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Interaction of mode-one internal solitary waves
of opposite polarity in double-pycnocline
stratifications
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Numerical simulations of the interaction of internal solitary waves (ISWs) of opposite
polarity are conducted by solving the incompressible Euler equations under the Boussinesq
approximation. A double-pycnocline stratification is used. A method to determine when
ISWs of both polarities exist is also presented. The simulations confirm previous work that
the interaction of waves of the same polarity are soliton-like; however, here it is shown
that when a fast ISW with the same polarity as a Korteweg–de Vries (KdV) solitary wave
catches up and interacts with a slower ISW of opposite polarity, the interaction can be far
from soliton-like. The energy in the fast KdV-polarity wave can increase by more than a
factor of 5 while the energy in the slower negative-KdV-polarity wave can decrease by
50 %. Large trailing wave trains may be generated and in some cases multiple ISWs with
KdV polarity may be formed by the interaction.
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1. Introduction

Internal solitary waves (ISWs) in a density-stratified fluid have been the subject of
many theoretical, numerical and experimental studies and their common occurrence
in the coastal ocean has motivated numerous field experiments to study their role in
mixing, sediment resuspension, transport and other oceanic processes (Shroyer, Moum
& Nast 2010; Jackson, Da Silva & Jeans 2012; Boegman & Stastna 2019). They are
often modelled with weakly nonlinear models such as the Korteweg–de Vries (KdV)
equation, the Gardner equation (often referred to as the extended KdV equation) and the
regularized long-wave (RLW) equation (also known as the PBBM, or BBM, equation after
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Peregrine, Benjamin, Bona and Mahoney). The former two equations belong to the class
of completely integrable nonlinear–dispersive wave equations. An important property of
these equations is that their solitary wave solutions are solitons: they interact nonlinearly
with other waves while preserving their properties. In particular two solitary waves of
different amplitudes that interact have the same shapes before and after their interaction,
the only evidence of the interaction being a small phase shift (Chow, Grimshaw & Ding
2005). The RLW equation is not completely integrable. It has solitary wave solutions;
however, when two of them interact there is a small change in the wave amplitudes (less
than 0.1 %) and a small-amplitude (approximately 1 % of the solitary waves) dispersive
wave train is generated (Bona, Pritchard & Scott 1980).

The fully nonlinear and dispersive incompressible Euler equations, with and without the
Boussinesq approximation, also have ISW solutions which can be numerically obtained
by solving the Dubreil–Jacotin–Long (DJL) equation (Turkington, Eydeland & Wang
1991). Numerical investigations using the Boussinesq approximation have shown that
these ISWs are not solitons: their interaction results in small changes in wave amplitude
(approximately 2 % or less) and in the generation of a small-amplitude dispersive wave
train similar to the predictions of the RLW equation (Lamb 1998). Past investigations have
considered the interactions of ISWs of the same polarity (e.g. isopycnal displacements
in the same direction). Here we extend these investigations to investigate the interaction
of ISWs of opposite polarity. Internal solitary waves of opposite polarity only exist for
certain types of stratifications, including double-pycnocline stratifications under certain
conditions as described below. In this paper I present a method for determining when
ISWs of both polarities exist, based on the existence of conjugate flows. Following this,
results of numerical simulations of the interaction of ISWs using the incompressible Euler
equations are presented. The results show that the interaction of two ISWs of opposite
polarity may result in very large changes in wave amplitudes and, in some cases, in the
generation of many ISWs.

In § 2 the numerical model used for the simulations is presented and pertinent aspects
of relevant theories are given in § 3. In § 4 conditions under which ISW solutions of the
DJL equation of both polarities exist are discussed. Simulations of the interaction of ISWs
of the same and opposite polarities are presented in § 5. Finally, some conclusions are
presented in § 7.

2. Numerical model and model set-up

The governing equations used herein are the incompressible Euler equations with
the Boussinesq approximation. A rigid lid is employed and rotational affects are not
considered. The stable background densities considered here have the form of two thin
pycnoclines separating three layers of constant densities ρ3 in the lower layer, ρ2 in the
middle layer and ρ1 in the upper layer with ρ3 > ρ2 > ρ1. In dimensional terms the
stratifications have the form

ρ̄(z) = ρ3 − 1
2

(ρ3 − ρ2)

(
1 + tanh

(
z − z2

d2

))
− 1

2
(ρ2 − ρ1)

(
1 + tanh

(
z − z1

d1

))
,

(2.1)

where z2 < z1 are the centres of the two pycnoclines and the constants d1 and d2 determine
their thicknesses. The density is non-dimensionalized and scaled via

ρ = ρ0 (1 + �ρρ̃) , (2.2)

962 A17-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.284


Interaction of ISWs of opposite polarity

where ρ0 = 1/2(ρ1 + ρ3) is the reference density used in the Boussinesq approximation
and ρ0�ρ = ρ3 − ρ1. The dimensionless density ρ̃ is then approximately equal to −0.5
and 0.5 at the top and bottom of the water column respectively if the pycnoclines are thin
compared with their distance from the upper and lower boundaries as assumed here. The
remaining terms in the governing equations are non-dimensionalized using the constant
water depth H as the length scale, T = √

H/(g�ρ) as the time scale and U = H/T
as the velocity scale. This gives the dimensionless equations (dropping the tilde on the
dimensionless density)

ut + uux + wuz = −px, (2.3a)

wt + uwx + wwz = −pz − ρ, (2.3b)

ρt + uρx + wρz = 0, (2.3c)

∇ · u = 0 (2.3d)

as the governing equations, where z ∈ [−1, 0] is now dimensionless. Here u = (u, w) is
the velocity in the vertical xz plane and p is a dimensionless dynamic pressure. The total
dimensional pressure is

p∗ = (ρ0�ρgH) p − ρ0gHz (2.4)

up to an arbitrary constant. For simulations of interacting ISWs these equations are solved
using a two-dimensional non-hydrostatic internal gravity wave model (Lamb 1994, 2007).
The model uses Godunov flux limiting which acts as an implicit large-eddy simulation
model and a variable time step satisfying a Courant–Friedrichs–Lewy condition. The
dimensionless background stratifications are given by

ρ̄(z) = −1
2
�ρ1 tanh

z − z1

d1
− 1

2
(1 − �ρ1) tanh

z − z2

d2
, (2.5)

with −1 < z2 < z1 < 0 so the upper pycnocline is centred at z1 and the lower pycnocline
is centred at z2. The upper-, middle- and lower-layer thickness are taken as h1 = −z1, h2 =
z1 − z2 and h3 = 1 + z2. We only consider thicknesses d1 = d2 = 0.04. For stratifications
with pycnoclines close to the top or bottom boundaries the bottom to surface density
difference may be slightly less than 1. Figure 1 shows some sample stratifications. The
simulations are initialized with ISW solutions of the DJL equation (see next section) which
are interpolated onto the computational grid.

3. Theoretical background

In this section some relevant theoretical results are briefly presented. We first discuss the
Gardner equation which is an approximate model for weakly nonlinear long waves. This
equation is often used to model ISWs in a stratified fluid; however, the results presented
below show that it is not useful for the interaction of waves of opposite polarity. Following
this is a discussion of the DJL equation which gives exact solitary wave solutions of
the governing equations (2.3) which are used to initialize the simulations. The DJL
solutions show that solitary wave amplitudes are limited and that as the limiting amplitude
is approached the waves grow indefinitely in length. The resulting conjugate flow in
the horizontally uniform centre of long waves is discussed in the final subsection. The
conjugate flow determines limiting wave amplitudes and is used to determine when ISW
solutions of the governing equations exist. The procedure for doing so is described in the
following section.

962 A17-3

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.284


K.G. Lamb

0(a) (b)

–0.2

–0.4

–0.6

z

–0.8

–1.0
–0.6 –0.4 –0.2 0 0 4

N2
2 6 8

ρ̄
0.2 0.4 0.6

0

–0.2

–0.4

–0.6

–0.8

–1.0

Figure 1. Sample stratifications of (a) ρ̄ and (b) N2 for (z1, z2) = (−0.25, −0.9) and d1 = d2 = 0.04 for
�ρ1 = 0.55 (solid) and 0.6 (dashed).

3.1. Weakly nonlinear theory
The Gardner equation (Grimshaw, Pelinovsky & Talipova 1997; Talipova et al. 1999;
Grimshaw, Slunyaev & Pelinovsky 2010), also referred to as the extended KdV equation,
is an extension of the KdV equation which includes a cubic nonlinear term. Like the KdV
equation, it is a model for weakly nonlinear long waves. It has the form

ζt + c0ζx + αζζx + α1ζ
2ζx + βζxxx = 0, (3.1)

where t is time, x is the horizontal coordinate and ζ(x, t) is the wave shape which could
represent an isopycnal displacement, the surface current, the streamfunction at some depth
or some other quantity of interest. Parameter c0 is the linear long-wave propagation speed.
It and the nonlinear and dispersive coefficients are determined by the stratification and
background currents and are given in terms of vertical structure functions (Lamb & Yan
1996). If α1 = 0 the Gardner equation reduces to the KdV equation and if α = 0 it reduces
to the modified KdV equation:

ζt + c0ζx + α1ζ
2ζx + βζxxx = 0. (3.2)

The Gardner equation (3.1) has soliton solutions which can be written in several forms.
One convenient form (Helfrich & Melville 2006) is

ζGE(x, t) = a

b + (1 − b) cosh2 θ
= a sech2θ

1 − b + b sech2θ
. (3.3)
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II

III

I

IV

α

α1

Figure 2. A schematic illustration of the shapes of internal solitary wave (soliton) solutions of the Gardner
equation following Grimshaw, Pelinovsky & Talipova (1999). Coefficients α and α1 are the quadratic and cubic
nonlinear coefficients. When α1 > 0 waves of either polarity exist with no maximum amplitude. Minimum
wave amplitudes exist for waves of elevation/depression for negative/positive quadratic coefficients. When
α1 < 0 the polarity of the waves is determined by the sign of the quadratic coefficient. There is no minimum
amplitude but now a maximum amplitude exists.

Here a is the wave amplitude and the phase is

θ = x − Vt
λ

. (3.4)

The propagation speed V , wave amplitude a and wave width λ are related via

V − c0 = 4β

λ2 = a
3

(
α + 1

2
α1a

)
(3.5)

and the parameter b is related to a via

b = − α1a
2α + α1a

. (3.6)

When the cubic coefficient α1 = 0 we have b = 0 and we recover the well-known KdV
soliton solution. Note that for ζGE to be bounded we cannot have 1 − b + b sech2θ = 0 for
any value of θ , i.e. (b − 1)/b /∈ [0, 1]. This means we must have b < 1.

Figure 2 summarizes the types of soliton solutions for different signs of α and α1
following Grimshaw et al. (1999). For our purposes the important properties of the solution
are as follows. For the KdV equation soliton solutions are waves of elevation/depression
if α is positive/negative. Mathematically the waves have no amplitude bound although of
course physical limitations exist (e.g. isopycnal displacements cannot exceed the water
depth) and the perturbation expansion used to derive the equation breaks down when the
soliton amplitude becomes too large. As the KdV solitons get larger they become narrower.
For the Gardner equation, if the cubic coefficient α1 < 0 then the soliton solutions have
the same polarity (i.e. the same sign of a) as those for the KdV equation but there
is now a limiting amplitude alim = −α/α1 as b → 1+. As this limiting amplitude is
approached the waves broaden and become horizontally uniform in their centre. If α1 > 0,
soliton solutions with the same polarity as the KdV solitons exist again but there is now
no amplitude limitation. Like KdV solitons, they become narrower as their amplitude
increases. A new feature is the existence of a second branch of soliton solutions with
the opposite polarity. These have a minimum amplitude of −2α/α1 with no upper bound.
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Solitons with this limiting amplitude decay algebraically and are called algebraic solitons.
In addition, when α1 > 0 there is a new class of pulsating wave solutions called breathers
(Slyunyaev 2001; Lamb et al. 2007; Grimshaw et al. 2010). Both solitons and breathers
preserve their identities after interactions with other waves, only undergoing a small phase
shift (Chow et al. 2005).

3.2. The DJL equation
The Gardner equation is an approximate model for small-amplitude long waves. For
finite-amplitude solitary waves we can use the DJL equation (Turkington et al. 1991;
Stastna & Lamb 2002). This gives exact solitary wave solutions of the incompressible
Euler equations (no longer solitons) but has the shortcoming that it only provides waves of
permanent form and is restricted to mode-one waves. Thus it cannot be used to study the
evolution of an evolving wave field which is one of the strengths of the Gardner equation.
Switching to a reference frame moving with the unknown wave propagation speed c and
seeking a steady solution of the governing equations (2.3) leads to the DJL equation:

∇2η + N2(z − η)

c2 η = 0, (3.7)

which must be solved subject to the boundary conditions

η = 0 at z = −1, 0, (3.8)

η → 0 as x → ±∞. (3.9)

Here

N2(z) = −g
dρ̄

dz
(z) (3.10)

is the square of the buoyancy frequency of the undisturbed dimensionless stratification,
η(x, z) is the vertical displacement of the streamline passing through (x, z) from its
undisturbed height in the far field and c is the propagation speed of the solitary wave,
the value of which is to be determined. Once η(x, z) are known the density and velocity
fields in the moving reference frame are given by

ρ(x, z) = ρ̄(z − η(x, z)), (3.11)

(u, w) = (cηz, −cηx). (3.12)

The DJL equation is numerically solved using an iterative method for which the available
potential energy (APE) of the wave is specified (Turkington et al. 1991) and boundary
condition (3.9) is replaced with η = 0 at x = ±L, where L is much larger than the length
of the solitary wave. For a version of the DJL equation without using the Boussinesq
approximation, see Turkington et al. (1991) and for a version with background currents,
see Stastna & Lamb (2002). Here, the APE is that in an infinitely long domain which is
computed by using the background density as the reference density (Lamb 2008).

3.3. Conjugate flows
For many stratifications, including those with strong pycnoclines separated from the
boundaries as considered here, as the APE of the ISW is increased the ISWs asymptotically
approach a limiting finite amplitude and broaden indefinitely as APE → ∞ (Lamb &
Wan 1998), similar to the solutions of the Gardner equation for α1 < 0 illustrated in
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figure 2. In this limit the ISW becomes horizontally uniform in its centre. This horizontally
uniform flow is said to be conjugate to the far-field flow (Benjamin 1966). The streamline
displacement in the conjugate flow ηcf (z) is determined from (3.7) by dropping the x
dependence which reduces the problem to the nonlinear second-order ordinary differential
equation eigenvalue problem:

η′′
cf (z) + N2(z − ηcf (z))

c2
cf

ηcf (z) = 0, (3.13)

ηcf (−1) = ηcf (0) = 0. (3.14)

Solutions of this equation can be found for a range of initial values of η′
cf (−1) and unlike

the eigenvalue problem for linear long waves, obtained by replacing N2(z − ηcf ) by N2(z),
these solutions are not simple scalings of one another. Conservation of momentum requires
that solutions must also satisfy an auxiliary condition (Benjamin 1966; Lamb & Wan
1998):

T =
∫ 0

−1
(η′

cf (z))
3dz = 0 (3.15)

which determines the value of η′
cf (−1). Numerically, (3.13) is solved for the initial

condition η′
cf (−1) = s and then the integral in (3.15) is evaluated to find T(s).

A root-finding method is then used to find values of s for which T = 0. There can be
more than one non-zero solution as illustrated in the next section.

4. Theoretical results: When do ISWs of both polarities exist?

The Gardner equation predicts the existence of solitary waves of both polarities when the
cubic nonlinear coefficient is positive. The value of α1, including its sign, is, however,
not uniquely determined. It depends on the physical interpretation of ζ in (3.1) (Lamb
& Yan 1996). Because of this non-uniqueness, and the fact that the Gardner equation
is an approximate evolution equation for small-amplitude waves, we use conjugate flow
solutions to determine regions in parameter space where ISWs of both polarities exist. In
the following we refer to solitary waves with the polarity predicted by the KdV equation
(e.g. depressions (elevations) if α is less than (greater than) 0) as KdV polarity waves and
waves of the opposite polarity as negative KdV polarity waves. The KdV polarity waves
are always waves of depression for the stratifications considered here.

To illustrate the procedure consider stratifications with (z1, z2) = (−0.25, −0.9) (see
figure 1). Figure 3 shows T(s) for five values of �ρ1. In all cases T(0) = 0. This gives the
trivial zero solution and is not of interest (henceforth a conjugate flow solution is assumed
to be non-zero). When �ρ1 = 0 there is a single pycnocline at z = −0.9 and there is a
single conjugate flow solution which is an elevation because the pycnocline is in the lower
half of the water column (not shown). Only ISWs of elevation exist for this stratification.
For �ρ1 = 0.05 this is still the case (figure 3): the solid blue curve has a single non-zero
root at s ≈ 0.98. When the upper pycnocline has been strengthened to �ρ1 = 0.2 (and
the lower one correspondingly weakened), there are three non-zero roots of T(s) = 0:
two negative roots and one positive root. The positive root is an elevation similar to that
for �ρ1 = 0.05. The two new roots at s = −0.81 and −0.47 (the latter not visible) are
depressions. When �ρ1 = 0.6 the upper pycnocline is stronger than the lower pycnocline.
There are now two positive roots of T(s) = 0 and a single negative root. As �ρ1 increases
further the smaller positive root increases, the larger root decreases more slowly until the
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0.2
�ρ1 = 0.05
�ρ1 = 0.2

�ρ1 = 0.7
�ρ1 = 0.8

�ρ1 = 0.60.1

0T

–0.1

–0.2
–1.00 –0.75 –0.50 –0.25 0 0.25

s
0.50 0.75 1.00

Figure 3. Plots of T(s) for two stratifications using (z1, z2) = (−0.25, −0.9) and d1 = d2 = 0.04. The
orange dashed curve for �ρ1 = 0.2 overlays the solid blue curve for �ρ1 = 0.05 for positive values of s.

two positive roots merge and disappear as the local maximum of T(s) drops below 0. This
is the case for �ρ1 = 0.8 which has a single negative root at s = −0.58. When �ρ1 = 1
there is only a single pycnocline at z = −0.25 and because it is above the mid-depth there
is only a single non-zero conjugate flow solution which is a depression. Now only ISWs
of depression exist.

We will focus on stratifications for which there is one negative root and two positive
roots. An analogous discussion would apply to the opposite case by symmetry. The
existence of three conjugate flow solutions for some stratifications has been noted before
for three-layered flows (i.e. in the limit dj → 0) for some parameter values (Lamb 2000).
For the smaller positive root the propagation speed ccf is less than the linear long-wave
propagation speed c0 and hence does not appear to have any physical significance, at least
for the existence of ISWs. The larger positive root ccf is greater than c0 if �ρ1 is small
enough but is less than c0 when �ρ1 is sufficiently large. In the former case ISWs of
elevation exist while in the latter case they do not.

Figure 4 shows properties of some conjugate flow solutions of elevation as a function of
�ρ1. In these solutions the height of the lower pycnocline is fixed at z2 = −0.9 and three
values of z1 are considered, namely z1 = −0.25, −0.2 and −0.15, focusing on parameter
values for which there is a single negative root of T(s) = 0 and two positive roots.
Solutions are shown for the largest positive root. For these three values of z1 the value
of �ρ1 is increased from 0.5 until the solution no longer exists. Figure 4(a) plots max{ηcf }
as a function of �ρ1. As the strength of the upper pycnocline increases the conjugate
flow amplitude decreases, and as the upper pycnocline is raised, and hence is further from
the lower pycnocline, the amplitude increases. Figure 4(b) plots ccf as a function of �ρ1.
Speed ccf decreases as �ρ1 increases and as the upper pycnocline moves towards the upper
boundary. Also shown with dashed lines are linear long-wave propagation speeds c0 over
a smaller range of �ρ1 values. A striking difference is that these values increase as �ρ1
increases which is not surprising as linear long-wave propagation speeds increase as the
stratification shifts towards the mid-depth (e.g. for a two-layer fluid, for a given density
jump across the interface it is maximized when the interface is at the mid-depth) and here
as �ρ1 increases a larger portion of the density variation is shifted to the pycnocline that
is closest to the mid-depth. In each case there is a value of �ρ1 for which c0 = ccf . For
smaller values of �ρ1 we have ccf > c0 and solitary wave solutions of the DJL equation
can be found for a range of amplitudes with a lower limiting amplitude that is strictly
positive. For larger values of �ρ1 no solitary wave solutions of the DJL equation appear
to exist although to my knowledge there is no proof of their non-existence.
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Figure 4. Conjugate flow solutions as a function of �ρ1 for the largest positive root of T(s) = 0 for
stratifications with z2 = −0.9 and d1 = d2 = 0.04. (a) Conjugate flow amplitude max{ηcf } and (b) conjugate
flow propagation speed ccf . In (b) the dashed curves indicate the linear long-wave propagation speed.

Figure 5 illustrates regions where ISWs of both polarities coexist on the z1–�ρ1 plane
for three locations of the lower pycnocline: z2 = −0.9 (figure 5a), −0.8 (figure 5b)
and −0.7 (figure 5c). The dotted lines indicate conjugate flow boundaries: above/below
the upper/lower dotted lines there are no conjugate flow elevations/depressions. The
upper/lower solid curve denotes conjugate flows of elevation/depression with ccf = c0.
Between these two curves (grey shaded region) ISWs of both polarities exist. Along the
dashed curve the quadratic nonlinear coefficient α = 0. Coefficient α is positive/negative
below/above the dashed curve. In the grey region above the dashed line the KdV equation
predicts waves of depression. In this region ISWs (DJL solutions) of depression exist
with no minimum amplitude and ISWs of elevation exist with a minimum amplitude.
The opposite is the case in the grey region below the dashed line. The black circles in
figure 5(a) indicate some of the stratifications used for simulations of ISW interactions.

As an example, consider the behaviour along the vertical line z1 = −0.25 (h1 = 0.25) in
figure 5(a) (z2 = −0.9). Some example T(s) curves for these pycnocline heights are shown
in figure 3. Starting at the top (�ρ1 = 1) there is a single pycnocline at z1 = −0.25. There
is only one conjugate flow solution. It is a depression (the pycnocline being above the
mid-depth) and all solitary waves are waves of depression with no minimum amplitude.
As �ρ1 is decreased a lower pycnocline at z2 = −0.9 appears and it increases in strength as
�ρ1 continues to decrease (i.e. as the upper pycnocline at z1 = −0.25 weakens). At �ρ1 =
0.78 conjugate flows of elevation appear (the point where T(s) has a positive double root;
see figure 3). At this point ccf is less than the linear long-wave propagation speed (figure 4)
and there are no ISWs of elevation. When �ρ1 = 0.6 we now have ccf = c0 and below
this curve we have a conjugate flow of elevation with ccf > c0 and ISWs of elevation
now exist (they can now be computed by solving the DJL equation). There exist ISWs of
depression throughout this range of �ρ1 values. The ISWs of elevation initially have a
positive minimum amplitude which decreases to zero as the dashed curve is approached
along which α = 0. Below the dashed curve there are always ISWs of elevation with no
minimum amplitude. It is now ISWs of depression which have a minimum amplitude.
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Figure 5. Region where ISWs of both polarities exist (grey shaded regions): (a) h3 = 0.1; (b) h3 = 0.2;
and (c) h3 = 0.3. The dotted curves are the conjugate flow boundaries: above/below the upper/lower dotted
curves there are no conjugate flow elevations/depressions. The upper/lower solid curve denotes conjugate
flows of elevation/depression with ccf = c0. Along the dashed curve the quadratic nonlinear coefficient α = 0.
Coefficient α is positive/negative below/above the dashed curve. In the grey region above the dashed line the
KdV equation predicts waves of depression: ISWs of depression exist with no minimum amplitude and ISWs
of elevation exist with a minimum amplitude. The opposite is the case in the grey region below the dashed
line. Three of the stratifications used in the interaction simulations are indicated with black circles in (a).
Here h1 = −z1 is the upper-layer thickness and h3 = 1 + z2 is the lower-layer thickness.

The ISWs of depression exist until �ρ1 drops below the lower solid curve. The lower
pycnocline is now sufficiently strong relative to the upper pycnocline such that only ISWs
of elevation exist. The conjugate flow of depression ceases to exist when �ρ1 drops below
the lower dashed curve.

Other types of behaviour are illustrated by this figure. For example for (z1, z2) =
(−0.45, −0.9) (h1 = 0.45) there are never ISWs of both polarities with the waves of
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Figure 6. Internal solitary wave (a) amplitudes and (b) propagation speeds as a function of the wave APE for
stratification S1 which has (z1, z2) = (−0.25, −0.9) and �ρ1 = 0.55. Solid: values for ISWs of KdV polarity
(depressions). Dashed: values for ISWs of negative KdV polarity (elevations). The black circles indicate waves
used in simulations of ISW interactions (see table 2). The dark horizontal grey line in (b) at c = 0.308969
indicates the linear long-wave propagation speed.

depression having a minimum amplitude (no grey shaded region below the dashed curve)
and for (z1, z2) = (−0.49, −0.9) there is no region where ISWs of both polarities exist. In
terms of the T(s) roots, T(s) never has two negative roots for the first example and while
T(s) does have two positive roots for a small range of �ρ1 values in the second example,
they always correspond to conjugate flow solutions with ccf < c0.

Moving the lower pycnocline up towards the mid-depth appears to reduce the thickness
and range of z1 values for which ISWs of both polarities exists as suggested in figure 5(b,c)
for z2 = −0.8 and −0.7. When z2 = −0.7, for z1 below −0.375 (h1 > 0.375) there are
never ISWs of both polarities: for ISWs of both polarities to exist one of the pycnoclines
must be sufficiently far from the mid-depth, a distance that depends on the relative
strengths of the two pycnoclines.

Figure 6 shows the wave amplitudes and propagation speeds of ISWs obtained by
solving the DJL equation for the stratification (z1, z2) = (−0.25, −0.9) and �ρ1 = 0.55
(indicated by the rightmost black circle in figure 5a) as a function of the APE. For this
stratification ISWs of KdV polarity are waves of depression (α < 0) and ISWs of elevation
exist. The waves of elevation have a minimum amplitude of 0.210 for an APE of 0.013. The
black circles in figure 6 indicate waves used in the simulations of ISW interactions for this
stratification in the next section. For waves of negative KdV polarity the DJL solutions
break down by forming a solitary wave on a pedestal that fills the domain used by the DJL
solver.

5. Internal solitary wave interactions

We now consider the interaction of two ISWs, both propagating to the right relative to the
fluid. The simulations are done in a reference frame moving with the average propagation
speed of the two initial ISWs so the wave on the left, which has the largest propagation
speed, moves to the right while the wave on the right moves to the left. Table 1 gives the

962 A17-11

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

28
4 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.284


K.G. Lamb

Stratification z1 z2 �ρ1

S1 −0.25 −0.9 0.55
S2 −0.15 −0.9 0.60
S3 −0.10 −0.90 0.50
S4 −0.2 −0.8 0.50
S5 −0.15 −0.9 0.55
S6 −0.3 −0.7 0.50

Table 1. Stratifications used in ISW interaction simulations.

Case Stratification Wave APE r a c

C1 S1 c1s 0.01 1.068 −0.140 0.3477
— — c1f 0.04 1.045 −0.231 0.3577
C2 — c2s 0.02 1.163 0.258 0.3209
— — c2f 0.05 1.121 0.351 0.3342
C3 — c3s 0.002 1.046 −0.059 0.3290
— — c3f 0.05 1.121 0.351 0.3342
C4 — c4s 0.03 1.152 0.301 0.3284
— — c4f 0.003 1.053 −0.075 0.3234
C5 S2 c5s 0.03 1.160 0.328 0.3027
— — c5f 0.01 1.155 −0.174 0.3413
C6 S3 c6s 0.005 1.222 0.160 0.2858
— — c6f 0.02 1.206 −0.275 0.3221

Table 2. Cases for which results are presented. Here r = KE/APE is the ratio of the wave KE to its APE.
The amplitude a is the extreme isopycnal displacement. In all cases negative a is a KdV polarity wave while a
positive amplitude is a wave with the opposite polarity. Speed c is the wave propagation speed. The ‘s’ and ‘f’
in the wave names indicate the slow and fast waves of the given case. A dash indicates the value is the same as
in the previous line.

parameters of the various stratifications considered. Results are only shown for a few of
these. Cases discussed in some detail are given in table 2. In all cases α < 0, i.e. KdV
polarity waves are waves of depression. The table includes values of the ratio r of kinetic
energy (KE) and APE. Turkington et al. (1991) showed that r > 1. In case C6 the KE is
slightly more than 20 % larger than the APE.

In the isopycnal waterfall plots presented below, the isopycnal at the centre of the
upper pycnocline is used. The upper pycnocline is chosen because for all stratifications
considered the linear mode-one eigenfunction has its maximum in the upper pycnocline
so vertical displacements for linear waves are larger in the upper pycnocline than in the
lower pycnocline. Hence, use of this isopycnal, rather than one in the lower pycnocline,
makes it easier to see small-amplitude waves generated by the interaction of the two ISWs.
In ISWs of depression the upper pycnocline undergoes a larger displacement than the
lower pycnocline does but the opposite is true of ISWs of elevation. Hence the amplitude
of ISWs of elevation is under-represented by the use of this isopycnal for the waterfall
plots. This under-representation is illustrated in the density contour plots presented below.

5.1. Stratification S1

We first consider the stratification S1 for which (z1, z2) = (−0.25, −0.9) and �ρ1 = 0.55
(table 1, figure 1). The stratification is indicated by a solid circle in figure 5(a) and the
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Figure 7. Waterfall plots showing the time evolution of the isopycnal at the centre of the upper pycnocline.
Stratification S1 with (z1, z2) = (−0.25, −0.9) and �ρ1 = 0.55. (a) Case C1: interaction of two solitary waves
of KdV polarity with APEs of 0.01 (amplitude −0.140) and 0.04 (amplitude −0.231). (b) Case C2: interaction
of two solitary waves of negative KdV polarity with APEs of 0.02 (amplitude 0.258) and 0.05 (amplitude
0.351). (c) Case C3: interaction of a fast wave of negative KdV polarity with APE of 0.05 (amplitude 0.351)
with a slow wave of KdV polarity with APE of 0.002 (amplitude −0.059). (d) Case C4: interaction of a fast
wave of KdV polarity with APE of 0.003 (amplitude −0.075) with a slow wave of negative KdV polarity with
APE of 0.03 (amplitude 0.301). Isopycnal displacements are scaled identically in all cases. The amplitude of the
negative polarity waves (waves of elevation) is under-represented because of the use of the upper pycnocline.

amplitude and propagation speed of ISWs as a function of APE are presented in figure 6.
Here ISWs of elevation exist with a minimum amplitude of 0.210.

Figure 7 shows waterfall plots for four cases using this stratification. In figure 7(a) the
interaction of two ISWs of KdV polarity (Case C1, table 2) is shown. Their initial APEs are
0.04 and 0.01. The initial wave amplitudes (extreme isopycnal displacements) are −0.140
and −0.231 (figure 6) and these are also the initial displacements of the isopycnal at the
centre of the upper pycnocline. At the scale of this waterfall plot there is no evidence of
any additional waves being generated by the interaction; however, some small waves are
generated with amplitude 0.0008 which is 0.6 % of the amplitude of the smaller initial
ISW (see figure 8). At t = 7000 the extreme isopycnal displacements in the two ISWs are
−0.139 and −0.230, i.e. a decrease in amplitude by 0.7 % and 0.4 %. For comparison,
in a simulation with only the single large wave its amplitude decreased by 0.2 % during
the same time period due to numerical dissipation and a slight adjustment of the initial
DJL ISWs. The interaction is similar to that of KdV solitary waves with amplitudes that
are not too different: during the interaction the larger wave decreases in amplitude and
slows down while the wave ahead of it grows and speeds up. There are always two local
minimums in the isopycnal displacements. The interaction of these two solitary waves
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Figure 8. Zoom in on the isopycnal at the centre of the upper pycnocline at t = 4500 for case C1 (same case
shown in figure 7a). Small-amplitude linear dispersive waves generated by the interaction lie between x = −60
and −30.

is very soliton-like, similar to the interactions of ISWs in an exponential stratification
reported by Lamb (1998).

Figure 7(b) shows the interaction of two ISWs of negative KdV polarity for the same
stratification (Case C2). Their initial APEs are 0.02 and 0.05 with amplitudes of 0.258
and 0.351 (figure 6, table 2). The interaction generates a much larger trailing wave train
and a small-amplitude solitary wave both of which can be seen in the waterfall plot. The
displacement of the centre of the upper pycnocline decreases by 0.5 % and 1.9 % for the
large and small ISWs respectively.

The interaction of two solitary waves of opposite polarity (Case C3; see figure 6, table 2)
with the fast wave being a wave of negative KdV polarity is shown in figure 7(c). The
negative KdV polarity wave has an APE of 0.05 (amplitude 0.351) while the KdV polarity
wave has an APE of 0.002 (amplitude −0059). A few small waves are generated by the
interaction which is again soliton-like. The displacement of the upper pycnocline decreases
by about 8 % and 0.9 % for the KdV and negative KdV polarity waves respectively.

When the slow and fast waves are negative KdV and KdV polarity waves, respectively,
the results are quite different. An example, Case C4 (see figure 6, table 2), is shown
in figure 7(d). The initial faster-propagating wave of depression centred at x = 30 is
a small-amplitude wave of KdV polarity (APE 0.003, amplitude −0.0746). The wave
of elevation ahead of it at x = 60 has negative KdV polarity and is larger (APE 0.03,
amplitude 0.3008). The interaction results in the generation of a much larger-amplitude
wave train than in the previous three cases. A striking result of the interaction is that the
KdV polarity ISW undergoes a large increase in amplitude. It increases its amplitude by
113.1 % while the negative polarity ISW decreases its amplitude by 14.0 %. The energy
of the KdV polarity wave (KE plus APE) increases by a factor of 4.43 from 0.0062 to
0.0273 while the energy of the negative polarity wave decreases by a factor of 0.53 from
0.0646 to 0.0340. The combined energy in the two ISWs has decreased by about 13.4 %.
Approximately 9 % of the decrease is due to transfer of energy to the smaller trailing
waves and the remaining 4.4 % is loss due to numerical dissipation (next section). An
accompanying change in the propagation speeds of the two ISWs is evident. This change is
exaggerated in the waterfall plot because of the use of a moving reference frame. Relative
to the fluid the propagation speed of the KdV polarity wave increases by 5 % while the
propagation speed of the negative KdV polarity wave decreases by 4 %.

Figure 9 shows contour plots of the density field before and after the interaction for
Case C4. This plot illustrates how displacements of the upper pycnocline can greatly
under-represent the amplitude of the waves of elevation. It also illustrates that isopycnal
displacements in the trailing wave train are larger in the upper pycnocline.
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Figure 9. Density contour plot of the interaction of two solitary waves of opposite polarities. Case C4 (see
figure 7d). (a) Shortly before the interaction at t = 4000. (b) After the interaction at t = 6000.

5.2. Stratification S2

The second stratification considered has (z1, z2) = (−0.15, −0.9) and �ρ1 = 0.6 (table 1,
figure 5a). Compared with stratification S1, the upper pycnocline has been raised
and slightly strengthened with a corresponding decrease in the strength of the lower
pycnocline. This stratification is indicated by a solid circle in figure 5(a). As for
stratification S1, KdV polarity waves are waves of depression and negative polarity waves
of elevation exist, this time with a minimum amplitude of 0.144.

The interaction of two ISWs of KdV polarity or two waves of negative KdV polarity
is similar to those for the previous stratification. Here we consider the interaction of two
ISWs of opposite polarity (Case C5, table 2) with a KdV polarity ISW (APE = 0.01,
a = −0.174, c = 0.341) initially trailing a slower-propagating negative KdV polarity ISW
(APE = 0.03, a = 0.328, c = 0.303) as in Case C4. A waterfall plot illustrating the
interaction is presented in figure 10(a). The interaction is much more complicated than
it was in Case C4. As in Case C4, the KdV polarity ISW increases its amplitude and
propagation speed during the interaction while the negative KdV polarity wave undergoes
a reduction in amplitude and propagation speed. The interaction generates several other
waves including a KdV polarity solitary wave of depression which initially trails the
negative KdV polarity ISW. Its propagation speed is negative in this reference frame.
Relative to the fluid it is travelling faster than the negative KdV polarity wave so it
catches up and interacts with it. During the interaction its amplitude increases and it then
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Figure 10. Waterfall plots showing the time evolution of the isopycnal at the centre of the upper pycnocline.
(a) Case C5. Stratification S2 with (z1, z2) = (−0.15, −0.9) and �ρ1 = 0.6. (b) Case C6. Interaction of two
solitary waves of opposite polarities for the symmetric stratification S3 with (z1, z2) = (−0.1, −0.9) and
�ρ1 = 0.5. Waves have APEs of 0.005 (amplitude 0.1602) and 0.02 (amplitude −0.2754).

propagates to the right. A new packet of small-amplitude waves and a new KdV polarity
ISW are produced. This cycle repeats several times. After each interaction the negative
KdV polarity wave decreases in amplitude and each subsequent new KdV polarity ISW
is smaller than the preceding one. After the third interaction of ISWs of opposite polarity
(at t ≈ 1800) the KdV polarity ISW is drifting to the left as its propagation speed relative
to the fluid is smaller than the speed of the moving reference frame. Contour plots of the
density field at three different times are presented in figure 11. A movie for this case is
provided in the supplementary movie (movie 1) available at https://doi.org/10.1017/jfm.
2023.284.

5.3. Stratification 3
The third stratification considered has (z1, z2) = (−0.1, −0.9) and �ρ1 = 0.5 (table 1,
figure 5a). This stratification is symmetric; hence the quadratic coefficient α = 0 and the
cubic coefficient α1 is uniquely determined and is positive. The interaction of two ISWs of
opposite polarity is shown in figure 10(b). The initial ISW of elevation has APE of 0.005
and amplitude of 0.1602 while the larger initial ISW of depression has APE of 0.02 and
amplitude of −0.2754. The interaction results in the generation of a packet of trailing
small-amplitude waves. This is typical of the results obtained using other symmetric
stratifications (e.g. stratifications S4 and S6, results not shown). These trailing waves are
much smaller than those produced in the previous two examples of the interaction of ISWs
of opposite polarity. After the interaction the energy (KE plus APE) in the small ISW has
decreased by 24.0 % while that in the large wave has increased by 3.3 %. The total energy
in the two waves has decreased by 2.2 %.

6. Energy considerations

The use of a second-order finite-volume method to solve the governing equations implies
the presence of numerical damping and a gradual loss of energy from the wave field.
This is illustrated in figure 12 where the time evolution of the total APE, KE and half
the total energy in the computational domain is shown for Case C3. The total energy
decreases linearly in time until t ≈ 6000 when waves in the wave train generated by the
interaction (which occurs at about t = 5200) start to leave the domain (see figure 7c).
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Figure 11. Density contour plot of the interaction of two solitary waves of opposite polarities. Case C5 (see
figure 10a). (a) Before the first interaction at t = 600. (b) Second interaction at t = 1200. (c) Third interaction
at t = 1800.

During the interaction the KE undergoes a sharp, transient decrease while the APE has
a corresponding sharp, transient increase. They recover somewhat but the total KE and
APE undergo a permanent decrease and increase respectively after the interaction. The
total energy shows no such behaviour, continuing to decrease at the same rate during the
interaction.

7. Discussion and summary

There are two main results of this paper. The first is the presentation of a method for
determining where in parameter space ISWs of both polarities exist. This method is
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Figure 12. Time evolution of energy in the computational domain for Case C3. Shown are the APE (red),
KE (blue) and half the total energy (green).

somewhat tedious as it requires the determination of where the conjugate flow speed is
equal to the linear long-wave propagation speed. While a mathematical proof that this
method is correct has not been provided, the search for DJL solutions of both polarities
strongly supports this contention. The second main result is that numerical simulations
using the incompressible Euler equations show that the interaction of ISWs of opposite
polarity in sufficiently asymmetric stratifications are generally far from soliton-like if
the faster trailing wave has KdV polarity: the interactions can result in large changes in
the amplitudes of the two ISWs and a significant transfer of energy to additional waves,
including other solitary waves.

Figure 13 shows the energy changes resulting from the interaction of two ISWs of
opposite polarity in four series of simulations: two series using the symmetric stratification
S3 for two different slow waves (note by symmetry it does not matter which waves are
waves of elevation or depression) and one series for each of the asymmetric stratifications
S1 and S5 (see table 1). For the asymmetric stratifications the initial leading (slow) wave
has negative KdV polarity and the initial faster trailing waves have KdV polarity. The
energy changes are plotted as a function of �c, the difference in the initial propagation
speed of the two waves, which is a proxy for the interaction time of the two waves.
Figure 13(a,d) shows the ratio Eas/Ebs, where Ebs and Eas are the total energies (APE
plus KE) in the slow ISW before (at t = 0) and after the interaction. Figure 13(b,e) shows
the corresponding ratio Eaf /Ebf for the fast ISW. The ISW energies after the interaction
are computed at the earliest time that the final ISWs have separated from the trailing waves
generated by the interaction. For all series the initial slow/fast ISW loses/gains energy
during the interaction with the change increasing monotonically as �c decreases, i.e. as
the time the two waves interact increases. Large energy changes are possible, especially
in series S1 in which the fast wave increases its energy by up to a factor of five after
the interaction while the energy in the slow wave decreases by slightly more than half.
The total fractional change (Ea − Eb)/Eb in the combined energy of the two ISWs is
shown in Figure 13(c, f ). Here Eb = Ebs + Ebf and Ea = Eas + Eaf are the combined
energies in the two ISWs before and after the interaction (only cases with two ISWs after
the interaction are considered here).

The effects of numerical dissipation are accounted for by assuming numerical
dissipation removes energy at a constant rate throughout the simulation as suggested by
figure 12, that is, we compute the rate r at which energy is lost before the interaction, which
has a typical value of −3 × 10−7, and use a corrected final energy value Ẽa = Ea − rTa,
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Figure 13. Energy changes after ISW interactions as a function of the difference in propagation speed of the
two initial ISWs. (a–c) Red (circles) is for stratification S3 with small wave with APE = 0.005 and larger waves
with APE = 0.008, 0.01, 0.015, 0.02 and 0.04; orange (squares) is for stratification S3 with small wave with
APE = 0.01 and larger waves with APE = 0.015, 0.02, 0.04 and 0.06. (d– f ) Blue (asterisks) is for stratification
S1 with a slow negative KdV polarity wave with APE = 0.03 and fast KdV waves with APE = 0.0035, 0.003,
0.004, 0.005, 0.01, 0.015 and 0.02; green (triangles) is for stratification S5 with a slow anti-KdV polarity wave
with APE = 0.02 and fast KdV waves with APE = 0.006, 0.008, 0.01, 0.12 and 0.02. (a,d) Fraction of initial
energy in the slow ISW after the interaction. (b,e) Fraction of initial energy in the fast wave after the interaction.
(c, f ) Change in total energy in the two ISWs after the interaction as a fraction of the initial total energy (solid
curves) and the adjusted values taking into account energy loss due to numerical dissipation (dotted curves).

where Ta is the time at which Ea was calculated. We also assume that energy is lost from
each ISW via numerical dissipation at the same rate. The resulting values, corrected for
numerical dissipation, are indicated by the dotted curves in figure 13. Note that accounting
for energy dissipation increases the energy increase of the fast wave while decreasing the
energy decrease of the slow waves. The change in the total energy provides an estimate
of the energy lost to the trailing waves. It is as large as 10 % of the initial wave energy in
series S1.

Only a few simulations with two ISWs of opposite polarity were done with the initial
fast trailing wave having negative KdV polarity (it being far easier to find DJL solutions
with faster KdV polarity waves). The interactions all resulted in small changes in the
amplitudes of the two ISWs, as in figure 7(c). When the fast trailing wave has KdV polarity
the interactions result in large changes when the difference in propagation speed is small
(figure 13). Note that C3 and C4 (see figure 7c,d), which have the KdV and negative KdV
polarity waves in reversed order, have similar �c but the results of the interactions are very
different.

This work has implications for the use of the Gardner equation with positive coefficient
to model ‘soliton-turbulence’ in the context of internal waves (e.g. Didenkulova 2019),
because it demonstrates that for internal waves the Gardner equation does a poor job of
modelling interactions of waves of opposite polarity. Hence, better simplified models are
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needed; however, it may be difficult to replace full two-dimensional numerical simulations.
The interactions of two mode-two internal solitary-like waves, one on each of two
well-separated pycnoclines (H/λ
 1, where H is the pycnocline separation distance and
λ is a typical wavelength), have been studied in the laboratory (Weidman & Johnson
1982) and theoretically (Liu, Pereira & Ko 1982; Nitsche et al. 2010; Weidman, Nitsche
& Howard 2011). (Solitary-like because these waves are not exact ISWs. They are in
general accompanied by a small mode-one dispersive wave train whose phase speed
is equal to the propagation speed of the mode-two solitary-like wave. Because their
group velocity is smaller that their phase speed this means there is a continual drain of
energy from the mode-two solitary-like wave which therefore slowly decays in amplitude
(Akylas & Grimshaw 1992).) The waves were modelled using coupled intermediate-depth
equations (Joseph 1977; Kubota, Ko & Dobbs 1978). Here a reverse energy transfer occurs
with the leading faster-propagating solitary-like wave transferring energy to the trailing
solitary-like wave. In this process the trailing wave grows, speeds up and passes the leading
wave which has decreased in amplitude. This ‘leap-frogging’ process then repeats. Each
interaction results in the loss of energy to trailing small-amplitude dispersive waves and
eventually the leap-frogging stops. Gear & Grimshaw (1984) considered the interaction
of internal solitary waves of different modes in cases where the total water depth is small
compared with the wavelength of the waves. In this case KdV-type equations are obtained.
For cases where the linear long-wave speeds of the two modes differ by an O(1) amount the
coupling is weak; however, when the linear long-wave speeds differ by a small amount the
evolution is governed by a set of nonlinearly and dispersively coupled KdV-type equations.
Gear & Grimshaw (1984) demonstrated the existence of stratifications for which the linear
long-wave speeds of the two modes are similar. These stratifications consisted of upper
and lower layers of constant buoyancy frequency with the middle layer unstratified. In the
simulations discussed here H/λ varies between about 0.4 and 1 (based on the half-width
of the wave-induced surface currents). None of the existing theories apply for the situation
considered here, namely the interaction of two ISWs of the same mode with opposite
polarities; however, as the waves of depression and elevation have very different vertical
structures there is some similarity to the cases considered by Gear & Grimshaw (1984)
suggesting a future avenue of exploration. It is important to emphasize, however, that
the mode-one solitary waves of elevation and depression have vastly different vertical
structures. In particular, the negative KdV polarity wave has a vertical structure that is
not a small correction to the linear mode-one modal function and hence it is not a weakly
nonlinear wave.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2023.284.
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