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Abstract. In its original formulation Lang's theorem referred to a semilinear
map on an n-dimensional vector space over the algebraic closure of GF�p�: it ®xes
the vectors of a copy of V�n; ph�. In other words, every semilinear map de®ned over
a ®nite ®eld is equivalent by change of coordinates to a map induced by a ®eld
automorphism. We provide an elementary proof of the theorem independent of the
theory of algebraic groups and, as a by-product of our investigation, obtain a con-
venient normal form for semilinear maps. We apply our theorem to classical groups
and to projective geometry. In the latter application we uncover three simple yet
surprising results.

1991 Mathematics Subject Classi®cation. Primary 20G40; secondary 15A21,
51A10.

x1. Introduction. Let V � V�n;F� be an n-dimensional vector space over a ®eld
F, and let B � fv1; . . . ; vng be a basis of V. Any automorphism � of F induces a
bijection from V to V by acting on the coordinates with respect to this basis; i.e.
�Pxivi�� �

P
xi
�vi. This bijection will also be referred to as �. A �-semilinear map

T is the composition of this � with an F-linear transformation M; i.e. T�v� �M�v��,
for all v 2 V. In the case where F is a ®nite ®eld, � will be called a Frobenius map; it is
induced by a Frobenius automorphism a 7!aq of F, where q is a ®xed power of the
characteristic of F. In this case jFj � qh, for some h � 1, and we shall write
V � V�n; qh�. We shall also write ��v� � vq for v 2 V, and call a corresponding �-
semilinear map a q-semilinear map. It is easy to see that any q-semilinear map T on
V�n; qh� extends to a q-semilinear map on V�n;K�, where K denotes the algebraic
closure of GF�q�.

Main theorem. Any q-semilinear map T on V�n;K� ®xes the vectors of a copy of
V�n; q�.

By choosing a new basis from among these ®xed vectors we deduce the follow-
ing result.

Every q-semilinear map de®ned over a ®nite ®eld is equivalent by change of coor-
dinates to a Frobenius map.

The latter statement is equivalent to a special case of a theorem of Lang [5] in
the theory of algebraic groups. According to Lang's result, if K is the algebraic clo-
sure of GF�q�, then any matrix M 2 GL�n;K� can be written as M � PPÿ�q�, for
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some P 2 GL�n;K�, where Pÿ�q� is the matrix obtained by applying the Frobenius
automorphism x 7!xq to each entry of Pÿ1. If T is the q-semilinear map having
matrix M with respect to the basis B, and we change coordinates using the matrix P,
then the matrix corresponding to T with respect to the new basis is Pÿ1MP�q�. With
the choice of P as in Lang's theorem, we ®nd that T has the identity matrix with
respect to the new basis, so the new basis consists of ®xed vectors for T. The GF�q�-
span of this basis is the copy of V�n; q� that is ®xed by T as required by our result.
Conversely, if there is a basis of V�n;K� consisting of ®xed vectors for T, then
Pÿ1MP�q� is the identity matrix, from which Lang's theorem follows.

In Sections 2 and 3 we provide an elementary proof of this theorem independent
of the theory of algebraic groups. We then show how our result can be used to
extend Lang's theorem to classical groups. In Section 5 we interpret the main theo-
rem in the language of projective geometry, revealing three simple yet surprising
results.

x2. A normal form for a semilinear transformation. We start with an elementary
deduction of a normal form for semilinear maps by achieving a decomposition of V
as a direct sum of cyclic subspaces. This has to be done in a manner that avoids the
characteristic equation; indeed, any eigenvector for an invertible semilinear map will
generate many eigenvalues, since T�v� � �v implies that T��v� � �q�v � �qÿ1���v�,
for any � 2 F. We assume that F is commutative in order to simplify notation: by
using the dual space instead of the transpose, the argument shown here can be
adapted to obtain a normal form for semilinear maps of vector spaces over skew-
®elds (cf. [4, p. 496]). Our method also does not require that the ®eld automorphism
have ®nite order, and so we cannot obtain results regarding the isomorphism types of
indecomposable summands as in [1].

For any v 2 V and transformation T of V, let �v� denote the T-cyclic subspace of
V spanned by fv;T�v�;T 2�v�; . . .g.

Theorem 1. Let V be an n-dimensional vector space over the ®eld F, � an auto-
morphism of F, and T a �-semilinear map on V. Then

V � �u1� � . . .� �ur�

for T-cyclic subspaces satisfying dim�u1� � dim�u2� � . . . � dim�ur�. Moreover, dim�ui�
is maximal among the dimensions of the T-cyclic subspaces of �ui� � . . .� �ur�, for
each i.

Proof. Let B be a basis of V, and suppose that T has the matrix M with respect
to this basis. Let T 0 be the �ÿ1-semilinear map on V that has the transpose matrix
Mt with respect to the basis B.

The de®nition of T 0 depends on B but the next claim does not.

(1) Let �w� be a T-cyclic space of dimension m: Then there is a T 0-invariant space
W with dim�V=W� � m and V=W is T 0-cyclic. The dual statement is also true.

To prove (1), choose a basis B1 � fw1; . . . ;wm;wm�1; . . . ;wng with w � w1,
T�wi� � wi�1 for 1 � i < m, and
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T�wm� �
Xm
i�1

aiwi:

Let S be the matrix for the basis change from B to B1, so that T has matrix

Sÿ1MS� � C D1

0 D2

� �
; where C �

a1
1 a2

. .
. ..

.

1 am

2664
3775:

Transposing yields

Ct 0
D1

t D2
t

� �
� �St��MtSÿt � Rÿ1MtR�

ÿ1
;

where Sÿt � �St�ÿ1 and R � �Sÿt��. Thus R de®nes a basis change from B to
B2 � fu1; . . . ; ung such that T 0 leaves the space spanned by fum�1; . . . ; ung invariant.
Call this space W. This means that T 0 acts on the space V=W, with matrix Ct with
respect to the basis f �u1; . . . ; �umg, where �ui � ui �W for 1 � i � m. By the form of Ct,
�T 0�k� �um� � b0 �um � . . .� bk �umÿk for k < m, with bk 6� 0. Thus � �um�0 � V=W, where
� �um�0 is the T 0-cyclic subspace of V=W spanned by f �um;T 0� �um�; �T 0�2� �um�; . . .g. This
proves (1), since the dual statement follows just by interchanging T and T 0.

As a consequence of (1), we have the following result.

(2) If m is the maximal dimension of T-cyclic subspaces of V, and m0 is the max-
imal dimension of T 0-cyclic subspaces of V, then m � m0.

In the notation of (1), we have

m � dim� �um�0 � dim�um�0 � m0;

and so the dual statement implies that m � m0.
Theorem 1 follows by induction from the next claim.

(3) If m is the maximal dimension of a T-cyclic subspace of V, and w 2 V satis®es
dim�w� � m, then �w� has a T-invariant complement.

To prove (3), let w 2 V with dim�w� � m. Let B1 � fw1; . . . ;wm;wm�1; . . . ;wng
be a basis of V chosen so that w � w1, T�wi� � wi�1 for 1 � i < m, and

T�wm� �
Xm
i�1

aiwi:

Then the matrix M of T with respect to B1 has the form

M � C D1

0 D2

� �
; where C �

a1
1 a2

. .
. ..

.

1 am

2664
3775:
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Let T 0 be the �ÿ1-semilinear map having matrix Mt with respect to B1. As in (1), the
span of fwm�1; . . . ;wng is a T 0-invariant space W, and � �wm�0 � V=W. Thus
m � dim� �wm�0 � dim�wm�0 � m0 and so, by (2), it follows that dim�wm�0 � m. Since
�T 0�k�wm� �

Pk
j�0 cjwmÿj with ck 6� 0, for all k < m, we see that �wm�0 � �w1� � �w�.

Let B2 � fu1; . . . ; um;wm�1; . . . ;wng be a basis of V chosen so that u1 � wm,
T 0�ui� � ui�1 for 1 � i < m, and

T 0�um� �
Xm
i�1

biui:

If R denotes the matrix for the basis change from B1 to B2, then

Rÿ1MtR�
ÿ1 � C0 0

0 D2
t

� �
; where C 0 �

b1
1 b2

. .
. ..

.

1 bm

2664
3775:

Thus the matrix of T with respect to B2 is

�C0�t 0
0 D2

� �
� Sÿ1MS �;

where S � �Rÿt��ÿ1 . Thus V decomposes into the direct sum of T invariant subspaces
�um� and W with dim�um� � m. As previously, we can see that �um� � �wm�0 � �w�,
which proves (3). Theorem 1 follows by induction on dimV. &

Theorem 1 implies immediately that the matrix for any semilinear transforma-
tion has a normal form: choose the basis of V to be the union of the appropriate
bases of the T-cyclic subspaces �u1�; . . . ; �ur�.

Theorem. (Normal form of a semilinear transformation.) By a change of basis
the matrix M of any �-semilinear transformation can be given in the form

M �
M1

. .
.

Mr

264
375;

where

Mk �

0 . . . . . . 0 ak;1

1 . .
. ..

.
ak;2

0 1 . .
. ..

. ..
.

..

. . .
. . .

.
0 ..

.

0 . . . 0 1 ak;mk

26666664

37777775:

x3. Proof of the main theorem. We now suppose that T is a q-semilinear map on
V � V�n;K�, where K is the algebraic closure of the ®nite ®eld GF�q�. Our main
theorem will follow by showing that there are exactly qn solutions in V to the equation
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T�v� � v. The fact that the ®eld automorphism associated with T is in the form of a
power map is essential, since T need not have any non-zero ®xed vectors when � is
not a power map. For example, the semilinear transformation on C2 given by
�z1; z2� 7!�ÿ �z2; �z1�, with �z the complex conjugate of z, has no non-zero ®xed vectors
in C2 (even though C is algebraically closed).

Note that whenever we can solve the equation T�v� � �v for some non-zero

� 2 K, then T��
ÿ1
qÿ1v� � �

ÿq
qÿ1��v� � �

ÿ1
qÿ1v; so that some K-multiple of v is a ®xed

vector for T.

Proof of the main theorem. By Theorem 1, we can assume that V � �v� is a T-
cyclic subspace, and the matrix of T with respect to the basis
B � fv1 � v; v2 � T�v�; . . . ; vn � T nÿ1�v�g is the companion matrix. Since T is inver-
tible, we must have a1 6� 0. Solving T�Pn

i�1 xivi� �
P

xivi for xi 2 K leads to the
system of equations

a1xn
q � x1;

x1
q � a2xn

q � x2;

..

. ..
.

xnÿ1q � anxn
q � xn:

Eliminating x1; . . . ; xnÿ1, we obtain the equation

a1
qnÿ1xn

qn � a2
qnÿ2xn

qnÿ1 � . . .� anxn
q ÿ xn � 0:

This equation has qn distinct solutions for xn in K by the derivative test. Each solu-
tion determines a unique ®xed vector, and the set of ®xed vectors constitutes a sub-
space over the ®eld GF�q�. It remains to show that there are n ®xed vectors that are
linearly independent over K. If fv1; . . . ; vmg is a set of m ®xed vectors that is linearly
independent over K, then

Pm
i�1 aivi is a ®xed vector for T if and only if all ai 2 GF�q�.

Thus the K-span of these vectors contains precisely qm ®xed vectors. Since there are
exactly qn ®xed vectors for T, we can conclude that any T-cyclic space V has a basis
consisting of ®xed vectors for T.

The main theorem now follows from Theorem 1.

x4. Extending Lang's theorem. The theorem of Lang mentioned above has been
substantially generalized; it applies to connected algebraic groups. (See [6, 10.1].)
Our result can be applied to the case of classical groups over ®nite ®elds. As an
example, we show how to do this in the case of the special orthogonal groups. (A
similar argument applies to symplectic or special linear groups.)

Let K be the algebraic closure of GF�q�, and let V be an n-dimensional vector
space with non-degenerate quadratic form Q. If char K 6� 2, then V has an ortho-
normal basis B � fv1; . . . ; vng, with Q�P aivi� � 2ÿ1

P
ai

2. If char K � 2, then either
n � 2m and B has a symplectic basis fv1;w1; . . . ; vm;wmg with Q�P�aivi � biwi��
�P aibi, or n � 2m� 1 and V has a basis B � fv1;w1; . . . ; vm;wm; ug such that
Q�P�aivi � biwi� � cu� �P aibi � c2 [2, p. 34]. Let G � O�V� be the group of iso-
metries of V with respect to Q, and identify G with the matrices over K with respect
to the basis B. The Frobenius map A 7!A�q� induces an automorphism of G, which
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leaves invariant the special orthogonal group SO�V� de®ned by fA 2 G : detA � 1g
when char K 6� 2, and fA 2 G : D�A� � 0g when char K 6� 2. (Here D denotes the
Dickson invariant [2, p. 65].)

Theorem. Let M 2 SO�n;K�. Then there exists a matrix P 2 SO�n;K� such that
M � PPÿ�q�.

Proof. Let T be the q-semilinear map on V that has matrix M with respect to the
aforementioned basis B. Then T is a q-isometry with respect to Q; i.e. for all
v;w 2 V, Q�T�v�� � Q�v�q. Our main theorem implies that there is a basis B0 of ®xed
vectors for T. Let W be the GF�q�-span of the vectors B0. Then, for all w 2W,
Q�w� 2 GF�q�. Thus Q is a non-degenerate quadratic form on the n-dimensional
GF�q�-space W. If we can choose a basis B1 of W that is orthonormal (or symplectic
if char K � 2), then the change of basis matrix X from B to B1 coe�cients is ortho-
gonal, and satis®es Xÿ1MX�q� � I. If X 62 SO�n;K�, then we can ®nd a matrix Y 2 G
such that Y�q� � Y and XY 2 SO�n;K�; in fact

Y �
0 1
1 0

Inÿ2

24 35
will su�ce for any characteristic. Letting P � XY, we obtain Pÿ1MP�q� � I with
P 2 SO�n;K�, as required.

Since W is a vector space over GF�q� rather than K, it is not obvious that one
can always ®nd an orthonormal or symplectic basis of W. Indeed, suppose that W
does not have a suitable basis.

If char K 6� 2, then W would have a basis B1 � fu1; . . . ; ung such that
Q�P biui� � 2ÿ1

P
bi

2 � 2ÿ1dbn2, where d is a non-square in GF�q� [2, p. 16]. Choose
� 2 GF�q2� such that �2 � d, and let ~un � �ÿ1un. Then B1 � fu1; . . . ; unÿ1; ~ung would
be an orthonormal basis of V and the matrix of T with respect to B1 would be

N � Inÿ1
�ÿq�1

� �
:

Thus there would exist an X 2 G such that Xÿ1MX�q� � N. Since detX � �1 when
X 2 G, taking the determinant on both sides results in a contradiction.

If char K � 2 and W did not have a suitable basis, then dimW would have to be
even [2, p. 34]; so let n � 2m. W would have basis B1 � fv01;w01; . . . ; v0m; w

0
mg such

that

Q�
X
�aiv0i � biw

0
i�� �

Xmÿ1
i�1

aibi � �a2m � ambm � �b2m;

with f�X� � �X2 � X� � irreducible over GF�q� [2, p. 34]. Let � 2 GF�q2� be a root of
f, and set ~vm

0 � �v0m � w0m, ~wm
0 � �qv0m � w0m. B2 � fv01;w01; . . . ; v0mÿ1;w

0
mÿ1; ~vm

0; ~wm
0g

would be a symplectic basis of V, and the matrix of T with respect to B2 would be

N �
Inÿ2

0 1
1 0

24 35:
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Thus D�N� � 1. However, if X were the change of basis matrix from B to B2 coe�-
cients, then X 2 G and Xÿ1MX�q� � N. Since D�X� � D�Xÿ1� � D�X�q��, the Dickson
invariant of the left side would be 2D�X� � 0, a contradiction. Thus W always has a
basis for which the matrix for T is the identity, as required. &

x5. Consequences in projective geometry. We conclude with three immediate
consequences of the main theorem in projective geometry. Recall that every colli-
neation of n-dimensional projective space is induced by a semilinear transformation.
A projectivity is a collineation that preserves cross ratios; it is induced by a linear
transformation.

Corollary 1. Every projectivity of PG�n; qh� can be written as the product �2�1
of two Frobenius maps; �1 can be chosen arbitrarily and �2 acts on PG�n; qh0 � with
h0 � h.

Proof. If T is the projectivity, then T�1
ÿ1 is a semilinear transformation. &

Corollary 2. (cf. [3, p. 46].) Given a projectivity T of period h on � � PG�n; q�,
there exists a copy of � in PG�n; qh� on which the restriction of the Frobenius map is
projectively equivalent to T (restricted to �).

Proof. Restricted to the ®xed points of �2, T�1
ÿ1 is the identity. This implies the

desired result, because �1 has period h and commutes with T. &

By restricting Corollary 2 to a single orbit of T, we see that every projective
orbit of PG�n; q� is mimicked by a Frobenius map; more precisely, we have the fol-
lowing result.

Corollary 3. (cf. [3, p. 47].) If an orbit S in PG�n; q� of the cyclic group gen-
erated by some projectivity consists of h points, then there exists a point Q in PG�n; qh�
whose orbit under successive applications of the Frobenius map is projectively equiva-
lent to S.
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