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ABSTRACT 
This paper explores the suitability of Artificial Neural Networks (ANNs) as an enabler of Design 
Automation in the turbomachinery industry. Specifically, the paper provides 1) a preliminary estimation 
of the effectiveness of ANNs to define values for design variables of reciprocating compressors (RC) 
and 2) a comparison of ANNs performance with traditional and more computationally demanding 
methods like CFD. A tailored ANN trained on a dataset composed by 350+ Baker Hughes’ RC 
automatically assigns values to 8 geometrical variables belonging to multiple parts of the RC in order 
to satisfy two target conditions linked to their thermodynamic performance. The results highlight that 
the ANN-assigned parameters return an optimal solution for RC also when the target values do not 
belong to the training dataset. Their predictive capacity for RC thermodynamic performance, with 
respect to CFD, are comparable (i.e. less than 2% in terms of calculated absorbed power) and the 
approach enables a significant gain in terms of computational time (i.e. 2 minutes vs 10 hours). Future 
perspectives of this work may involve the integration of this tool in an advanced DA method to lead 
Design Engineers (DEs) during the whole design process. 
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1 CONTEXT AND RELEVANT BACKGROUND 

The turbomachinery industry is currently undergoing rapid innovation in design concepts due to the 

emergence of new energy transition markets. As a result, energy companies are required to quickly 

redesign their products to meet the evolving needs of their customers. To achieve this, the product 

engineering development of turbomachinery components requires a multi-disciplinary design 

approach, including parametric CAD modelling, Finite Element Structural Analyses (FEA), 

Computational Fluid-Dynamics Analyses (CFD), and thermodynamics. Many turbomachinery 

companies adopt an Engineering-To-Order (ETO) production approach, which means that key design-

related activities must be completed within a short lead time after receiving a customer order. These 

activities involve iterations of calculations and design analyses that sometimes involve data and 

constraints that are not fully known at the outset. 

The traditional trial-and-error design method used in most activities of the product development 

process depends on the experience of Design Engineers (DEs). This approach cannot lead to globally 

optimized designs and typically results in very long design cycles (Li and Zheng, 2017). For ETO 

engineering companies, it is essential to automate its internal processes, particularly during the 

engineering design phase, which is at the core of their business. In order to reduce errors and delays, 

as the market demands, design methods and tools offer an opportunity to shorten the design phase 

making it more efficient (e.g. by avoiding time consuming iterations).  

Design Automation (DA) solutions are widely used in the industry to increase product competitiveness 

in the market and improve overall company productivity. The adoption of Knowledge-Based 

Engineering (KBE) in the early design stage can lead to standardization, error reduction, and a 

reduction in lead time (Ascheri et al., 2017). KBE can also increase the efficiency of product 

manufacturing and reduce time-consuming and repetitive tasks (Lindholm and Johansen, 2018). 

However, a limitation of DA applications is the need to choose from automatically generated 

alternative solutions (Entner et al., 2019). Moreover, the design space size formulation is only valid 

for a sub-space within which only some morphological transformations are allowed. This is a 

substantial limitation, as DA models cannot exceed the constraints within which they have been 

developed (Amadori et al., 2012). 

To overcome this limit, several methods attempt to find optimum designs using techniques that avoid 

following a specific defined solution. Furthermore, in the engineering design process of ETO-structured 

companies, there can be the necessity to avoid exploiting gradient or quasi-gradient information to 

respond as quickly as possible to changes in inputs or constraints. Among the techniques meeting these 

needs, there are processes which either exploit randomised variations in the design variables or avoid the 

direct modification of design variables altogether by using learning networks. Among the first group, 

there are the Guided Random Search Techniques (GRST), i.e. Genetic Algorithm (GA), and similarly, 

for the second group, there are the learning network-based methods, i.e. Artificial Neural Networks 

(ANNs). GAs are a family of computational methods inspired by the Darwinian/Russel Wallace theory 

of evolution applied to solve general optimisation problems (Sobieszczanski-Sobieski et al., 2015). 

ANNs are a very simplified model of the human brain, depicted as having billions of neurons, each 

connected to several thousand other neurons (Bishop, 1994). The computational cost of GAs and ANNs 

depends on the problem and the specific implementation. GAs may be more expensive when dealing 

with large search spaces or discrete optimisation problems, while ANNs may be more efficient for 

function approximation or regression tasks (Che, 2011). 

The essential properties of biological neural networks from the viewpoint of information processing 

will allow us to design abstract models of artificial neural networks, which can then be simulated and 

analysed after their training on more or less large quantities of data available (Rojas, 1996). In recent 

years, ANNs have been applied to a lot of industrial problems, from functional prediction and system 

modelling (where physical processes are not well understood or are highly complex) to pattern 

recognition engines and robust classifiers, with the ability to generalise while making decisions about 

different kind of input data (Meireles et al., 2003).  

In the literature, the first applications of ANNs in the turbomachinery industry concern the simulations of 

design and off-design conditions of gas turbines operability (Lazzaretto and Toffolo, 2001), the 

prediction of axial compressors performance map (Yu et al., 2007), and the centrifugal compressors 

performance (Jiang et al., 2019). This approach, however, gives an estimation of the performance of the 
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single components without taking into account the effects of the variations of internal design parameters 

on performance. A comparison between ANNs and other metamodels able to predict the performance of 

axial compressors has been carried out by Ghorbanian and Gholamrezaei (2009). In the last years, ANNs 

have also been used for the optimisation of components layout (Du et al., 2022) and, in general, for 

design optimisation of turbomachinery components as a surrogate model to avoid huge computational 

efforts typical of more robust optimisation methods (i.e. GA) when a big number of data is available 

(Woldermariam and Hirpa, 2019). Applications have been carried out on centrifugal impellers (Ji et al., 

2021), radial turbines (Luczynski et al., 2021) and fan blades (Lopez et al., 2021). 

ANNs applications in advanced DA models might trigger advantages as they enable the quick 

processing of large amounts of data and the engineering practice showed they could be effective when 

it is difficult to identify, a-priori, a suitable design optimisation model. The main disadvantage arises 

when the network must respond to inputs substantially different from those used for its training or in 

case the results are expected in regions of the design space where the inputs are significantly different 

from those used in the training phase, as described by Bishop (1994).  

In fact, in order to contribute to filling the above-mentioned research gaps in the ETO turbomachinery 

industry, the aim of this work, developed in partnership with Baker Hughes (BH) engineering 

department, is to provide an estimation of the multi-objective predictive capacity of the ANN method 

for BH Reciprocating Compressor (RC) cylinders and to compare it in terms of performance 

calculation and computational time with respect to more computationally demanding methods like 

CFD. The choice to explore ANNs predictive capacity is due to the nature of the design problem, as 

the cylinder's topology directly affects its performance, and because of the availability of a dataset that 

contains data about RCs' topology and the related thermodynamic performance, as estimated through 

extensive CFD analyses conducted in the past years. This dataset represents the design space of the 

existing cylinder families. Indeed, due to the large amount of miscellaneous data already present in the 

BH database, it may be advantageous to use ANNs to construct a surrogate model of the problem 

instead of more computationally demanding numerical methods. Hence, the paper intends to answer 

the following question: how do ANNs perform in terms of predictive capability and computational 

time with respect to traditional more time-consuming simulation methods, when dealing with non-

routine design covered by pre-defined DA models, which represents RC cylinders?  

Section 2 frames the method for non-routine RC cylinders design as a process that integrates the 

application of ANNs in order to overcome the main challenges of ETO-structured business. This 

section includes details about the RC data provided in the dataset, a description of the ANN 

specifically developed for such study and its integration in the workflow via an orchestrator which 

enables DEs to target goal parameters of the desired configuration with the related Key Performance 

Indicators (KPIs). Section 3 describes the application of the method in a case study related to a non-

routine design of a new BH RC cylinder, by highlighting the results according to the KPIs. The last 

section summarises the results, with an overview of the scientific contribution of this work, its 

limitations and the future research perspectives. 

2 METHOD 

2.1 RC cylinders design in the ETO process 

The current design development process of RC cylinders is primarily human-driven and iterative, 

with design changes made as needed to meet technical and organizational requirements. This work 

proposes a tool to optimize the design of RC cylinders by targeting customer needs for optimal 

solutions and fast turnaround times. The ETO RC cylinder design process is driven by engineering 

requirements and involves modifying features and geometrical characteristics that affect the 

mechanical and thermodynamic performance of the machine. Given the importance of these factors, 

this work aims to test the validity of ANNs as an alternative to computationally expensive CFD 

analysis for RC cylinder design. The goal is to assess the reliability and the time-saving potential of 

ANNs for this application. Figure 1 shows the section of an API 618 BH RC. The right end of the 

picture highlights the cylinder, which is the group of this reciprocating compressor this work 

focuses on. 
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Figure 1. Section of an API 618 BH reciprocating compressor. 

 

One of the most critical issues in the design of reciprocating compressors is the pressure loss generated 

as the gas flows through the gas ducts and, in particular, in the section of the valve pocket, including 

valves and gas ducts between them and the compression chamber. The limitation of such waste of 

energy is crucial in the design of the valve pocket. Therefore, its evaluation becomes critical for the 

analysis of the cylinder performance mainly for two reasons: 

• The pressure drop observed in the valve pocket is an index of the valve's effectiveness, as it 

affects the amount of work required to compress the gas. 

• The relationship between the pressure drop and the mass flow rate must be known during the 

entire cylinder design process, since it is the base of the mathematical model for calculating the 

p-V cycle characteristic of the compressor. 

The other key factor that affects the volumetric efficiency of the machine (and, therefore, its 

performance) is the presence of clearance volumes (or dead volumes) inside the cylinder. When the 

piston reaches the top dead centre at the end of the discharge phase, part of the volume presents not 

compressed gas. The effect of the clearance volumes on the reduction of the suction capacity is greater 

the higher the clearance volume itself and the compression ratio. 

2.2 Dataset development and analysis 

The cornerstone that makes it possible to check the performance of ANNs for non-routine RC design is 

the large database developed by BH. It includes the company's entire fleet of RC cylinders, composed of 

more than 365 different cylinders. Each of the RC therein collected is also provided with the results of 

CFD simulations and analyses. The results of CFD returned the global losses of each machine, this is 

summarised as the global flow coefficient 𝐾𝑠 and as the clearance volume value 𝜀. The flow coefficient 

𝐾𝑠 =
�̇�𝑟𝑒𝑎𝑙

�̇�𝑖𝑑
 is the ratio between the real and the ideal gas flow rate through the RC valves. This 

coefficient represents the factor necessary to reduce an ideal mass flow rate of an ideal gas through a 

given valve to obtain the real mass flow rate through the same valve once the pressure drop has been set. 

The clearance volume 𝜀 =
𝑉𝑇𝐷𝐶

𝑉𝐶
 [%] is the ratio between the volume remaining between the piston, the 

cylinder head and the valves of a RC cylinder when the piston reaches the top dead centre 𝑉𝑇𝐷𝐶  [mm3] 
and the cylinder capacity 𝑉𝐶 [mm3]. These are the two parameters which can be monitored by DEs to 

assess the performance of the RC cylinder. They are the two main inputs for the mathematical 

calculation of the absorbed power declared to the customer. Indeed, this is function both of 𝐾𝑠 and 𝜀.  

PABS = 𝑓(𝐾𝑠, 𝜀) (1) 

https://doi.org/10.1017/pds.2023.366 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.366


ICED23 3655 

The simulations needed to obtain these values required many hours of computational time (i.e., ~10 

hours for a single cylinder). In the past, in fact, most of the studies were focused only on the analysis of 

the pressure losses of the valves, while today the losses of all the other components of the machine have 

also assumed vital importance, as the gas ducts layouts has undergone changes over time. The use of 

CFD simulation has shown great potential for studying the entire reciprocating compressor but is still 

limited by high computational costs. The timing of such analyses is primarily incompatible with BH 

ETO process schedule, as often it is not possible to dedicate resources and computational time of such 

order of magnitude for this purpose. For this reason, there is a need of scouting innovative methods to 

find design solutions of RC cylinders able to respond as quickly as possible to customer requests.  

The database used for this work, available on BH systems include, for every cylinder: 

• Cylinder code, which uniquely identifies the single cylinder. 

• Cylinder bore. 

• Cylinder valves number and size. 

• 6 geometric parameters which describe the gas flow path topology. Among these, there are 

distances, angles, dimensions of components which affect the performance of the cylinder in 

terms of 𝐾𝑠 and 𝜀. 

• 𝐾𝑠 for both suction and discharge phase, both at the head and crank-end of the cylinder. 

• 𝜀 both for the head and crank-end of the cylinder and the medium value. 

The BH database has been rearranged with the following simplifications for the purpose of this analysis: 

• 𝐾𝑠 takes the value it gets at the head-end side of the suction phase. 

• 𝜀 is averaged considering both the head and the crank-end side of the cylinder. 

That is, for simplicity, only the suction phase of the head-end side of the cylinder has been analysed. 

The database has been rearranged in this way, for a total of 8 independent parameters, two dependent 

variables (𝐾𝑠 and 𝜀) for each of the 365 different cylinders embedded in the original database 

Some variables, such as the number and size of valves, are discrete and have standard values. 

However, other variables are represented as discrete geometrical values that could theoretically be 

continuously altered by an artificial neural network (ANN). Based on the analysis of this 

heterogeneous database, the physics of the problem, and the literature reviewed in Section 1, a 

metamodel will be developed to represent the independent variables that affect the two dependent 

variables. This metamodel (i.e. the ANN) will be presented in the following section. 

2.3 ANN training and ANN performance estimation 

The database has been prepared and imported in MATLAB, which has been chosen together with BH IT 

department as the most suitable tool for this exploratory analysis. Training multiple neural networks and 

averaging their results can improve the performance and generalization of the model compared to 

training a single neural network. This is known as model ensembling, and it has been shown to be an 

effective technique in machine learning (Yu et al., 2008). Training a single neural network on a large 

dataset can lead to overfitting, where the model becomes too complex and starts to memorise the training 

data instead of learning the underlying patterns. However, averaging the results of multiple neural 

networks can help reduce overfitting, as each network will learn slightly different representations of the 

data and averaging them will produce a more robust and generalized model. Then, averaging the results 

of multiple neural networks can improve the accuracy of the model, as the individual networks may 

make different errors on different parts of the dataset. By averaging their predictions, the errors can be 

dampened, leading to a more accurate overall prediction. Finally, it is important to know how uncertain 

the model is about its predictions. Averaging the results of multiple neural networks can provide a more 

reliable estimate of uncertainty, as the ensemble is more likely to capture the full range of possible 

outcomes. Overall, training multiple neural networks and averaging their results can help improve the 

performance and robustness of the model, especially when dealing with large and complex datasets. 

With this purpose, a sensitivity analysis on the number of ANNs and size of the hidden layer has been 

carried out. Time consumption for training and execution of one calculation together with results 

comparison have been evaluated for 10, 20, 30, 50 and 100 ANNs with hidden layer size 10, 20 and 

30. Results do not considerably vary with more than 30 ANNs with size 20, while the time 

consumption continuously increases. For this reason, 30 feedforward ANNs with one hidden layer of 

size 20 (Figure 2) have been created and trained to avoid biases and minimise errors. The output 

values are the mean values computed by 30 ANNs.   
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Figure 2. Representative ANN scheme on MATLAB. 

As 𝐾𝑠 and 𝜀 values affect the performance of the RC machine declared to the final customer, it is 

necessary to assess the impact of the error in terms of absorbed power. The quality of the ANNs has 

been checked by comparing the outputs computed with the ANNs and the same sample of the dataset. 

The Mean Absolute Percentage Error (MAPE) represents a measure of the prediction accuracy of a 

method. It has been calculated for both the variables 𝐾𝑠 and 𝜀. 

MAPEKs
= (

1

𝑛
∑ |

𝐾𝑠𝐷𝑇𝑅−𝐾𝑠𝑁𝑁

𝐾𝑠𝐷𝑇𝑅

|𝑛
𝑖=1 ) = 0.1 %  (2) 

MAPE𝜀 = (
1

𝑛
∑ |

𝜀𝐷𝑇𝑅−𝜀𝑁𝑁

𝜀𝐷𝑇𝑅
|𝑛

𝑖=1 ) = 1.43 %  (3) 

Where 𝐾𝑠𝐷𝑇𝑅
 is the value of 𝐾𝑠 present in the database, 𝐾𝑠𝑁𝑁

 is the value of 𝐾𝑠 calculated with the 

ANNs, 𝜀𝐷𝑇𝑅 is the value of ε present in the database, 𝜀𝑁𝑁 is the value of ε calculated with the ANNs 

and 𝑛 is the number of samples present in the database. 

The observed 0.1% MAPE for 𝐾𝑠  and 1.43% for 𝜀 lead to a 0.1% error on the declared absorbed 

power, which has been considered acceptable as the customer accepts a large enough tolerance on that 

value, with respect to the one resulting with the above-mentioned MAPEs. 

2.4  ANN as a DA enabler 

The trained and validated ANNs have been embedded into a tool that delivers the optimal solution 

once the computational goals have been set. Isight (Van der Velden et al., 2010) is an orchestrator 

used to combine multiple models and multi-disciplinary applications into a simulation process flow, 

automate execution across distributed computing resources, explore the resulting design space and 

identify optimal design parameters responding to the required constraints. 

 

Figure 3. Base loop of MATLAB ANNs integrated into Isight (left). ANNs integrated into the 
target solver component (right).  

This basic loop "Task1", shown in Figure 3 on the left, allows to orchestrate the above-described ANNs 

to automatise the cylinder layout update according to different customer requirements and to read the 

results in a user-friendly manner. It orchestrates the input values manually inserted by DEs by running 

the Matlab routine, which embeds the ANNs shown before. In the case of the cylinder model that has 

been built in this study, a direct evaluation of the performance of a certain configuration can be carried 

out in this way. In the components tab of Task1 the baseline value of the parameters of the desired 
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configuration can be set. The outputs are the values of 𝐾𝑠 and 𝜀 obtained through the metamodel (i.e. 

ANNs) of the related cylinder layout. This process can be furtherly improved using the Target Solver 

component which is present in Isight (Figure 3, right). The Target Solver component in Isight changes 

the baseline value of variables within a specified range until the target values of the model are reached 

(within a specified tolerance) or until it exceeds the specified number of evaluations.  

This component runs the ANNs embedded in the Matlab routine already presented with this goal. The 

Target Solver is particularly useful for solving a system of equations made up of target parameters, 

like in the case of this analysis. This component in Isight is used to specify the target values of a set of 

output parameters and select the variables that will be modified to reach these values. In the Targets 

table the goal values of 𝐾𝑠 and 𝜀 are set.  

In the Variables table the different variables of the design space are edited. There is the possibility to 

choose which variables will be modified by the tool and the range within which they can vary. The 

output of this run is the set of parameters of the optimised RC cylinder assembly, which has to be 

exported manually in the 3D CAD software by DEs to deliver the optimal configuration able to 

respond to the customer needs in terms of 𝐾𝑠 and 𝜀. 

2.5 KPIs of the method 

As the competitiveness of BH RCs in the market is defined by their own performance and cost, it is 

important to assess the output of the method presented in this research within a certain interval of 

tolerance (i.e. BH declares the calculated absorbed power to the customer with a certain tolerance), by 

minimising the computational time. For this reason, in order to answer to the research question 

formulated in the introduction, the KPIs of the process according to which the quality of the tool 

described above will be evaluated are:  

• Functional performance, defined as the "quality" of the output in terms of error with respect to 

the benchmark (i.e. CFD analysis), measured on the values of 𝐾𝑠 and 𝜀. 

• Computational time to deliver the optimised solution to the customer, with respect to CFD 

analysis.  

3 COMPUTATIONAL APPLICATION 

3.1 Cylinder description 

In order to answer the research question, a case study related to a BH RC cylinder has been carried 

out. It is representative of a real ETO activity in Baker Hughes. In particular, it reflects a real case 

study: a new customer needs a RC to face the energy transition. With reference to the research 

question presented in the introduction, indeed, the purpose is to prove that ANNs can be a valid 

alternative to more expensive optimisation methods like CFD, which has been considered the 

benchmark of the analysis. The cylinder (Figure 4) is part of a BH new product development program 

that might answer the new customer demands, but which is lacking an appropriate configuration to 

meet its requirements. Such cylinder can be considered a scaled up version of one of the existing RCs 

that trained the ANNs. In other words, the overall geometrical characteristics of this cylinder are 

similar to the ones of the cylinders belonging to the training dataset, especially in terms of shape of the 

gas ducts. The size and the number of the valves are standard, but the combination of their values with 

the internal bore and the dimensions of other components place this cylinder outside the boundaries of 

the design space which the dataset is based on. This makes this analysis suitable to estimate the 

capability of the approach to reach thermodynamic performance that are similar to the one of the same 

family, which results in target values of 𝐾𝑠 and 𝜀. 

3.2 Computational path 

The computational path is herein summarised. The DE sets the goal parameters of 𝐾𝑠 and 𝜀 of this 

case study in the Targets tab of the Target Solver Editor of Isight, which runs ANNs with the 

methodology explained in 2.3. The other eight parameters have been modified by the tool to reach the 

final configuration able to respond to the requirements. The final parameters are manually exported by 

the DE in the 3D CAD software to obtain the optimal configuration of the cylinder. With this 

configuration, a complete CFD analysis has been carried out as a reference value to verify the KPIs of 

the study. The results are: 
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• The comparison of the two values for 𝐾𝑠, i.e. the one estimated by the ANN (𝐾𝑠𝐴𝑁𝑁
) and the one 

obtained by means of the simulation using a CFD model(𝐾𝑠𝐶𝐹𝐷
), shows that the relative error is 

0.3%. Furthermore, for what concerns 𝜀, the relative error between the metamodel (𝜀𝐴𝑁𝑁) and the 

CFD simulations (𝜀𝐶𝐹𝐷) is 8.7%. As both these values affect the absorbed power, the estimation 

of the error for this quantity is 1.7% (which is within the interval of tolerance declared by BH to 

the customer). The results obtained with the ANNs are the mean values of the surrogate model 

developed through the methodology described in 2.3. 

• The computational time to deliver the optimal configuration with ANNs is 2 minutes vs around 

10 hours needed to run the CFD model. 

 

Figure 4. New BH RC cylinder assembly. 

4 CONCLUSIONS AND FUTURE PERSPECTIVES 

This paper presents an application of ANNs for a DA solution related to systems of turbomachinery 

components capable of supporting DEs in delivering a nearly-optimal design solution trough a 

computational time reduced by two orders of magnitude with respect to CFD analyses. In particular, 

the final configuration of the target system (i.e. RC cylinder assembly) is developed seeking goal 

values of a multi-objective function, related to the performance of the machine itself. An application 

of this metamodel to a case study representative of a new BH product is shown, with the purpose of 

validating the hypothesis that ANNs are sufficiently capable to predict and properly assess the 

performance of the cylinder (and so of the whole machine), with respect to more time-consuming CFD 

models.  

The results are summarised herein. Through the analysis of these results shown in 3.2, it emerges that 

ANNs are a promising tool for supporting BH DEs where non-routine design is required in a short 

time, as for their ETO-structured business process. Indeed, ANNs allow reaching the final 

configuration within a few minutes without the necessity of running complete CFD models. These 

results also show that this metamodel is capable of delivering the optimal solution outside the 

boundaries of the training set with sufficient predictive quality. This aspect is of particularly great 

importance when dealing with the development of new products in a short period of time, as, for 

instance, it is required for energy companies facing the energy transition. In order to better highlight 

the limitations of design applications of ANNs in terms of shape and dimensions, it seems to be useful 

to extend the approach described in this research to different families of RC cylinders. For example, it 

may be possible to understand how to modify the ANN metamodel developed for the purpose of this 

work (i.e. re-training with a new dataset). 
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As per the work presented, the main limitations of the ANNs tool presented in this paper are 

summarised in the following three list items: 

• The training of ANNs is carried out using values that approximates the real behaviour of the 

machine via averaging or by means of cut-off criteria (e.g. average values of clearance volumes 

may lead to significant errors in the prediction of 𝜀). 

• There is a lack of self-learning of the ANNs after each computational path. 

• Training has been done on a finite number of parameters which does not allow design exploration 

outside the design space of the same type of geometry ruled by a model. 

A possible improvement of the presented ANNs tool's predictive capacity may involve the 

development of a metamodel representing a complete RC cylinder without approximations needed on 

clearance volume values (which appear to be the main contributors to errors in absorbed power 

calculation). Furthermore, the implementation of self-learning metamodels may lead to an increased 

predictive capacity of machine learning techniques with respect to the one presented in this work. 

Finally, another possibility may be the development of an advanced integrated DA method able to lead 

DEs in meeting design requirements and customer needs with a robust approach, implementing DA 

master models in a product configurator to be optimised by the ANNs orchestrated by Isight as per the 

presented work, to obtain the required final configuration of the cylinder, which can be then included 

in the final overall thermodynamic and mechanical calculation of the whole compressor.  

In any case, machine learning can help BH improve efficiency and reduce costs in its engineering 

activities. The company has already started by identifying the areas where machine learning can have 

the most significant impact and investing in the necessary data infrastructure and talent to implement 

these solutions. 
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