X\B(x0,t)

w1−p ′(x)(
µ
(

B
(
x0, d(x0, x)

)))p ′ dµ

)p−1

<∞.(2.28)

Then (2.5) holds.

We shall now discuss the following question: if a pair (σ, u) of positive increasing (de-
creasing) functions satisfies the condition (2.23) ((2.28)) with ρ ≡ 1, then for which func-
tions ρ ∈ Ap(X) does (2.5) remain valid? It is evident that not all ρ in Ap(X) have this
property. Nevertheless we have

Theorem 2.5 Let 1 < p < ∞, let µ{x0} = 0. Let σ and u be positive increasing functions
on (0,∞), with σ continuous. If

sup
t>0

(∫
X\B(x0 ,t)

σ
(
d(x0, x)

)
(
µ
(

B
(
x0, d(x0, x)

)))p dµ

)(∫
B(x0,t)

u1−p ′
(
d(x0, x)

)
dµ
)p−1

<∞

(2.29)

and ρ ∈ A1(X) then we have

∫
X
|K f (x)|pσ

(
d(x0, x)

)
ρ(x) dµ ≤ c

∫
X
| f (x)|pu

(
d(x0, x)

)
ρ(x) dµ.(2.30)

Proof Let η1 and η2 be as in the definition of condition (RD). Then we have

µ
(

B(x0, η
k+1
1 t) \ B(x0, η

k
1t)
)
≥ (η2 − 1)µ

(
B(x0, η

k
1t)
)

for any non-negative integer k.
From this and the doubling condition for µ we derive

∫
B(x0,η

k+1
1 t)\B(x0,η

k
1t)
ρ(x)

(
µ
(

B
(
x0, d(x0, x)

)))−p

dµ(2.31)

≤
bp−1(

µ
(
B(x0, η

k
1t)
))p−1

1

µ
(
B(x0, η

k+1
1 t)
)
∫

B(x0,η
k+1
1 t)

ρ(x) dµ.
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Now using (2.31) and the A1 condition for ρ we obtain the following estimates, in which

A = ess sup
x∈B(x0,η

k+1
1 t)

1

ρ(x)

(∫
B(x0,η

k+1
1 t)

u1−p ′
(
d(x0, x)

)
dµ
)p−1

:

∫
X\B(x0,t)

σ
(
d(x0, x)

)
ρ(x)(

µ
(

B
(
x0, d(x0, x)

)))p dµ
(∫

B(x0,t)
u1−p ′

(
d(x0, x)

)
ρ1−p ′(x) dµ

)p−1

≤ A
∞∑

k=0

∫
B(x0,η

k+1
1 t)\B(x0,η

k
1t)

σ
(
d(x0, x)

)
ρ(x)(

µ
(

B
(
x0, d(x0, x)

)))p dµ

≤ Ab
∞∑

k=0

σ(ηk+1
1 t)(

µ
(
B(x0, η

k
1t)
))p−1

1(
µ
(
B(x0, η

k+1
1 t)
))
∫

B(x0,η
k+1
1 t)

ρ(x) dµ

≤ b
∞∑

k=0

∫
B(x0,η

k+2
1 t)\B(x0,η

k+1
1 t)

σ
(
d(x0, x)

)
(
µ
(

B
(
x0, d(x0, x)

)))p dµ

·
(∫

B(x0,η
k+2
1 t)

u1−p ′
(
d(x0, x)

)
dµ
)p−1

≤ b.

Finally with the help of Theorem 2.3 we obtain (2.30).

Theorem 2.6 Let 1 < p < ∞, µ{x0} = 0, let σ and u be decreasing functions on (0,∞)
with σ continuous, and suppose that

sup
t>0

(∫
B(x0,t)

σ
(
d(x0, x)

)
dµ
)(∫

X\B(x0 ,t)

u1−p ′
(
d(x0, x)

)
(
µ
(
B
(
x0, d(x0, x)

)))p ′ dµ

)p−1

<∞.(2.32)

Then if ρ ∈ A1(X) we have the inequality

∫
X
|K f (x)|pσ

(
d(x0, x)

)
ρ1−p(x) dµ ≤ c

∫
X
| f (x)|pu

(
d(x0, x)

)
ρ1−p(x) dµ(2.33)

with a constant c independent of f .

Proof Again let η1 and η2 be as in the definition of the reverse doubling condition. By
the A1 condition for ρ, the doubling and the (RD) conditions and (2.32) we obtain the

https://doi.org/10.4153/CJM-2000-022-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2000-022-5


Two-Weight Estimates 491

following chain of inequalities:

(∫
B(x0,t)

σ
(
d(x0, x)

)
ρ1−p(x) dµ

)p ′−1
(∫

X\B(x0 ,t)

u1−p ′
(
d(x0, x)

)
ρ(1−p)(1−p ′)(x)(

µ
(

B
(
x0, d(x0, x)

)))p ′
dµ

)

=
(∫

B(x0,t)
σ
(
d(x0, x)

)
ρ1−p(x) dµ

)p ′−1

×

( ∞∑
k=0

∫
B(x0,η

k+1
1 t)\B(x0,η

k
1t)

u1−p ′
(
d(x0, x)

)
ρ(x)(

µ
(

B
(
x0, d(x0, x)

)))p ′ dµ

)

≤ b
(∫

B(x0,t)
σ
(
d(x0, x)

)
dµ
)p ′−1 ∞∑

k=0

u1−p ′(ηk+1
1 t)(

µ
(
B(x0, η

k
1t)
))p ′−1

≤ b
(∫

B(x0,t)
σ
(
d(x0, x)

)
dµ
)p ′−1 ∞∑

k=0

u1−p ′(ηk+1
1 t)

×

∫
B(x0,η

k+2
1 t)\B(x0,η

k+1
1 t)

dµ(
µ
(

B
(

x0, d(x0, x)
)))p ′

≤ b
(∫

B(x0,η1t)
σ
(
d(x0, x)

)
dµ
)p ′−1

∫
X\B(x0 ,η1t)

u1−p ′
(
d(x0, x)

)
(
µ
(

B
(
x0, d(x0, x)

)))p ′ dµ ≤ b.

As ρ ∈ A1 it follows that ρ1−p ∈ Ap, and by Theorem 2.4 the last estimation leads to the
desired result.

3 Two-Weight Weak-Type Inequalities

In this section we shall establish two-weight weak-type inequalities for singular integrals
defined on an SHT (X, d, µ). We need the following lemmas.

Lemma 3.1 Let µ{x0} = 0, let w be a weight function on X and let ρ ∈ A1(X). Suppose that
the following conditions are fulfilled:

(i) there exists a positive increasing function σ on (0,∞) such that for some positive constant
b1, and with a1 as in the definition of (X, d, µ),

σ
(
2a1d(x0, x)

)
ρ(x) ≤ b1w(x) a.e.

(ii)

ess sup
x∈B(x0,t)

1

w(x)
<∞

for any t > 0.
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Then K f (x) exists a.e. on X for any φ ∈ L1
w(X).

Proof Fix α > 0. Let

Sα = X \ B(x0,
α

2
)

and given φ ∈ L1
w(X), put

φ(x) = φ1(x) + φ2(x)

where φ1(x) = φ(x)χSα(x), φ2(x) = φ(x)− φ1(x). For φ1 we have

∫
X
|φ1(x)|ρ(x) dµ =

σ(α2 )

σ(α2 )

∫
Sα

|φ(x)|ρ(x) dµ ≤
1

σ(α2 )

∫
Sα

|φ(x)|ρ(x)σ
(

d(x0, x)
)

dµ

≤
b

σ(α/2)

∫
Sα

|φ(x)|w(x) dµ <∞.

Consequently φ1 ∈ L1
ρ(X) and so due to the weak-type one-weight inequality, Kφ1 belongs

to weak L1
ρ(X) (see, for example, [8] and also [5], p. 309). Hence Kφ1(x) exists a.e.

Now we shall show that Kφ2(x) converges absolutely on the set {x : d(x0, x) > αa1}.
For d(x0, y) < α

2 and d(x0, x) > α we have d(x, y) ≥ α
2a0

and

µ
(

B
(
x0, d(x, y)

))
≤ bµ

(
B
(
x, d(x, y)

))
.

(See the proof of Lemma 2.1).
Then

|Kφ2(x)| ≤ b

∫
B(x0,α/2)

|φ(y)|

µ
(

B
(
x, d(x, y)

)) dµ ≤ b
1

µ
(

B(x, α)
)
∫

B(x0,α/2)
|φ(y)| dµ

≤
b

µ
(
B(x0, α)

)
∫

B(x0,α)
|φ(y)|w(y) dµ

(
ess sup
x∈B(x0,d)

1

w(x)

)
<∞.

In view of the arbitrariness of α we conclude that Kφ2(x) is convergent and Kφ(x) exists
a.e.

Analogously we can prove

Lemma 3.2 Let w be a weight function on X and let ρ ∈ A1(X). Suppose that

(i) there exists a positive decreasing function σ on (0,∞) such that

σ

(
d(x0, x)

2a1

)
ρ(x) ≤ bw(x) a.e.;
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(ii)

ess sup
x∈X\B(x0 ,t)

1

w(x)µ
(

B
(
x0, d(x0, x)

)) <∞

for any t > 0.

Then Kφ(x) exists a.e. for arbitrary φ ∈ L1
w(X).

Let

P f (x) =
1

µ
(

B
(

x0, d(x0, x)
))
∫
{d(x0,y)<d(x0,x)}

f (y) dµ.

Lemma 3.3 Let µ{x0} = 0, v and w be weight functions on X. If the following condition is
fulfilled:

sup
τ ,t
τ>t

(
1

µ
(
B(x0, τ )

)
∫
{x∈X:t<d(x0 ,x)<τ}

v(x) dµ

)
ess sup
{d(x0,x)≤t}

1

w(x)
<∞,

then there exists a positive constant c such that for any λ > 0 and f ∈ L1
w(X) we have

∫
{x:|P f (x)|>λ}

v(x) dµ ≤
c

λ

∫
X
| f (x)|w(x) dµ.

Proof Let f ≥ 0, f ∈ L1
w(X); then for arbitrary s > 0 we have

∫
B(x0,s)

f (x) dµ ≤
(∫

B(x0,s)
f (x)w(x) dµ

)
ess sup
x∈B(x0 ,s)

1

w(x)
<∞.

The function

I(s) =

∫
B(x0,s)

f (x) dµ

is left-continuous and lims→0 I(s) = 0. Now suppose

∫
X

f (x) dµ ∈ (2m, 2m+1]

for some integer m and let a j = sup{s : I(s) ≤ 2 j} for j ≤ m + 1. It is easy to see that
am+1 =∞. If s > a j , then G(s) > 2 j . Moreover,

∫
{x:a j≤d(x0,x)≤a j +1}

f (x) dµ ≥ 2 j .
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The sequence {a j}m
j=−∞ is nondecreasing; let α = lim j→−∞ a j . If Jm = { j ≤ m : a j <

a j+1} then we have [0,∞) =
⋃

j∈ Jm
(a j , a j+1]∪ [0, α], where (am, am+1] = (am,+∞). Thus

X =
⋃
j∈ Jm

E j ∪ F,

where E j = {x ∈ X : a j < d(x0, x) ≤ a j+1} and F = {x ∈ X : 0 ≤ d(x0, x) ≤ α}. If

∫
X

f (x) dµ =∞,

then in this case m =∞ and

X =
⋃
j∈ J

E j ∪ F,

where J = { j ∈ Z : a j < a j+1}. Now let s ∈ (a j , a j+1]; then I(s) ≤ I(a j+1) ≤ 2 j+1 as
j ≤ m. For s ∈ [0, α] we have

I(s) ≤ I(a j) ≤ 2 j

for arbitrary j ≤ m, and consequently I(s) = 0. If we put

sup
λ>0

λ
(∫
{x∈X:|g(x)|>λ}

v(x) dµ
)
= ‖g(·)‖L1∞

v (X)

for any measurable function g, then we have the following estimates:

∥∥∥∥
(
µ
(

B
(
x0, d(x0, ·)

)))−1

I
(
d(x0, ·)

)∥∥∥∥
L1∞

v (X)

≤
∑
j∈ J

∥∥∥∥χE j (·)

(
µ
(

B
(
x0, d(x0, ·)

)))−1

I
(
d(x0, ·)

)∥∥∥∥
L1∞

v (X)

≤
∑
j∈ J

2 j+1

∥∥∥∥χE j (·)

(
µ
(

B
(
x0, d(x0, ·)

)))−1∥∥∥∥
L1∞

v (X)

= 4
∑
j∈ J

2 j−1

∥∥∥∥χE j (·)

(
µ
(

B
(
x0, d(x0, ·)

)))−1∥∥∥∥
L1∞

v (X)

≤ 4
∑
j∈ J

(∫
{a j−1≤d(x0,x)≤a j}

f (x) dµ
)∥∥∥∥χE j (·)

(
µ
(

B
(
x0, d(x0, ·)

)))−1∥∥∥∥
L1∞

v (X)

≤ 8
(
sup
t>0

h(t)
)
‖ f (·)‖L1∞

v (X),
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where

h(t) =

∥∥∥∥χ{d(x0,x)>t}(·)

(
µ

(
B
(

x0, d
(
x0, (·)

))))−1∥∥∥∥
L1∞

v (X)

ess sup
{d(x0,x)≤t}

1

w(x)
.

Moreover, we have
∥∥∥∥χ{d(x0,x)>t}(·)

(
µ

(
B
(

x0, d
(
x0, (·)

))))−1∥∥∥∥
L1∞

v (X)

= sup
λ<(µ(B(x0,t)))−1

λ
(∫
{x:d(x0,x)>t,(µ(B(x0,d(x0,x))))−1>λ}

v(x) dµ
)

= sup
λ<(µ(B(x0,t)))−1

G(λ).

Let 0 < λ <
(
µ
(
B(x0, t)

))−1
; then there exists τ > 0 such that µ

(
B(x0,

τ
2 )
)
≤ λ−1 <

µ
(
B(x0, τ )

)
and we have

G(λ) ≤ µ

(
B
(

x0,
τ

2

))−1(∫
{x:µ(B(x0,t))<µ(B(x0,d(x0,x)))<µ(B(x0,τ ))}

v(x) dµ
)

≤ b
(
µ
(

B(x0, τ )
))−1(∫

{t<d(x0,x)<τ}
v(x) dµ

)

≤ b sup
τ>t

(
µ
(
B(x0, τ )

))−1(∫
{x:t<d(x0,x)<τ}

v(x) dµ
)

and finally we have

sup
t>0

h(t) ≤ b sup
τ ,t
τ>t

(
1

µ
(
B(x0, τ )

)
∫
{x∈X:t<d(x0 ,x)<τ}

v(x) dµ

)
ess sup
{d(x0,x)≤t}

1

w(x)
<∞.

Theorem 3.1 Let µ{x0} = 0, σ be a positive continuous increasing function on (0,∞), let
ρ ∈ A1(X), w be a weight function on X and put v(x) = σ

(
d(x0, x)

)
ρ(x). Suppose the

following two conditions are satisfied: there exists a positive constant b1 such that for µ-almost
all x ∈ X,

ρ(x)σ
(

2a1d(x0, x)
)
≤ b1w(x);(3.1)

and

sup
τ ,t
τ>t

(
1

µ
(
B(x0, τ )

)
∫
{x∈X:t<d(x0 ,x)<τ}

v(x) dµ

)
ess sup
{d(x0,x)≤t}

1

w(x)
<∞.(3.2)

Then there exists c > 0 such that for any λ > 0 and f ∈ L1
w(X) we have∫

{x∈X:|K f (x)|>λ}
v(x) dµ ≤

c

λ

∫
X
| f (x)|w(x) dµ.(3.3)
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Proof Put {x ∈ X : |K f (x)| > λ} = Hλ. Again we assume that σ(t) = σ(0+)+
∫ t

0 ψ(τ ) dτ ,
ψ ≥ 0. Then

∫
Hλ

v(x) dµ =

∫
Hλ

σ(0+)ρ(x) dµ +

∫
Hλ

ρ(x)
(∫ d(x0,x)

0
ψ(t) dt

)
dµ = I1 + I2.

Using a weak-type one-weight inequality for K and condition (3.1) we derive

I1 ≤
bσ(0+)

λ

∫
X
| f (x)|ρ(x) dµ ≤

b

λ

∫
X
| f (x)|ρ(x)σ

(
2a1d(x0, x)

)
dµ

≤
b

λ

∫
X
| f (x)|w(x) dµ.(3.4)

Now we estimate I2. Let

S =
{

x ∈ X :
∣∣∣
∫

X\B(x0 ,t/2a1)
k(x, y) f (y) dµ

∣∣∣ > λ

2

}
,

S1 =
{

x ∈ X :
∣∣∣
∫

B(x0,t/2a1)
k(x, y) f (y) dµ

∣∣∣ > λ

2

}
.

Then

I2 =

∫ ∞
0

ψ(t)
(∫
{x:d(x0,x)>t}

ρ(x)χHλ
dµ
)

dt

≤

∫ ∞
0

ψ(t)
(∫
{x:d(x0,x)>t}

ρ(x)χS dµ
)

dt

+

∫ ∞
0

ψ(t)
(∫
{x:d(x0,x)>t}

ρ(x)χS1 dµ
)

dt

= I21 + I22.

Since ρ ∈ A1(X) we have

I21 ≤

∫ ∞
0

ψ(t)
(∫

S
ρ(x) dµ

)
dt(3.5)

≤
b

λ

∫ ∞
0

ψ(t)
(∫

X\B(x0 ,t/2a1)
| f (x)|ρ(x) dµ

)
dt

=
b

λ

∫
X
ρ(x)| f (x)|

(∫ 2a1d(x0,x)

0
ψ(t) dt

)
dµ

≤
b

λ

∫
X
| f (x)|w(x) dµ.

Further we note that for d(x0, x) > t and d(x0, x) ≤ t
2a1

the inequality

µ
(

B
(
x0, d(x0, x)

))
≤ bµ

(
B
(
x, d(x, y)

))
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holds (see the proof of Theorem 2.1). By virtue of the last inequality we obtain the estimates

I22 ≤

∫ ∞
0

ψ(t)
(∫
{d(x0,x)>t}

ρ(x)χ{x∈X:cP f (x)>λ} dµ
)

dt

=

∫
{x∈X:cP f (x)>λ}

ρ(x)
(∫ d(x0,x)

0
ψ(t) dt

)
dµ

≤

∫
{x∈X:cP f (x)>λ}

v(x) dµ

and by Lemma 3.3 we obtain

I22 ≤
b

λ

∫
X
| f (x)|w(x) dµ.(3.6)

Finally (3.4), (3.5) and (3.6) lead to (3.3).

Theorem 3.2 Let µ{x0} = 0, let σ be a positive continuous decreasing function on (0,∞),
let ρ ∈ A1(X) and let w be a weight function on X. Suppose the following two conditions hold:

(i) there exists a positive constant b such that

ρ(x)σ

(
d(x0, x)

2a1

)
≤ bw(x) a.e. on X,

(ii)

sup
t>0

(∫
B(x0,t)

v(x) dµ
)

ess sup
x∈X\B(x0 ,2t)

1

w(x)µ
(

B
(
x0, d(x0, x)

)) <∞.

Then the inequality (3.3) is true.

The proof of this theorem is based on Proposition 1.2 and some aspects of the proof of
Theorem 2.2.

Corollary 3.1 Let µ{x0} = 0. Let σ and u be positive increasing functions on (0,∞) with
σ continuous, let ρ ∈ A1(X) and put v(x) = σ

(
d(x0, x)

)
ρ(x), w(x) = u

(
d(x0, x)

)
ρ(x).

Suppose the following conditions are satisfied:

(i) there exists a positive constant b1 such that

σ(2a1t) ≤ b1u(t)(3.7)

for all t > 0;
(ii)

sup
τ ,t
τ>t

(
1

µ
(
B(x0, τ )

)
∫
{x∈X:t<d(x0 ,x)<τ}

v(x) dµ

)
ess sup

{x:d(x0,x)≤t}

1

w(x)
<∞.(3.8)

Then the inequality (3.3) holds.
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Corollary 3.2 Let µ, σ, u, ρ, v and w be as in Corollary 3.1 except that σ and u are decreasing
rather than increasing. Suppose also that

(i) there exists a positive constant b such that

σ
( t

2a1

)
≤ bu(t)

for all t > 0;
(ii)

sup
t>0

(∫
B(x0,t)

v(x) dµ
)

ess sup
x∈X\B(x0 ,t/2)

1

w(x)µ
(

B
(
x0, d(x0, x)

)) <∞.

Then (3.3) holds.

Theorem 3.3 Let µ{x0} = 0, let σ and u be positive increasing functions on (0,∞) with
σ continuous and suppose that ρ ∈ A1(X). If further v(x) = σ

(
d(x0, x)

)
ρ(x), w(x) =

u
(

d(x0, x)
)
ρ(x) and (3.8) is satisfied, then (3.3) holds.

Proof By virtue of Corollary 3.1 it is sufficient to prove the implication (3.8) =⇒ (3.7).
Let β ≥ 1, η ≥ η1 > 1, where η1 is the constant from the (RD) condition. As ρ ∈ A1(X)

we know that ρ ∈ Ap(X) for any p > 1. Now using Hölder’s inequality, Lemma 2.3 and the
argument of the proof of Theorem 2.3 we derive the chain of inequalities

σ(βt)

u(t)

≤ b
σ(βt)

u(t)
(
µ
(
B(x0, ηβt)

))p

∫
B(x0,ηβt)\B(x0,βt)

ρ(x) dµ×
(∫

B(x0,ηβt)\B(x0,βt)
ρ(x)1−p ′ dµ

)p−1

≤ b
σ(βt)

u(t)
(
µ
(
B(x0, ηβt)

))p

∫
B(x0,ηβt)\B(x0,βt)

ρ(x) dµ
(∫

B(x0,
t
2 )
ρ(x)1−p ′ dµ

)p−1

≤ b
σ(βt)(

µ
(
B(x0, ηβt)

))p

∫
B(x0,ηβt)\B(x0,βt)

ρ(x) dµ
(∫

B(x0,
t
2 )

w(x)1−p ′ dµ
)p−1

≤ b
σ(βt)(

µ
(
B(x0, ηβt)

))p

(∫
B(x0,ηβt)\B(x0,βt)

ρ(x) dµ
)
× ess sup

x∈B(x0 ,
t
2 )

1

w(x)

(
µ
(
B(x0, ηβt)

))p−1

≤ b
1

µ
(
B(x0, ηβt)

)(
∫
{x: t

2<d(x0,x)<ηβt}
v(x) dµ

)
ess sup

x∈B(x0,
t
2 )

1

w(x)
≤ b.
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Theorem 3.4 Let µ satisfy condition (RD), suppose that µ{x0} = 0, let σ and u be pos-
itive decreasing functions on (0,∞) with σ continuous, let ρ ∈ A1(X) and put v(x) =
σ
(
d(x0, x)

)
ρ(x) and w(x) = u

(
d(x0, x)

)
ρ(x). Suppose that

sup
t>0

(∫
B(x0,t)

v(x) dµ
)

ess sup
x∈X\B(x0 ,t/2)

1

w(x)µ
(

B
(
x0, d(x0, x)

)) <∞.

Then (3.3) holds.

4 Application to Singular Integrals on Fractal Sets; Examples

Let Γ ⊂ C be a connected rectifiable curve and let ν be arc-length measure on Γ. By
definition, Γ is regular if

ν
(
Γ ∩ B(z, r)

)
≤ cr

for every z ∈ C and all r > 0.
For r smaller than half the diameter of Γ, the reverse inequality

ν
(
Γ ∩ B(z, r)

)
≥ r

holds for all z ∈ Γ. Equipped with ν and the Euclidean metric, the regular curve becomes
an SHT.

The associated kernel in which we are interested is

k(z,w) =
1

z − w
.

The Cauchy integral

SΓ f (t) =

∫
Γ

f (τ )

t − τ
dν(τ )

is the corresponding singular operator.
The above-mentioned kernel in the case of regular curves is a Calderón-Zygmund ker-

nel. As was proved by David [3], a necessary and sufficient condition for continuity of the
operator SΓ in Lp(Γ) (1 < p <∞) is that Γ is regular.

From the results obtained in the preceding section we can derive several two-weight
estimates for SΓ.

Definition A measurable, almost everywhere positive function w on Γ is said to be in the
class Ap(Γ) if

sup
z∈Γ
r>0

1

ν
(
B(z, r) ∩ Γ

)
∫

B(z,r)∩Γ
w(t) dν

(
1

ν
(
B(z, r) ∩ Γ

)
∫

B(z,r)∩Γ
w1−p ′(t) dν

)p−1

<∞.

(4.1)
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It is known (see for example [3]) that for the continuity of SΓ in Lp
w(Γ), 1 < p < ∞,

when Γ is regular, it is necessary and sufficient that w ∈ Ap(Γ).
Since for regular curves the measure ν satisfies the reverse doubling condition as well,

we derive from Theorem 2.3

Proposition 4.1 Let 1 < p < ∞, let Γ be an unbounded regular curve, and let t0 ∈ Γ. Let
σ and u be positive increasing functions on (0,∞) with σ continuous, let ρ ∈ Ap(Γ) and put
v(t) = σ(|t − t0|)ρ(t), w(t) = u(|t − t0|)ρ(t).

If

sup
r>0

∫
Γ\B(t0,r)

v(t)(
ν
(
B(t0, |t − t0|) ∩ Γ

))p dν
(∫

B(t0,r)∩Γ
w1−p ′(t) dν

)p−1
<∞,

then the inequality
∫
Γ

|SΓ f (t)|pv(t) dν ≤ c

∫
Γ

| f (t)|pw(t) dν

holds with a constant c independent of f ∈ Lp
w(Γ). A corresponding version of Theorem 2.4

is valid for SΓ.
From the results of the last section we can obtain two-weight inequalities in more general

situations than the case just considered.
Let Γ be a subset of Rn which is an s-set (0 ≤ s ≤ n) in the sense that there is a Borel

measure µ in Rn such that (i) supp µ = Γ; (ii) there are positive constants c1 and c2 such
that for all x ∈ Γ and all r ∈ (0, 1),

c1rs ≤ µ
(
B(x, r) ∩ Γ

)
≤ c2rs.

It is known (see [21], Theorem 3.4) that µ is equivalent to the restriction of Hausdorff
s-measure Hs to Γ; we shall thus identify µ with Hs|Γ.

Given x ∈ Γ, put Γ(x, r) = B(x, r) ∩ Γ. By definition, if 1 < p <∞, ρ ∈ Ap(Γ) if

sup
x∈Γ,r>0

1

Hs

(
Γ(x, r)

)
∫
Γ(x,r)

ρ(y) dHs(y)

(
1

Hs

(
Γ(x, r)

)
∫
Γ(x,r)

ρ1−p ′(z) dHs(z)

)p−1

<∞.

Let KΓ be a Calderón-Zygmund singular integral defined on an s-set Γ by the procedure of
Section 2. Since Hs|Γ satisfies condition (RD) we have, for example, the following

Proposition 4.2 Let 1 < p < ∞ and x0 ∈ Γ. Let σ and u be positive increasing functions
on (0,∞) with σ continuous. Let ρ ∈ Ap(Γ) and put v(x) = σ(|x − x0|)ρ(x), w(x) =
u(|x − x0|)ρ(x). Suppose that

sup
r>0

(∫
Rn\Γ(x0,r)

v(x)

|x − x0|sp
dHs(x)

)(∫
Γ(x0,r)

w1−p ′(y) dHs(y)
)p−1

<∞.

Then there is a constant c such that for all f ∈ Lp
w(Γ),

∫
Γ

|KΓ f (x)|pv(x) dHs(x) ≤ c

∫
Γ

| f (x)|pw(x) dHs(x).
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It is clear that other direct consequences of the results of previous sections may be for-
mulated in the setting of s-sets. Note that (see [21], 4.9) since the Cantor set in Rn is an
s-set, where

s =
log(3n − 1)

log 3
,

we can obtain two-weight estimates for singular integrals on a Cantor set in Rn.
Now we provide several examples in which the conditions guaranteeing two-weight es-

timates for singular integrals defined on an SHT X are satisfied.
Let x0 ∈ X be such that µ{x0} = 0. Then the function

w(x) =

(
µ
(

B
(
x0, d(x0, x)

)))α

belongs to Ap(X) if, and only if, −1 < α < p − 1 (see [5]). For this weight we have the
one-weight inequality

∫
X
|K f (x)|pw(x) dµ ≤ c

∫
X
| f (x)|pw(x) dµ.

For simplicity let us consider SHT for which µ
(
B(x, r)

)
∼ r. From the results of previous

sections we deduce

Proposition 4.3 Let 1 < p < ∞. Suppose also that a < ∞. Then there exists a positive
constant c > 0 such that the inequalities

∫
X
|K f (x)|p

(
d(x0, x)

)p−1
dµ ≤ c

∫
X
| f (x)|p

(
d(x0, x)

)p−1
logp a

d(x0, x)
dµ

and

∫
X
|K f (x)|p

dµ

d(x0, x) logp−1 a
d(x0,x)

≤ c

∫
X
| f (x)|p

dµ

d(x0, x)

hold.

Finally note that in [4], [11] and [12] can be found several other examples of pairs of
weights ensuring two-weight strong or weak-type inequalities for singular integrals defined
on special SHT.
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