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Abstract

Let N be a complete Riemannian manifold isometrically immersed into a Hadamard manifold M . We
show that the immersion cannot be bounded if the mean curvature of the immersed manifold is small
compared with the curvature of M and the Laplacian of the distance function on N grows at most linearly.
The latter condition is satisfied if the Ricci curvature of N does not approach−∞ too fast. The main tool
in the proof is a modification of Yau’s maximum principle.
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1. Introduction

Let N be a complete Riemannian manifold isometrically immersed into a Hadamard
manifold M ; in other words, M is a complete, simply connected manifold with
nonpositive curvature. We are looking for conditions that force the immersion to be
unbounded. We impose two conditions. First, we require the immersion to be close
to a minimal immersion; that is, the mean curvature of the immersion must be small.
Second, we require that the Laplacian of the distance function on N grows at most
linearly.

It is perhaps unusual to impose an analytical condition on the immersed manifold,
rather than a geometrical one (involving bounds on the curvatures); but our reasons are
two-fold.

First of all, there is a strong connection between the Laplacian of the distance
function and the Ricci curvature. For instance, a lower bound on the Ricci curvature
would imply, via standard comparison arguments, an upper bound on the Laplacian
of the distance function for distances larger than one. By the same token, a decay
condition on the Ricci curvature (which says that the Ricci curvature cannot approach
−∞ faster than a certain rate) yields a growth condition on the Laplacian of the
distance function.
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The second reason is that this analytical condition on the immersed manifold is the
property that will play an especially important role in the proofs.

It is also clear that we must impose some condition on the immersed manifold,
either in the form of a curvature condition or in terms of the Laplacian of the distance
function, because there are examples [1] of complete immersed minimal surfaces into
R3 that are bounded.

Before we proceed to the theorem, it will be convenient to formulate in a precise
manner the analytical condition we need.

CONDITION (1). We say that the Riemannian manifold N n satisfies Condition (1)
if there exist a point p ∈ N and a positive number C > 0 such that 1r(x) < Cr(x) for
all x ∈ N , where r , the distance function from p on N , is smooth with r(x) > 1.

Our result can now be formulated as follows.

THEOREM. Let N n be a complete Riemannian manifold satisfying Condition (1).
Let Mm be a complete simply connected manifold with sectional curvatures K ≤−a2,
where a ≥ 0 and m > n. Let f : N n

→ Mm be an isometric immersion such that the
norm of the mean curvature vector of f satisfies ‖H f ‖ ≤ a(n − 1)/n. Then f (N n) is
not bounded in Mm .

The important tool in the proof of this theorem is the following modified version of
Yau’s maximum principle [3, Theorem 1].

LEMMA. Let N n be a complete Riemannian manifold satisfying Condition (1) and let
g : N n

→R be a smooth function that is bounded from above. Then, for every ε > 0,
there is a point xε ∈ N n such that |g(xε)− sup g|< ε, ‖∇g(xε)‖< ε and1g(xε) < ε.

The point xε in the lemma plays the role of an ‘approximate maximum’.
Let us remark that the condition 1r = O(r) is quite optimal. For manifolds with

1r > r1+ε for large r , it is easy to construct a bounded function for which the lemma
does not apply. The details can be found at the end of this paper.

2. Proofs

PROOF OF THE THEOREM. Let us assume, on the contrary, that f (N ) is bounded
in M .

Let O ∈ M − N be any fixed point, and denote by r : M→R+ the distance
function from O on M . Let r|N : N →R+ be the restriction of r to N , that is,
r|N (x)= r( f (x)). Our goal is to compute 1r|N .

To simplify notation and to make the calculations easier to follow, we shall identify
the manifold N with its image f (N ). This has the advantage that we do not need
to push forward (and pull back) tangent vectors of N to tangent vectors of M via
d f : T N → T M . Since f : N → M is an isometric immersion, this idenitification is
justified.

Let∇ denote the connection on M , ∇̃ the connection on N and 〈., .〉 the Riemannian
metric on M .
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Let q ∈ N ; near q , we can decompose ∇r into tangential and normal components
of T N ,

∇r = (∇r)T + (∇r)N,

and we have the relation
∇r|N = (∇r)T.

For tangent vectors X, Y ∈ Tq N ,

Hess(r|N )(X, Y ) = 〈∇̃X∇(r|N ), Y 〉 = 〈∇X (∇r − (∇r)N), Y 〉

= Hess r(X, Y )− 〈∇X (∇r)N, Y 〉.

Since the normal component (∇r)N of the gradient is orthogonal to N , it follows
that

〈∇X (∇r)N, Y 〉 = −〈(∇r)N, ∇X Y 〉 = 〈(∇r)N, A(X, Y )〉,

where A(X, Y )=−(∇X Y )N denotes the vector-valued second fundamental form
of N . Combining this with the equality above, we obtain

Hess(r|N )(X, Y )= Hess r(X, Y )− 〈(∇r)N, A(X, Y )〉. (1)

Let λ be a nonzero eigenvalue of r at x ∈ M . Since M is a Hadamard manifold with
sectional curvature K ≤−a2, a standard comparison argument [2, Ch. 6] gives us that
λ≥ a coth(ar(x)) if a > 0, and λ≥ 1/r(x) if a = 0. Since we assumed that f (N ) is
bounded in M , there is a δ > 0, depending only on the bound of f (N ), such that for
all points of N , λ > a + δ. This implies that for any unit vector X ∈ Tq N orthogonal
to ∇rT, we have Hess r(X, X) > a + δ.

Taking the trace in (1) with respect to Tq N , we get

1(r|N ) > (n − 1)(a + δ)− 〈nH f (q), ∇rN
〉 ≥ (n − 1)(a + δ)− n‖H f (q)‖,

where H f = (1/n)Trace(A) denotes the mean curvature vector of N .
Since we assumed that ‖H f ‖ ≤ a(n − 1)/n, it follows that

1(r|N ) > (n − 1)δ,

for every point of N . But this clearly contradicts the lemma, as r|N is a bounded
smooth function on N . The proof of the theorem is thus complete. 2

PROOF OF THE LEMMA. Set L = sup g. We can assume that g < L at every point
of N ; otherwise, g must assume its maximum at some point, and that point would
trivially satisfy the conditions of the lemma for all ε > 0.

Let p ∈ N be the point and C > 0 the positive constant in Condition (1); also let r
be the distance function from p on N .

For any ε < L − sup{g(x) | r(x)≤ 1}, define the function hλ : N →R by

hλ(x)= λr(x)+ L − ε.
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Clearly,
hλ(x) > g(x) if r(x)≤ 1 and λ≥ 0. (2)

Therefore, if λ > ε, then hλ(x) > g(x) for all x ∈ N .
Define λ0 as

λ0 = inf{λ | hλ(x) > g(x) for all x ∈ N }.

Since sup g = L , it is easy to see that λ0 > 0 and hλ0(x)≥ g(x) for all x ∈ N .
Next, we claim that there is a point xε ∈ N such that hλ0(xε)= g(xε). Let us assume

this is not true, that is, hλ0(x) > g(x) for all x ∈ N . Set rε = 2ε/λ0 and denote by
Brε = {x ∈ N | r(x)≤ rε} the closed ball of radius rε. From the definition of hλ it
follows that hλ0(x)≥ L + ε for all x /∈ Brε . Using the fact that Brε is compact and our
assumption that hλ0(x) > g(x) for all x ∈ N , one concludes that

inf
x∈Brε

(hλ0(x)− g(x)) > 0.

Since g < L on N ,
inf

x∈N
(hλ0(x)− g(x))= η > 0.

Now let 0< δ <min{η, ε} be any number and set λ′ = λ0 − δ/(2rε). We shall show
that hλ′(x) > g(x) for all x ∈ N , which would contradict the definition of λ0.

If r(x)≤ rε, then

hλ′(x) =

(
λ0 −

δ

2rε

)
r(x)+ L − ε

= hλ0(x)−
δr(x)

2rε
≥ g(x)+ η − δ

r(x)

2rε
> g(x).

On the other hand, taking into consideration that λ0 − δ/(2rε) > 0 because
λ0rε = 2ε > δ, we deduce, for r(x) > rε, that

hλ′(x) =

(
λ0 −

δ

2rε

)
r(x)+ L − ε >

(
λ0 −

δ

2rε

)
rε + L − ε

= L + ε −
δ

2
> L > g(x).

As the assumption has led to a contradiction, we conclude that there is a point xε ∈ N
such that hλ0(xε)= g(xε). Moreover, from (2) it follows that r(xε)≥ 1.

Finally, we have to show that hλ0 is smooth at xε. Since hλ(x)= λr(x)+ L − ε,
it is enough to show that r is smooth at xε. If not, then xε must be on the cut locus
of p, in which case we have two possibilities: either there are two distinct minimizing
geodesic segments γ1, γ2 : [0, t0] → N joining p to xε, or there is a geodesic segment
γ : [0, t0] → N from p to xε along which xε is conjugate to p.

Let us start with the first case. Let w = γ ′1(t0) and v = γ ′2(t0). Since γ1 and γ2 are
distinct segments, we have w 6= v. The functions t→ r(γi (t)) are differentiable on
(0, t0) (for i = 1, 2) and they have a left-derivative at t0.
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From hλ0 ≥ g and hλ0(xε)= g(xε) it follows that

lim inf
s→0

hλ0(γ2(t0 + s))− hλ0(γ2(t0))

s
≥ Dvg(xε),

where Dvg(xε) denotes the directional derivative of g at the point xε in the direction
of v. Moreover, since g is smooth and hλ0 has a directional derivative at xε in the
direction of −v, we also have

− λ0 = D−vhλ0(xε)≥ D−vg(xε)=−Dvg(xε). (3)

Combining this with the previous inequality, we obtain

lim inf
s→0

hλ0(γ2(t0 + s))− hλ0(γ2(t0))

s
≥ λ0.

Taking into account the special form of hλ0 , we find that

lim inf
s→0

r(γ2(t0 + s))− r(γ2(t0))

s
≥ 1. (4)

This will lead to a contradiction.
Since v 6= w, there is a 0< c < 1, depending only on the angle of v and w, such

that
r(γ2(t0 + s)) < t0 + cs (5)

for a small enough s > 0. One can see this by connecting the point γ1(t0 − s) to the
point γ2(t0 + s) by a geodesic segment; as γ1 and γ2 are different, there is a 0< c1 < 1
such that for a small enough s > 0 we have dist(γ1(t0 − s), γ2(t0 + s)) < c12s, which
implies (5). But since r(γ2(t0))= t0, it is easy to see that (4) and (5) are in direct
contradiction.

We now turn our attention to the second case. Since γ is distance-minimizing
between p and xε, the distance function r is smooth at γ (t) for 0< t < t0. Set
m(t)=1r(γ (t)); then m(t) is also smooth on the interval (0, t0) and, since γ (t0)
is conjugate to p = γ (0) along γ , it follows that

lim
t→t−0

m(t)=−∞. (6)

Because λ0 > 0 from (3), we conclude that Dvg(xε) > 0, that is, ∇g(xε) 6= 0. This
implies that the level surface F = {x ∈ N | g(x)= g(xε)} is a smooth hypersurface
near xε. Denote by Fs the surface parallel to F and passing through the point γ (t0 − s),
for some s > 0. Again, since F is smooth near xε, the surface Fs will also be smooth
near γ (t0 − s) for a small enough s > 0.

It is now clear from (6) that, for some small s > 0,

m(t0 − s) < trace of the second fundamental form of Fs at γ (t0 − s),
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where the second fundamental form of Fs at γ (t0 − s) is taken in the direction of
γ ′(t0 − s).

Taking into account the fact that m(t0 − s) is the trace of the second fundamental
form of the geodesic ball Bp(t0 − s) around p at the point γ (t0 − s) (with respect to
the same normal vector γ ′(t0 − s)), we conclude that there has to be a point qs ∈ Fs ,
sufficiently close to γ (t0 − s), that lies inside Bp(t0 − s). This means that

r(qs) < t0 − s.

Since Fs is parallel to F , we have a point q ∈ F such that dist(qs, q)= s.
Combining this with the above inequality gives

r(q) < t0.

From the above, we obtain

hλ0(q)= λ0r(q)+ L − ε < λ0t0 + L − ε = hλ0(xε)= g(xε)= g(q),

which leads to a contradiction since hλ0 ≥ g on N .
Once we have established the smoothness of hλ0 at xε, the rest of the argument is

straightforward. Since

hλ0(x) > g(x) and hλ0(xε)= g(xε),

we have

∇g(xε)=∇hλ0(xε)= λ0∇r(xε) and 1hλ0(xε)≥1g(xε). (7)

From (2) and the fact that g(xε)= λ0r(xε)+ L − ε < L , we deduce that

r(xε) > 1 and λ0 <
ε

r(xε)
. (8)

Taking |∇r | = 1 and combining it with the first equality in (7) yields

‖∇g(xε)‖ = λ0 < ε. (9)

From (7), (8) and Condition (1) we find that

1g(xε)≤1hλ0(xε)= λ01r(xε) < ε
1r(xε)

r(xε)
< εC. (10)

Since L − ε < hλ0(xε)= g(xε) < L , inequalities (9) and (10) show that the point
xε satisfies the conditions of the lemma (if C > 1, then just replace ε by εC in the
statement of the lemma); therefore the proof is complete. 2
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3. An example

In this section we sketch an example which shows that the condition in the lemma,
namely Condition (1), is quite optimal. Let N be a complete unbounded manifold, that
is, a manifold where the distance function is unbounded. Let r be the distance function
from some point, and assume that1r(x) > r(x)1+s for those points x ∈ N where r(x)
is large enough and 0< s < 1. Then there is a bounded function h : N →R for which
the lemma does not apply.

Define h(x)= 1− 1/r(x)s for r(x) > 2 and extend it smoothly over the closed ball
B2 = {x ∈ N | r(x)≤ 2} so that h ≤ 1/2 over B2. Clearly, h is a bounded function with
sup h = 1.

A simple computation shows that, outside the ball B2,

1h =−s(1+ s)
|∇r |2

r2+s
+ s

1r

r1+s
.

Since |∇r | = 1, there is an r0 > 0 such that if r(x) > r0, then 1h > s/2. Let us
choose ε > 0 such that ε < 1− 1/r s

0 and ε < s/2. Now, if xε ∈ N is the point in N
satisfying the conditions of the lemma, then from the condition |h(xε)− 1|< ε one
concludes that r(xε) > r0. In this case, 1h > s/2, which contradicts the condition
that 1h < ε.
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