Sequences defined as minima of two Fibonacci-type relations

R.S. Booth

If \(\{L_n\} \) is a sequence defined by

\[
L_n = \min\{L_{n-a} + L_{n-b}, L_{n-c} + L_{n-d}\},
\]

with \(a, b, c, d \) positive integers, then one can ask if necessarily \(L_n = L_{n-a} + L_{n-b} \) for all sufficiently large \(n \).

The answer is yes if \(a \) and \(b \) are relatively prime, \(L_n > 0 \) initially, and \(\lambda < \mu \), where \(\lambda^{-a} + \lambda^{-b} = 1 \), \(\mu^{-c} + \mu^{-d} = 1 \).

The answer is no if instead \(a \) and \(b \) have greatest common divisor \(k \geq 2 \), with \(\sigma \equiv 0 \pmod{k} \), \(d \equiv 0 \pmod{k} \).

Introduction. Much is known about the properties of sequences defined by a recurrence of the type \(L_n = L_{n-a} + L_{n-b} \), where \(a \) and \(b \) are fixed positive integers. In this note, we produce conditions on \(a, b, c \) and \(d \), such that if

\[
L_n = \min\{L_{n-a} + L_{n-b}, L_{n-c} + L_{n-d}\}
\]

then

\[
L_n = L_{n-a} + L_{n-b}
\]

for all sufficiently large \(n \). We concern ourselves only with the case in which all initial values are positive, so that \(L_n \) is then positive for all \(n \). For a situation in which this problem arises, see [7].

Received 7 September 1971.
It is well known that \(L_n = L_{n-a} + L_{n-b} \) implies \(L_n = O(\lambda^n) \), where \(\lambda \) is the positive root of
\[
\lambda^a + \lambda^b = 1.
\]
Hence, if (2) holds, we must have \(\lambda \leq \mu \) where \(\mu \) is the positive root of
\[
\mu^a + \mu^b = 1.
\]
There are examples however, to show that this condition is not sufficient. One such example is
\[L_n = \min\{2L_{n-3}, L_{n-2} + \mu\} > n^5, \]
with the initial conditions \(L_1 = L_2 = L_3 = L_4 = 1 \).

THEOREM 1. Suppose \(a, b, c \) and \(d \) are positive integers, and \(L_1, L_2, \ldots, L_e \) are given positive real numbers, where \(e = \max\{a, b, c, d\} \). Define
\[
L_n = \min\{L_{n-a} + L_{n-b}, L_{n-c} + L_{n-d}\}
\]
for \(n > e \), and define \(\lambda > 1 \) and \(\mu > 1 \) by (3) and (4). If \(\lambda < \mu \), and if \(a \) and \(b \) are relatively prime, then there exists an integer \(n_0 \) such that
\[
L_n = L_{n-a} + L_{n-b}
\]
for all \(n \geq n_0 \).

Proof. Suppose \(N \) is an integer, \(N \geq e + 1 \). Define
\[
c_N = \max_{1 \leq k \leq e} \left\{ \frac{L_{N-k}}{\lambda^{N-k}} \right\},
\]
\[
d_N = \min_{1 \leq k \leq e} \left\{ \frac{L_{N-k}}{\lambda^{N-k}} \right\}.
\]
Since
Fibonacci-type relations

\[L_N \leq L_{N-a} + L_{N-b} \]
\[\leq \lambda^{N-a}c_N + \lambda^{N-b}c_N \]
\[= \lambda^N c_N (\lambda^{-a} + \lambda^{-b}) \]
\[= \lambda^N c_N , \]

it follows that \(\sigma_{n+1} \leq \sigma_N \), and hence the sequence \(\{\sigma_N\} \) is decreasing.

On the other hand

\[L_{N-a} + L_{N-b} \geq d_N\lambda^{N-a} + d_N\lambda^{N-b} \]
\[= d_N\lambda^N \]

and

\[L_{N-c} + L_{N-d} \geq d_N\lambda^{N-c} + d_N\lambda^{N-d} \]
\[= d_N\lambda^N (\lambda^{-c} + \lambda^{-d}) \]
\[> d_N\lambda^N (\mu^{-c} + \mu^{-d}) \]
\[= d_N\lambda^N . \]

Hence, by (1), \(L_N \geq d_N\lambda^N \), so that \(d_{N+1} \geq d_N \), and the sequence \(\{d_n\} \) is increasing.

Since \(a \) and \(b \) are relatively prime, the set \(S \) consisting of all integers of the form \(sa + tb \), where \(s \) and \(t \) are positive integers, contains a smallest element with the property that all greater integers also belong to \(S \). Denote this smallest element by \(f \).

Suppose \(0 < \varepsilon < 1 \), and \(r \) is an integer, \(r \geq N - 1 + f \). We claim that

\[L_r/\lambda^r \geq (1-\varepsilon)\sigma_N \]

implies

\[L_{r-q}/\lambda^{r-q} \geq (1-\varepsilon\lambda^q)\sigma_N \]
for all \(q \) in \(S \), \(q < r \).

For, (7) implies that

\[
(1-\varepsilon)\sigma_N \leq \left(\frac{L_{r-a} + L_{r-b}}{\lambda^r} \right) \lambda^r
\]

\[
= \lambda^a \left(\frac{L_{r-a}}{\lambda^{r-a}} \right) + \lambda^b \left(\frac{L_{r-b}}{\lambda^{r-b}} \right)
\]

so that \(\lambda^a (1-\varepsilon - \lambda^{-b}) \sigma_N \leq L_{r-a} / \lambda^{r-a} \) or \((1-\varepsilon \lambda^a) \sigma_N \leq L_{r-a} / \lambda^{r-a} \) by (3).

Similarly

\[
(1-\varepsilon \lambda^b) \sigma_N \leq L_{r-b} / \lambda^{r-b} .
\]

Successively repeating the argument yields (8).

Since \(r \geq N - 1 + f \), each member of the set \(\{N-1, N-2, \ldots, N-e\} \) is of the form \(r - q \) for \(q \) in \(S \). Thus by (6) and (8), the inequality (7) implies \(d_N \geq \inf (1-\varepsilon \lambda^q) \sigma_N \), where the infimum is taken over those \(q \) for which \(N - 1 \geq r - q \geq N - e \); that is, \(r + 1 - N \leq q \leq r + e - N \). Thus (7) implies

\[
d_N \geq (1-\varepsilon \lambda^{r+e-N}) \sigma_N .
\]

By reversing the argument, if \(\varepsilon \) is now chosen such that

\[
(1-\varepsilon \lambda^{r+e-N}) > d_N / \sigma_N ,
\]

then

\[
L_{r} / \lambda^{r} < (1-\varepsilon) \sigma_N .
\]

It follows, since this implication is valid for all \(r \) in \(R = \{ r : N-1+f \leq r \leq N+f+e-2 \} \), that

\[
1 - \varepsilon \lambda^{f+2e-2} > d_N / \sigma_N
\]

implies

\[
\sup_{r \in R} L_{r} / \lambda^{r} < (1-\varepsilon) \sigma_N ,
\]
that is, (10) implies

\[(11) \quad \sigma_{N+f+e-2} < (1-\varepsilon)\sigma_N.\]

Put \(\phi_N = \sigma_N/d_N\), and choose \(\varepsilon = \left(1-\phi_N^{-1}\right)\lambda^{-f-2e+2}/2\) so that (10) holds. It follows from (11), with this choice of \(\varepsilon\), and the fact that \(d_N\) is increasing, that

\[\phi_{N+f+e-2} < \left[1-\left(1-\phi_N^{-1}\right)\lambda^{-f-2e+2}/2\right]\phi_N,\]

whence

\[\phi_{N+f+e-2} - 1 < \left[1-\lambda^{-f-2e+2}/2\right](\phi_N-1) .\]

Since \(\{\phi_N\}\) is decreasing, and the factor in the square brackets is a fixed constant between 0 and 1, we have

\[(12) \quad \lim_{N\to\infty} \phi_N = 1.\]

To complete the proof, suppose

\[L_{n-a} + L_{n-b} > L_{n-c} + L_{n-d}\]

for some \(n > \max(N+a, N+b)\). Then, since

\[\lambda^n d_N \leq L_n \leq \lambda^n \sigma_N ,\]

we have

\[
\sigma_N\lambda^{n-a} + \sigma_N\lambda^{n-b} > d_N\lambda^{n-c} + d_N\lambda^{n-d}
\]

or

\[\phi_N(\lambda^{-a}+\lambda^{-b}) > \lambda^{-c} + \lambda^{-d}\]

or

\[\phi_N > \lambda^{-c} + \lambda^{-d} > 1.\]

This contradicts (12) if \(N\) is big enough.

We consider briefly what can happen if \(a\) and \(b\) are not relatively
prime. Let \(k \) be the highest common factor of \(a \) and \(b \). It is immediate, by considering the subsequences of the form \(L_{n_0 + mk} \), that the result of Theorem 1 still holds if \(c \equiv 0 \pmod{k} \) and \(d \equiv 0 \pmod{k} \).

THEOREM 2. If \(\lambda < \mu \), if \(k \) is the greatest common divisor of \(a \) and \(b \), with \(k \geq 2 \), if \(c \equiv 0 \pmod{k} \), and \(d \not\equiv 0 \pmod{k} \), then there is a set of positive values for \(L_n \), \(1 \leq n \leq e \), such that (1) holds for \(n > e \), and \(L_n < L_{n-a} + L_{n-b} \) for an infinite set of integers \(n \).

Proof. Define (for convenience) \(L_{\gamma k} = 1 \) for integer \(\gamma \), \(0 \leq \gamma k < \max(a, b) \). This determines \(L_n \) for all \(n \equiv 0 \pmod{k} \) by \(L_n = L_{n-a} + L_{n-b} \). Next define \(L_n \) for \(n \equiv -d \pmod{k} \) by the equation \(L_n = L_{n-a} + L_{n-d} \) for \(n \equiv 0 \pmod{k} \), that is, \(L_n \equiv L_{n+d} - L_{n+d-c} \) for \(n \equiv -d \pmod{k} \). It is easy to check that one then has \(L_n = L_{n-a} + L_{n-b} \) for \(n \equiv -d \pmod{k} \), at least for \(n \geq c - d + \max(a, b) \). In a similar manner define \(L_n \) successively for \(n \equiv -2d, n \equiv -3d, n \equiv -4d, \ldots, n \equiv -(k-2)d \). \(L_n \) is then determined for all \(n \) larger than some fixed integer \(n_0 \), \(n \not\equiv d \pmod{k} \), and, for such \(n \), \(L_n = L_{n-a} + L_{n-b} = L_{n-c} + L_{n-d} \).

Now define \(L_n = L_{n-c} + L_{n-d} \) for \(n \equiv d \). Since then \(n - d \equiv 0 \), \(L_{n-d} = L_{n-a-d} + L_{n-b-d} \), so the equation \((L_n - L_{n-a} - L_{n-b}) = (L_{n-c} - L_{n-a} - L_{n-b}) \) holds for all \(n \equiv d \). Thus, suitable initial conditions can ensure that if this value is initially a negative constant, then by induction, \(L_n = L_{n-c} + L_{n-d} < L_{n-a} + L_{n-b} \) for all \(n \equiv d \pmod{k} \).

The author has been unable to obtain similar general results for the case when \(k \geq 2 \) and both \(c \not\equiv 0 \) and \(d \not\equiv 0 \pmod{k} \). We cite two examples to show what may or may not occur.
If \(a = b = k = 3 \), \(c = 1 \), and \(d = 4 \), then \(L_n = 2L_{n-3} \) for all sufficiently large \(n \). It is worth noting that this result cannot be established by the method of proof of Theorem 1, since the quotient \(\sigma_n^d \) need not converge. The proof however is straightforward after observing that

(a) one cannot have \(L_n = L_{n-1} + L_{n-4} \) for three consecutive values of \(n \);

(b) if \(L_n = 2L_{n-3} \) for four consecutive values of \(n \), then
\[L_n = 2L_{n-3} \] for all larger \(n \).

On the other hand, if \(a = b \), \(k = 3 \), \(c = 1 \) and \(d = 5 \), and if \(L_1, L_2, L_3, L_4, L_5 \) respectively equal 16, 16, 11, 6, 1; then

\[L_n = 2L_{n-3} \] if \(n \equiv 0, 1, 2 \) or \(5 \) (mod 6)

\[L_n = L_{n-1} + L_{n-5} < 2L_{n-3} \] if \(n \equiv 3 \) or \(4 \) (mod 6).

Theorems 1 and 2 generalize immediately to sequences of the form

\[L_n = \min_{1 \leq m} \left\{ L_{n-a} + L_{n-b} \right\} \]

Clearly too, one can establish analogous results for maxima.

Reference