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MEASURE CONVERGENT SEQUENCES IN LEBESGUE SPACES
AND FATOU’S LEMMA

HEINZ-ALBRECHT KLEI

Let {fn) be a sequence of positive P-integrable functions such that (f fndP)"

converges. We prove that (f,) converges in measure to lim f, if and only if
n -0

equality holds in the generalised Fatou’s lemma. Let fo, be an integrable function
such that (||f,. - f°°||1),, converges. We present in terms of the modulus of uni-
form integrability of (fa) necessary and sufficient conditions for (f.) to converge

in measure to foo.

1. INTRODUCTION

In [6] we proved the following result: let (2, X, P) be a probability space and (f,)
a sequence of positive integrable functions such that ( J j"ndP)n converges. Then (f,)
converges in norm to lim f, if and only if equality holds in Fatou’s lemma. This is a

n—oo

striking example of the well known fact that under suitable extreme point conditions,
weak convergence in L!-spaces (and even much less) implies strong convergence [1].
By means of the modulus of uniform integrability of (f,) (to be defined later), we
proved a generalisation of Fatou’s lemma [6, Corollary 4]. In the present paper we

pose the following question: when does (f,) converge in measure to lim f,? We show
n—oo

that this is the case if and only if for all subsequences of (f,) equality holds in the
generalised Fatou’s lemma (Theorem 3). More generally we study the convergence in
measure of a bounded sequence (f,) to an arbitrary element fo € L*(R) (Theorem 7).
Both Theorem 3 and Theorem 5 enable us to give a straightforward proof of Lebesgue’s
convergence Theorem [3, p.122].

2. PRELIMINARIES

Throughout this paper, (£, &, P) will be probability space. We shall consider the
Banach space L!(R) of all (classes of) P-Bochner-integrable functions from 2 to R.
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In [7] Rosenthal defined the modulus of uniform integrability n(H) of a bounded
subset H C L}(R): For € > 0, put

7(H, €) = sup{/A |h|dP: h € H, A € B, P(4) < e},

n(H) = Lm n(H, ¢).

e—0+

Thus H is uniformly integrable if and only if #(H) =0.

3. RESULTS
We start with a lemma proved in {4] and extended to Banach space valued inte-
grable functions in [5).

LEMMA 1. Let f = (f) be a bounded sequencein L*(R.) converging in measure
to an element fo, of L'(Ry). Then the following assertions are equivalent:

(1) liT [ fadP =n(f) + [ foo dP and 5(f') = n(f) for each subsequence
flof f;
(ii) the sequence of reals (f In dP)n converges in R .

COROLLARY 2. Let f = (fn) be a bounded sequence in L(R) converging in
measure to foo € L'(R). Then (||fn — fwll,), converges in R if and only if 5(f') =
1(f) for each subsequence f' of f and in this case ]irf |l fa — fooll, = n(f).

THEOREM 3. Let f = (fn) be a bounded sequence in L!(R.) such that the
sequence ( S fn dP) converges in Ry . Then the following assertions are equivalent:

(1) nE};r_looffn dP = n(f) + fnl__i__%ofn dP and 7(f') = n(f) for each subse-

quence f' of f;
(ii) the sequence (f,) converges in measure to lim fy.

n-o00

ProOF: The implication (ii) = (i) is a consequence of Lemma 1. Suppose now
that (i) is true. Let f' = (f,) be a subsequence of f. On account of the generalised

Fatou’s lemma [6, Corollary 4], we have

tim_ [ fudP >u(r)+ [ m f1aP.

By comparing this inequality with the hypothesis, we obtain the following relation:

/u;mfndpzfn_ng;dP-

n—oo n—oo
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It follows that lim f, = lim f; P-almost everywhere. Hence

n—co n-—oo

Jm [ f.aP=a(r)+ [ m fiap
So Theorem 10 of [6] applies to the sequence (f,) and says that there is a further
subsequence (f})) of (f),) converging in measure to lLim f/, which equals lLm f. P-

n—oo n— oo

almost everywhere.
The proof is complete. 0

PROPOSITION 4. Let f = (fs.) be a bounded sequence in L!(R.) and let
f' = (f.) asubsequenceof f suchthat lim [ f.dP = hm f dP. Then the following

n—v-!—oo
assertions are equivalent:

(i) lm [fadP=n(f')+ [ im fndP and 5(f') = n(f") for each subse-

n-~—+o0 n-— o0
quence f" of f';
(i) the sequence (f.) converges in measure to lim f,.

n—oo

PROOF: Suppose that (i) is true. Let f' = (f}.) be a subsequence of (f,,) satisfying
the hypothesis of Proposition 4. It follows that

(1) Jim [ rnap=u(f)+ [ m fadp <n(r)+ [ lm 5P

n—oco n—oo

By the generalised Fatou's lemma [6, Corollary 4] we obtain

/f,,dP f)+/ lim f. dP.

n—0+ n—00

Thus we have two equalities in (1). Since all subsequences of f' have the same modulus
of uniform integrability, Theorem 3 applies to the sequence f'. Consequently (f},)

converges in measure to lim f,. Now lim f, and lim f, are comparable and their

n—oo n—oo n—oo
integrals coincident because of the second equality in (1). This means that lim f},(w) =
n—oo
lim fn(w) P-almost everywhere.
n—oo
Conversely, suppose that (ii) is true and let f' = (f},) be a subsequence of f such
that

lim /f dP = lim [ f.dP.

n—o0

As (f;,) converges in measure to lim f,, we can apply the implication (ii) = (i) of
n— oo

Lemma 1 to the sequence (f!), and the proof is done. 1]
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Let us consider a special case of Theorem 3. If 5(f) = 0, then we obtain a result
which was the starting point of our investigation. Note that it was used in the proof of
Theorem 3.

THEOREM 5. Let f = (fn) be a bounded sequence in L*(R.). Then the follow-
ing assertions are equivalent:

(i) (f fndP) converges in R, and HIB J fndP = [ lim f,dP;

n—o0

(ii) (fn) converges in norm to im f,.
n—oo

PROOF: Suppose that (i) is true. By the generalised Fatou’s lemma we have

tim_ [ fndP 3> 0(5)+ [ im fadP,

n—-+oo n—oo

It follows that 5(f) = 0. We know from Theorem 3 that (f,) converges in measure to

lim f,.. Note that a measure convergent and uniformly integrable sequence converges
n—o0

in norm. 1]

REMARK. As pointed out in [6], the combination of Theorem 5 and Fatou’s lemma
yields Lebesgue’s convergence theorem [3, p.122).

LEMMA 6. Let f = (fn) be a bounded sequence in L'(R) converging in mea-
sure to an element fo, belonging to L'(R). Then the sequence (||fn|l;) converges if
and only if (||fn — feoll) does and in this case we have liril lfa — foolly = n(f) =

Jtim_(Ifall = 1 fel).
PRrOOF: We know from Brezis and Lieb [2] that

(1l = M = feolly ) = ol

Suppose that lilil | frll, exists. As (|fa]),, converges in measure to |fs]|, it follows
n—-—+oo

from Lemma 1 of [4] that

im ||fall; = 7(f) + I fooll; -

n—-+oo

The combination of the last two equalities yields the first implication. To prove the

opposite implication, suppose that the sequence (||fn ~ fwoll;), converges. We know
from Lemma 1 of [4] that its Lmit is 7(f). An application of Brezis’ and Lieb’s equality
completes the proof. 0

THEOREM 7. Let f = (fa) be a bounded sequence in L*(R) and let f. be an
element of L'(R). Suppose that (||fn — fwoll,), convergesin R. Then the following
assertions are equivalent:

(i) (fn) converges in measure to foo;
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(5) lim_[[fa— fooll; < 7(f) and n(f) = (") for cach subsequence f' of

f.
(iid) n-l-i.lfoo”‘f" — fooll; = n(f) and n(f) = n(f') for each subsequence f' of

f.

PROOF: We know from Corollary 2 that (i) implies (iii). Suppose now that (i) is
true and let f' = (f}) be any subsequence of f. Note that

Jim £, = feolly < n(£)-

Hence Theorem 6 of [4] applies to the subsequence (f},) and says that there is a further
subsequence (f)/) of (f},) which converges in measure to fo. Consequently assertion
(i) follows. 0

PROPOSITION 8. Let f =(fn) be a bounded sequence in L*(R.) such that

Jim ~ E / fodP = /n%fn dP.
Then the following statements hold:

(1) (l/n > fk) converges in norm to lim fy;
k=0 n

(1) Let f' = (f.) be any subsequence of (f,) satisfying Iir_f_x JfLdP =
lim [ f,dP. Then (f;) converges in norm to lim f,.

n—oo n—oo

ProOF: Put m(f) = (l/n i I 1 dP) . Note that
k=0 n

/hm fndP = lim —Z/fde n(m(f))+/ Lim —kadP

n—oo n—»oo

> n(m(f)) + / lim £, dP.

The first of the preceding inequalities comes from the generalised Fatou’s lemma.
The second one is obvious. It follows that n(m(f)) = 0 and that lLm fo(w) =

n—o0

lim 1/n Z fr(w) P-almost everywhere. Now the hypothesis can be written as fol-

n-—oo

lows:

lim li/f,,dP:/ lim %Zn:fde.
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Theorem 5 applies and yields the assertion (i).
Let f' = (f.) be as in (ii). Note that

. S R .
lﬂfn/fndp<nh_{r;“—l§/fde=/ lim f, dP.

n—oo n—oo

In particular we have lim [ f,dP = [ lim f, dP. On the other hand, we know that

n— oo n— oo

lim fndP=n£rfw/deP>n(f')+/ 1i_mf:.dP>n(f')+/ lim f, dP.

n— oo n-—-—oo n—oo

So the preceding inequalities reduce to equalities and it follows that n(f') = 0.

Proposition 4 or Theorem 5 enable us to say that (f.) converges in norm to lim f,. O
n—oo
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