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Abstract

In the paper we study the conditions under which multiconnection networks are
nonblocking. A multiconnection network deals with the connections of pairs
{(T1,T3)} where T is a subset of the input terminals and 7> is a subset of the
output terminals. We investigate networks composed of digital switching matrices.
Such networks can be treated as a very general case encompassing many kinds of
networks used in practice as well as studied theoretically.

We present four routing strategies and then develop conditions under which
multiconnection networks are nonblocking when each of these strategies is used.
We also show that the obtained conditions reduce to known results for some values
of network parameters.

1. Introduction

A multiconnection network deals with the connections of pairs {(7}, T2)}
where 7 is a subset of the input terminals and 75 is a subset of the output
terminals [5]. Multiconnections are often used in practice, for example, for
conference connections, for loop connection tests, or for connections of sev-
eral subscribers to a single service circuit, such as a signal sender. A special
case of multiconnection networks are broadcast networks, in which |7}| = 1.
Recently the special interest in multiconnection networks is caused by their
application in broadband systems used for the transmission and switching of
high bit-rate signals, including TV and high speed data [14], [15].
Space-division multiconnection networks have been dealt with by several
authors. Hwang and Jajszczyk have given the conditions under which such
networks are nonblocking [4], [5], [6]. The results obtained for space-division
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FiGURE 1. Three-stage network; u: number of links, v: number of links between the same
switches, f : number of channels in a link.

networks are applicable to time-division networks having separate time and
space stages. However, they cannot be applied to networks composed of digi-
tal switching matrices, the introduction of which is changing design concepts
for digital switching networks.

Digital switching matrix (DSM) mix in the same chip, or in the same
printed circuit board, time and space switching [1]. In the matrix informa-
tion can be transferred from any channel of any incoming PCM link to any
channel of any outgoing PCM link. The structures and some features of var-
ious switching networks composed of such elements have been discussed in
several papers [2], [7], [9], [13], [16]).

In this paper the conditions under which multiconnection networks com-
posed of DSMs are nonblocking will be formulated and proven. To illustrate
the principle we shall consider the three-stage network shown in Fig. 1. The
structure is similar to that proposed by Clos [3]). The main difference is the
multiple linkage connection between pairs of switches in successive stages
(this multiple linkage connection will be referred to as a “bundle of links”)
and that each link can carry more than one channel. The analysis of such a
network resolves itself into the analysis of a multiple linkage space-division
network.

Let I denote the set of input terminals (input channels) and O the set of
output terminals (output channels). A connecting pair in a multiconnection
network is defined to be a pair (7, T3): T € I, T C O such that each terminal
in T is to be connected to every terminal in 75. In a (g,, ¢;)-multiconnection
network all connecting pairs must satisfy the restrictions |T}| < ¢; and |T3| <
¢>. A multiconnection network is nonblocking if, regardless of what state the
network is currently in, a connecting pair involving only idle terminals can
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always be connected by a subgraph of the network which is link-disjoint from
all subgraphs connecting previous pairs.

Throughout this paper it is assumed that each rectangular switch has the
fan-in, fan-out property, i.e., any subset of inlets can be connected simulta-
neously to any subset of outlets. The above assumption is, of course, valid
for space-division switches. However, it cannot be used for some kinds of
digital switching matrices. For example, in the DSM described by Belforte
et al. the address memory controls the output of the speech memory, and
therefore we can send a speech sample from any channel of any incoming
PCM link to a multiplicity of outgoing channels, but not vice versa [1]. Some
structures of digital switches having both sides of speech memory controlled
have been reported [12]. For the sake of generality, we shall use the “fan-in,
fan-out” assumption. Therefore, we can restrict ourselves to consider pairs
(T, T;) consisting of at most one terminal from each input switch and at
most one terminal from each output switch, because if we can connect one
input (output) terminal to 75 (7)), then all terminals in the same input (out-
put) switch can be connected to 7> (7). Hence, we may assume r > ¢; and
r > ¢, without a loss of generality. We also assume that overlapping of two
or more connecting pairs is not allowed.

Throughout the paper by |x| we denote the greatest integer less than or
equal to x, and by [x] we denote the smallest integer greater than or equal
to x.

2. Routing strategies

We shall modify the four routing strategies proposed by Hwang in order
to use them in the discussed networks. The strategies can be formulated as
follows.

STRATEGY 1. A connecting path for each pair (¢;,%), t, € T\, b € T» is
set up independently of a path for another pair (¢,,¢,). By “independence”
we shall mean that any channel is not used by more than one pair (¢,,f5).

STRATEGY 2. A connecting path for each pair (¢,,T3), t; € T} is set up
through a single channel leading from the input stage to a middle-stage switch.
Then it is branched out in this switch and leads to all t; € 7.

STRATEGY 3. A connecting path for each pair (T),f), t; € T; is set up
through a single channel connecting the output and the middle stages. Then
it is branched out in the middle-stage switch and leads to all ¢, € T3.
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STRATEGY 4. A connecting path for each pair (73, 73) is set up through
a single middle-stage switch; all elements ¢, and ¢, ¢, € Ty, t, € T, are
connected to this switch through single channels.

It can be easily seen that for v f, = 1 the presented strategies reduce to the
strategies described in [5].

3. Conditions for nonblocking

Consider the pair (77,7;). Let t; € T\, t; € T; and let S; be the set of
switches accommodating 7; where i = 1,2. Denote y; = |T;|. Because of the
fan-in, fan-out properties, we may assume that |7;| = |S;| = y;. Let s5; be the
switch accommodating ¢;.

We can formulate the following four theorems.

THEOREM 1. A two-sided three-stage network composed of DSMs is nonblock-
ing as a (q1,q2)-multiconnection network under Strategy 1 if and only if

m 2 1 +min{|(u:fiq1 — 1)/ (v fo)] + [(uifigq2 — 1)/ (v /o)),
[(uifi(r + min{q), g2} — 1) - 1)/ (v fo)]}. (1)

Proor. Sufficiency. Consider the connection of the pair (7}, 7). Let g, be
the maximum number of connections between the following sets of inputs
and outputs sy — #; and O — {5, U T5}. Let g, be the maximum number of
connections between the sets s, —; and 7 — {5, UT)}. Let g3 be the maximum
number of connections between the sets s, — #; and s, — #,. Let g4 be the
number of connections between ¢, and T, — f,. Let g5 be the number of
connections between ¢; and 7, — ¢,. Let g¢ be the number of connections
between ¢; and ;.

Similarly as in the proof of Theorem 1 in [5], the numbers g; to g, for
the worst state of a network, are as follows:

g = min{(; f; — 1) min{qy,r — 1},(r — Du; fi —y2 + 1},
& = min{(u; f; — 1)min{q,,r — 1},(r — Du; fi —y1 + 1},
g =min{u;f; — 1, (u;i fi — 1)q2 — g1, (i fi — D@1 — &2},

g=y>-1,
gS=YI_1,
& = 1.

The total number of connections isthen g = g1 + g2+ g5 + g4 + &5 + L6.
Since g depends on y; and y, linearly, it is easily seen that g achieves its
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maximum at y; = ¢; and y, = g,. Hence,

& = (uifi — 1)min{gy,r -1}, g = (u;fi — ) min{q,,r — 1)}.

Define g° = g(q,,q2). We consider the following four cases.
Case 1. gy <r, go <r. Then

g =wfi-Van &=@fi-Da, & =0,
gl=a-1 g =q-1, g=1.
The connections s; — £, to O — {s; U T3} and ¢, to T, — ¢, fully occupy
L(g? + &2)/(vf,)] links between the first and the middle stages. Similarly,
the connections s; — ¢, to I = {5 UT,} and ¢, to T} — ¢; fully occupy
(&) + &2)/(vf,)] links between the middle and the third stages. Thus, in
the worst state, the number of required middle-stage switches is

h = (uifigi — D)/ )] + [(uifigz = 1)/(vfo)] + 1. (2)

CASE 2. gy =r, ¢» <r. Then

(1) Between sets sy —¢; and O—{s,UT>}, and the sets ¢; and 7> —¢; can exist
u;fig» — 1 connections (see Case 1); v f,|(u; figa — 1)/(v f,)] of these connec-
tions fully occupy bundles of links coming to | («; figa—1)/(v f,) ] middle-stage
switches.

(2) The number of connections which can be established between the sets £,
and T; —¢, is equal to r — 1. The number of elements of the set I — {s; UT}
limits g; (i.e. the maximum number of connections between s, — ¢, and
I-{siUT}to(r—1){u;fi —1). Because in (1) only v f, | (u; figx — 1)/ (v f5)]
connections of the set s; — ¢; are used, the following number of connections
can be established between the sets s; —; and s) — ¢;: min{u; f; — 1, R}, where
R = (u; fig;— 1) mod(v f,). Thus, connections discussed here can fully occupy
bundles of links coming to | ((r—1)u; fi+min{u; fi—1, R})/(v f,)] middle-stage
switches.

In the worst state the sets of middle-stage switches described in (1) and
(2) are disjoint. In order to connect the pair (¢,¢;) an additional switch is
required. Therefore, the total number of required middle-stage switches is

hl(uifiga — 1)/ (vfo)] + [((r = D)(uifi + min{u; f; — 1, R})/(v o) + 1. (3)
Because for positive integers a, b, ¢, d holds
dla/b] + |(c + d[(a) mod(d)))/b] = |(ad + c)/b] (4)
and (r — Du; fi+u;fi — 1 = u;fiq, — 1 (in Case 2 we have g, = r), expression
(3) can be rewritten as follows
h =min{|(uifigi — 1)/(vfo)] + [(#i fiq2 — 1)/ (v f5)],
[ fitr+a2— 1) = 1)/(vfo)]} +1. (5)
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CASE 3. ¢ <r, g; = r. By symmetry to Case 2 we have

h = min {|(u;fiqs — 1)/ (o)} + (i figa — 1)/ (v o),
(. fi(r + g1 = 1) = 1)/(vfo)]} + 1. (6)

CAse 4. g, =g, =r. Then
g=g=wfi-1)(r-1), g=ufi-1

Because (u; fi — 1)(r— 1)+ uifi — 1 =gq;(u;fi — 1), for j = 1,2, Case 4 is
identical to Cases 2 and 3.

Summarising Cases 1-4 we obtain Theorem 1. Necessity can be proved
with ease by constructing sequences of calls which lead to the occupancy of
such a number of switches which is given by formula (1).

Theorem 1 is illustrated by the following simple example.

ExXAMPLE 1. Let us consider a network having the following parameters:
qi=q¢=r=2,u;f;=35,vf, = 2. By Theorem 1 the network is nonblocking
for m > 8. The worst state of the network is presented in Figure 2.
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FIGURE 2. The worst state in the (2, 2)-multiconnection network controlled by using Strat-
egy l.
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THEOREM 2. A two-sided three-stage network composed of DSMs is nonblock-
ing as a (g1, q2)-multiconnection network under Strategy 2 if and only if

m 2> lgylfng{min{l(uiﬁ = D/ ()4l (q(uifi - 1))/ (v o)+ min{d,, d>},
[(ruifi — @)/ (W fo)] + di, |((r = y2)uifi + quy2(ui fi — 1))/ (v o)) + d2}},

(7)
wrere
(@1 = 1)/(vfo—R)]+1, forq <[R/R\\vfo — Ry, R, #0, and
val(a(uifi — D)) (vfo)] < (uifi(r—1) —q1 + R+ 1)/ (v ) };
di={ @1+ R = 1)/(vfo)]+ 1 for g1 > [Ry/R\1vfo — Ry, Ry #0

or yal(a(uifi = 1))/(vfo)] > [(wifi(r = 1) —q1 + R+ 1)/ (v fo)]
orR, =0

(8)
gy = D(vfo-R)|+1, forq <[Rs/Rilvfo—R3, R #0;
dy=49 (@1 +R3—-1)/(vfo)| +1, forq >[R3/R/1vfo — R3, R #0;
(g1 — D(wfo)] +1, for R =0 )

R = (uifi — 1)mod(v f);
R = (qi(ui fi — 1)) mod(v f;);
Ry=u;fi(r-1)—q+1+R-
—min {y,|(q1(w. fi = D))/ (0 o), L(ui filr = 1) — @i+ R+ 1)/ (v fo) |} v fo;
Ry = {y2Ry,(r — y2)uifi + y2R—
—min {|(u.fi — 1)/(vfo)], l((r = y2)us fi + y2R1) /(v fo)]} v fo}-

Proor. Sufficiency. Consider the connection of the pair (7, 73). Let g, be
the maximum number of connections between the sets s; — £ and O — S5.
Let g> be the maximum number of connections between the sets S, — 7> and
I — {s; UT)}. Let g3 be the maximum number of connections between the
sets sy —¢; and S; — T». Let g4 be the number of connections between the sets
T, and T3. It is easily seen that:

g =min{u; f; — 1,(r — y2)u.fi},

& = min{yy(u; f, — 1) min{g;,r - 1},(r — Du; fi —y1 + 1},

& =min{(u; f; — Vy2, y2(uifi - D1 — &, uifi = 1 — &},

84 =)1.
Because the total number of connections increases in y;, so we can take
¥1 = q;. Hence, g; can be rewritten as follows:

& = min{y2(uifi — Dy, (r - Dui fi —qn + 1}.
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The total number of connections is then g = g + g2 + g3+ g. Define g% =
g(q1,y2). We consider all possible combinations of the terms of g, £, &3,
and g4 in g°. There are 12 such combinations. We express a combination as
follows:

81,i+ 82, + &3k + 84,
where
gu=ufi-1, gia=(-y)uf;
&u=nufi-aq, ga=C-Dufi-q+1
gr=fi-1y, ga=ufi~1-g,
&3 =y2uifi— a1 — &
84 = 4.

Note that the appearance of g, or g, implies that g; = 0. Furthermore,
g+ &2 =&, and g; + g33 = g&,. Finally, it is easily to verify that
g2 = £,2 implies g3, > g32. Thus, there are only three distinct expressions
for g, namely

811+ 82,1 + &4,
81,1+ 822+ 84 =812+ 82,2+ 83,2+ &,
812+ 82,1+ 8=812+ 8§22+ 833+ &4

Let 2 denote the number of required middle-stage switches. We consider
the following three cases related to the expressions presented above.

CasE 1. g11 + £,1 + &4 In this case we can distinguish the following three
kinds of connections.

(1) The connections s, — ¢; to O — S, can fully occupy bundles of links
coming to |(u;f; — 1)/(v f,)] middle-stage switches.

(2) The connections S; — 7> to I — {s; U T} can fully occupy bundles of
links coming to y;| ¢ (u;f; — 1)/(v f,)) middle-stages switches.

(3) The remaining q; connections are established while the bundles of
links connecting middle-stage switches and third-stage switches belonging to
S, are partially occupied by y2R, = y,(q1(uif; — 1)) mod(v f,) connections
Sy — T to I — {s; UT}. The connections 7T; to 7> can be established by
partially occupied bundles of links if ¢; < y2(vf, — R;). These links lead
to [q1/(vfo — R))] = (@1 — 1)/(vfo — Ry)] + 1 middle-stage switches. If
q1 > y2(vfo — R)) then the connections T} to 75 and the connections partially
occupying bundles of links can be established through [(g; + y,R;)/(v f5)]
middle-stage switches.

In the worst state the sets of switches described in (1)—(3) are disjoint.
Hence, the number of required middle-stage switches is

h=|(uifi = 1)/(wf)] +y:2la(uifi = 1))/ (v /)] +d, (10)
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where
d={ (@ = D)/(wfh-R)|+1, forq <y:(vfo—Ry), (11)
(g1 +y2R = 1)/(vfy)] +1, forgq > y:(vfo—Ry).

CASE 2. g1+ 82+ 8 = 812+ 8,2+ 8,2+ &. In this case we can
distinguish the following three kinds of connections.

() vfo(uifi—1)/(v fo)] connections s; —¢; to O—S> fully occupy bundles
of links coming to | (u; f; — 1)/(v f,)] middle-stage switchcs.

(2) The connections S, — T, to I — {s; U T} can fully occupy bundles of
links coming to at most y,|qi1(u; f; — 1)/(v f,)] middle-stage switches. How-
ever, the set I — {s; U T1} limits the number of these connections to g,, =
u;fi(r — 1) — g, + 1. In the worst state, output channels belonging to S, — T3
are also connected to R = (u;f; — 1) mod(v f,) input channels belonging to
51—t which have not been used in (1). Hence, the connections described here
fully occupy bundles of links coming to the following number of middle-stage
switches

min {y2[(q:1(u; fi = 1))/ fo)], (i filr = 1) —q1 + R+ 1)/(v fo)]}.

(3) The connections T, to T, are established while the bundles of links
connecting middle-stage switches and third-stage switches belonging to S5
are partially occupied by the following number of connections described in
(2)

R2=u,-ﬁ(r—l)—q1+1+R
—min{y2[(q:(ui fi — 1))/ (v fo)), L(uifi(r = 1) — a1 + R+ 1)/ (v fo)|} v fo.
If Ry=0o0r
[uifir = 1) =@ + Ry + D)/ (v fo)] < y2l(q1(uifi — 1))/ (v fo)]
then, in the worst state, these remaining connections are established to a
single switch belonging to S;. In this case the connections 7 to 75 require

[(q + R2)/(v fo)] = (g1 + Ry — 1)/(v f,)] + 1 middle-stage switches.

If R; # 0 and

[(uifi(r—1) — a1 — R+ 1)/ (v fo)] 2 y2l(qn (uifi — 1))/ (v o))

then, in the worst state, these remaining connections are established to
[R2/R;] switches belonging to S>. In this case, similarly as in Case 1, the
connections 7} and 75 require | (g1 — 1)/(v fo — R1)] + 1 middle-stage switches
for ¢ < [Ry/R v fo— Ry and |(q1 + Ry — 1)/(v f;)] + 1 middle-stage switches
for ¢ > [Ry/R\]v f, — Rs.

In the worst state sets of switches described in (1)-(3) are disjoint. Hence,
the number of required middle-stage switches is

h = [(uifi = 1)/(vfo)) + min{y:|(q: (i fi — 1))/ (v o),

((ifir = 1) —q1 + R+ 1)/ (vfo)]} + i, (12)
where d; is expressed by (8).
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By using formula (4) we can rearrange formula (12) to

h = min {|(u; fi - 1)/ (v )| + y2l@r(uifi — 1))/ (v o))
Lruifi — q)/(vfo)]} +dr. (13)

REMARK 1. We can note that g;, < g;,; only if r = y5, i.e. g2 = 0.
Therefore, for g2 + 822 + &32 + 84, (1) is related to connections s; — ¢; to
S, — T, but not to connections s; — t; to 0 — S5.

REMARK 2. For y,q(uif; — 1) < uifi(r — 1) — q¢; + R + 1 the number of
required middle-stage switches for Case 2 is equal or greater than that for
Case 1.

CASE 3. g2+ &1+ 8 = &2+ &2+ g3+ g In this case we can
distinguish the following three kinds of connections

(1) vfoyal(qi (uifi— 1)) /(v f,)] connections S, — T, to I — {5, U T, } fully oc-
cupy bundles of links coming to y»|(q:(u; fi—1))/(v f,) ] middle-stage switches.

(2) The set O — S5 limits the number of the connections s, — ¢; to O — S,
to u;fi(r — y2). In case g1,1 > g1,2, input channels belonging to s, — ; can
be connected to min{; f; — 1,y,R,} output channels belonging to S; — T3,
because y, R channels belonging to S> — 75 have not been used in (1). Thus,
the connections described here can fully occupy bundles of links coming to
the following number of middle-stage switches

min {|(u:f; — 1)/ (v fo) ], L((r — y2)uifi + y2R1) [ (v fo)]} -

(3) The output channels belonging to S, — 75> which have not been used in
(1) and (2) can use the following number of connections with free channels
belonging to I — {s; U T}

R3 = min {y2Ry,(r — y2)uifi + y2R)
—min{{(uifi — 1)/ @), [((r = y2)ui fi + y2aR1) /(v o)} v fo} -

In the worst state these connections are established with [R;/R;] switches
belonging to S, if R| # 0. Similarly, as in Case 1, the connections T; to T»
require |(g;—1)/(vf,—R;)|+1 middle-stage switches if ¢; < [R3/R;]vf,—R;
and |(q;+R3~-1)/(v f,)]+1 middle-stage switches if ¢; > [R3/R;]v fo—R3. If
R, = 0, then R; = 0 and the connections T} and T3 require |(g,—1)/(v f;)]+1
middle-stage switches.

In the worst state the sets of middle-stage switches described in (1)-(3) are
disjoint. Hence, the number of required middle-stage switches is

h = y2l(qi(uifi — 1))/ (v fo)] + min{[(u: f; - 1)/(v o)),
L((r = y2)uifi + y2R)) /(v fo)]} + da,  (14)
where d; is expressed by (9).
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FIGURE 3. The worst state in the (2, 2)-multiconnection network controlled by using Strat-
egy 2.

By using formula (4) we can rewrite (14) obtaining the following expression

h=min{|(u f, = 1)/(vfo)] + L1 (ui fi = 1))/ (v 1)),
[((r = y2)uifi = yaq1(uifi = 1))/ (v o)} +d2. (15)

REMARK 3. For u; f; — 1 <(r — y2)u, f; Case 3 is transformed to Case 1.

Summarising Cases 2 and 3 and choosing the maximum value of 4(q,, ;)
for 1 < y, < ¢, we obtain Theorem 2. Necessity can be proved with ease by
constructing a sequence of calls which leads to the occupancy of the switches
of formula (7).

Theorem 2 is illustrated by the following example.

EXAMPLE 2. Let us consider a network identical to that of Example 1.
Under Strategy 2 this network is nonblocking for m > 5. The worst state of
the network is illustrated in Figure 3. This state corresponds to Case 2 of the
proof, and, in particular, to the combination: gy, + £ + 832 + &, wWhere
&1,2 = 0. Note that Case 2 is proved only for the combination g;; + g2 + gs
which gives the same m as the combination appearing in our example.

THEOREM 3. A two-sided three-stage network composed of DSMs is nonblock-
ing as a (q, g;)-multiconnection network under Strategy 3 if and only if

m> max {min{l(uf; = /@S] +»L(@fi = D)/©L)

+ min{ds, ds}, [(ru; fi — )/ (v 15)]
+ds, [((r =yVuifi + @y (ui fi = 1)) /(v fo)] +da}}, (16)
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where
(g2 = 1)/(vfo—R)|+1, forq, <[Ry/R\1vfo —R2, R, #0, and
Villg(uifi = 1)/ (vfo)] < [uifi(r—1) = @2+ R+ 1)/ (v fo)};
dy=4 [(@2+R—-1)/(vfo)]+1, forq>[Ry/R\|vfo— Ry, R #0
or yil(q@2(uifi = 1))/ (v fo)] > [(wifi(r — 1) — g2 + R+ 1)/ (v o) ];
or R =0
(17)
(@2—-1)/(wfo—R)|+1, forqa<[R3/R\\vfo—R3,R#0;
da={ [(@2+R3—1)/(vfo)l +1, forq,>[R3/R\1vfo — R3, Ry #0;

(g2 - 1)/(vfo)] + 1, for Ry =0;
(18)

R = (u;fi — 1)mod(v f,);
Ry = (q2(u; fi — 1)) mod(v f,);
Ry=uifi(r-1)—q+ 1+ R-
—min {y1[(g2(u; fi = 1))/ fo)], L(ui fi(r = 1) — @2 + R+ 1)/ (v fo)]} v fo;
Ry = min{y Ry, (r — y)u; fi + y1Ri -
—min{[(u; fi = 1)/(vfo)], [((r = y))ui fi + y1R1)/ (v fo)|}v fo}.

PROOF. Analogous to the proof of Theorem 2

THEOREM 4. A two-sided three-stage network composed of DSMs is nonblock-
ing as a (q, g2)-multiconnection network under Strategy 4 if and only if

m2 1+ max {min{(y: +y2)|(fi - 1)/(v1o)),
<n<q
1<y:<q

[(ruifi — max{y,,y2})/(vfo)]}}. (19)

Proor. Sufficiency. Consider the connection of the pair (7}, 73). Let g, be
the maximum number of connections between the sets S; — 7; and O — ;.
Let g, be the maximum number of connections between S, — 7> and I — S|.
Let g3 be the maximum number of connections between S| — T and S; — T>.
Let g4 be the number of connections between T; and 7T>.
The numbers g; to g4, for the worst state of a network, are as follows:
& = min{y,(u; fi — 1), (r — y2)ui fi},
& =min{y,(u; f; - 1), (r — y1)uifi},
g =min{y (uifi — 1) — g, y2(u: fi = 1) — &2},
g =1
The total number of connections is then g = g, + g2 + g3 + ga.

https://doi.org/10.1017/50334270000006585 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000006585

200 Andrzej Jajszczyk [13]

Similarly as in the proof of Theorem 2 we consider all possible combina-
tions of the terms g, g5, g3, and g4. Write

g1 =yi(uifi - 1), g2 =(r—y)uif;;
&2, =y2uifi - 1), 82,2 = (r—ynuifi;
g =yi(uifi—1)— g, g2=y2(uifi—1)— g.

Note that the appearance of g, or g, implies that g3 = 0.
Furthermore, g, + g3, = £,1 and g ; + &32 = &£2,1. Thus, it is sufficient
to consider the three combinations

81,1+ 82,1+ &
811+ 82+ 8 =82+ 82+831+ 8,
812+ 82,1+ 8 =812+ 822+ 8321+ &a.

Let & denote the number of required middle-stage switches. We consider
the following three cases related to the expressions presented above.

CASE 1. g1, + &,1 + g4 In this case we can distinguish the following two
kinds of connections.

(1) Between the sets S; — T} and O — Sy, (u;f; — 1) connections are es-
tablished. These connections can fully occupy bundles of links coming to
yil(uifi = 1)/(v f,)] middle-stage switches.

(2) Between the sets S; — T, and I — Sy, (u;f; — 1) connections are es-
tablished. These connections can fully occupy bundles of links coming to
v2|(ui fi — 1)/ (v f,)] middle-stage switches.

In the worst state the sets of switches described in (1) and (2) are disjoint.
Because in order to establish the connection 7} to 7 an additional switch is
required, the total number of middle-stage switches is

h =+ y)(uifi — /(v o)) (20)

CASE 2. g1+ &2+ 8 = 812+ &2+ &,1 + &. In this case we can
distinguish the following two kinds of connections

(1) The set S; — T can realise y,(u;f; — 1) connections; v foy; | (4 fi —
1)/(vf,)] of them can fully occupy bundles of links coming to y;|(u;fi —
1)/(v f,)) middle-stage switches.

(2) Theoretically, the connections realised by set S; — 7> can fully oc-
cupy bundles of links coming to at most y»2|(u;f; — 1)/(v f,)] middle-stage
switches. However, the set I — S; limits the number of connections between
S> — T3 and I — S} to (r — y1)u; f;. The output channels belonging to S, — T3
can be additionally connected to y,R = y;(u;f; — 1) mod(v f,) input chan-
nels belonging to S; — T, which have not been used in (1). Therefore, the
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12g

12g;;

FiGURE 4. The worst state in the (2,2)-multiconnection network controlled by using Strat-
egy 4.

connections described in (2) can fully occupy bundles of links coming to
min{| ((r =y )uifi + 11 R)/ (v fo)], 2| (ui fi— 1)/ (v f,)]} middle-stage switches.

In the worst state the sets of switches described in (1) and (2) are disjoint.
Because in order to establish the connection T} to T, an additional switch is
required, the total number of middle-stage switches is

h = yil(uifi = 1)/(vfo)] + min{y,|(ui fi = 1)/ (v o)),
L((r —yuifi + iR/ (vfo)]} + 1. (21)

By using formula (4) we can rewrite (21) obtaining the following expression

h=1+min{(y; + )| @i fi - D/, lruifi =)/ (wfo)]}.  (22)

CASE 3. g12+ &1 + 8 = £12+ &2 + &2 + &. By symmetry to Case 2
we have

h=1+min{(y +y) Wi fi = D/ @), (ruifi = y2)/(wfo)]}.  (23)

Summarising Cases 1 to 3 and choosing the maximum value of A(y, y2)
for 1 < y; < ¢y and 1 < y; < ¢g» we obtain Theorem 4. Necessity can be
proved by constructing a sequence of calls which leads to the occupancy of
the switches of formula (19).

EXAMPLE 3. Let us consider a network identical to that of Example 1. Un-
der Strategy 4 this network is nonblocking for m > 5. The worst state of the
network is illustrated in Figure 4. This state corresponds to the combination:
S12+ 82+ 831+ 8, Where g12=822=0, 85, =8 and ga= 1.
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We note that for f; = f, = v = 1 Theorems 1, 2, 3, and 4 all reduce to the
theorems presented in [5], for the symmetrical Clos network. Forq; = ¢, = 1,
for all theorems, we obtain the known result: m > 2| (u; f; — 1)/(v f,)] +1 [9].
For r > ¢,q, Theorems 1 to 4 reduce to the theorems presented in [10]. For
fi=fo =v = q = q2 = | we obtain the well-known Clos theorem [3].

Conclusion

In the paper the conditions under which three-stage symmetrical networks
composed of digital switching matrices are nonblocking as (g;, g2)-multi-
connection networks were studied. We can note that although our results
have been developed for time-division networks, they are valid also for mul-
tiple linkage space-division networks, i.e. networks in which each pair of
switches belonging to adjacent stages is connected by more than one link.
The obtained results can be easily extended also for non-symmetrical net-
works, as well as for networks containing more than three-stages.

Since nonblocking multiconnection networks require expansion in the first
stage and concentration in the last one we can form various expansion and
concentration modules made of square switches (available DSMs are usually
square) by using the method proposed in [8]. In some practical applications
other approaches to multiconnections may be justified [11], [15].

Throughout the paper we assumed that each rectangular switch has the
fan-in and fan-out properties. However, in most cases digital time-division
switches have only the fan-out property, i.e. any input channel can be con-
nected to a multiplicity of output channels but not vice versa. In this case
Strategies 1 and 3 and Strategies 2 and 4 are in pairs equivalent and, there-
fore, Theorem 1 is identical to Theorem 3, and Theorem 2 is identical to
Theorem 4. The fan-out property does not limit the construction of broad-
cast networks, i.e. (1, g)-multiconnection networks, which are of practical
interest, especially in broadband applications.
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