
ANZIAM J. 65 (2023), 178–194
doi:10.1017/S1446181123000135

NUMERICAL ANALYSIS OF APPARATUS-INDUCED
DISPERSION FOR DENSITY-DEPENDENT SOLUTE TRANSPORT

IN POROUS MEDIA

H. ZHANG 1, D. A. BARRY 2, B. SEYMOUR3 and G. HOCKING 4

(Received 2 January, 2023; accepted 29 May, 2023; first published online 31 August, 2023)

Abstract

The effects of apparatus-induced dispersion on nonuniform, density-dependent flow in
a cylindrical soil column were investigated using a finite-element model. To validate
the model, the results with an analytical solution and laboratory column test data were
analysed. The model simulations confirmed that flow nonuniformities induced by the
apparatus are dissipated within the column when the distance to the apparatus outlet
exceeds 3R/2, where R represents the radius of the cylindrical column. Furthermore,
the simulations revealed that convergent flow in the vicinity of the outlet introduces
additional hydrodynamic dispersion in the soil column apparatus. However, this effect
is minimal in the region where the column height exceeds 3R/2. Additionally, it is
found that an increase in the solution density gradient during the solute breakthrough
period led to a decrease in flow velocity, which stabilized the flow and ultimately
reduced dispersive mixing. Overall, this study provides insights into the behaviour of
apparatus-induced dispersion in nonuniform, density-dependent flow within a cylindri-
cal soil column, shedding light on the dynamics and mitigation of flow nonuniformities
and dispersive mixing phenomena.
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1. Introduction

Miscible, density-dependent flow in porous media is important in many engineering
fields, such as groundwater contamination remediation, petroleum extraction and sea
water intrusion [2, 15, 17, 18, 22, 26, 29, 34–36]. Laboratory-scale column experiments
are commonly carried out to obtain estimates of the properties of the soil and the
transport parameters that characterize contaminant migration through it. Probably, the
most straightforward way to perform experiments on nonreactive solute transport in
laboratory columns is to first establish a steady-state flow of water through the column,
then to switch the influent to a solution with a known chemical composition, leaving
the flow rate unchanged (see, for example, [9, 33]). The effluent can be sampled to
measure the concentration or visualized with an X-ray medical CT-scanner, and the
data obtained can used in conjunction with a model to provide estimates of soil and
transport parameters [3]. This experimental design allows the use of one-dimensional
or two-dimensional solute transport models [4, 6, 10, 16, 20, 23, 26, 27, 32], which
simplifies the analysis considerably.

A key parameter is the dispersivity of the solute(s) under consideration. If a
one-dimensional solute transport model is used, then the water flow is assumed to be
spatially and temporally uniform. For flow through an unconsolidated porous medium,
the relationship between flow rate and dispersivity is well known for nonreactive
solutes [8, 21]. However, any additional dispersion caused by the apparatus is not
included in these estimates. Apparatus-induced dispersion can arise if components
of the apparatus cause additional mixing and spreading of the solute front, particularly
at the ends of the column apparatus. Apparatus-induced dispersion can also arise if the
column apparatus causes nonuniform flow to develop within the column, even when
the test soil is homogeneous and uniformly packed.

It is common in column experiments for flow to enter and leave the column through
a hole much smaller than the column itself. This occurs for a simple practical reason:
the influent or effluent flow occurs in tubes with diameters much less than the soil
column diameter. This case was analysed by Barry [6], who developed a general
analytical solution for steady flow in such a column, subject to arbitrary head or
flux boundary conditions. Although the results of [6] are useful for the analysis of
nonuniform flow in a column, they do not consider (i) the effect of variable density
flow or (ii) the impact of the flow field on solute dispersion within the column. The
purpose of this paper is to quantify both of these aspects of solute transport in soil
column experiments.

In the present study, the problem is investigated numerically using a finite-element
modelling package, COMSOL Multiphysics [11], which has been employed to
solve various partial differential equations in engineering fields [1, 5, 12, 24,
31]. The impacts of the dimensions of the apparatus and the soil properties on
the dispersion of density-dependent solute transport in porous media are analysed
numerically.
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2. Problem formulation

2.1. Governing equations We consider a typical experiment carried out in
cylindrical soil columns [30] containing uniformly packed isotropic soil, with
influent and effluent orifices aligned along the column centreline. Such experiments
produce axisymmetric flow in a cylinder containing soil with porosity n and intrinsic
permeability κ, as shown in Figure 1. The column radius is R, with height is H and
outlet orifice radius is rn. The origin of the cylindrical coordinate system is located at
the centre of the bottom of the column (r, z) = (0, 0). The transported fluid has density
ρ, dynamic viscosity μ and salt mass fraction ω.

The flow and the solute satisfy Darcy’s law and the mass conservation equations,
which are summarized as follows. (See [30].)

Darcy’s law and Fick’s law

q = − k
μ

(∇p + ρg), (2.1)

J = −ρD · ∇ω,

where D = (Dij) =
(
n(Dm + αT |q|)δij + n(αL − αT )

qiqj

|q|

)
, i = 1, 2, 3. (2.2)

Here, q denotes the specific discharge, p is the fluid pressure, g = (0, 0, g) is the
gravitational acceleration, n is the porosity, h is the dispersive mass flux and D = (Dij)
the hydrodynamic dispersion tensor [8], where Dm is the mass diffusivity and αL and
αT are the longitudinal and transversal dispersivity, respectively.

Conservation of mass of the water and solute

∂(nρ)
∂t
+ ∇ · (ρq) = 0, (2.3)

∂(nρω)
∂t

+ ∇ · (ρωq) + ∇ · J = 0, (2.4)

where ρ is the fluid density, μ is the dynamic viscosity of fluid and ω is the fractional
solute concentration. The saltwater density and viscosity, respectively, are given by,

ρ = ρ0 exp(γω), (2.5)

μ = μ0(1 + 1.85ω − 4.10ω2 + 44.5ω3). (2.6)

In the equations of state (2.5) and (2.6) for brine, the constant γ = 0.6923 [14],
while, for the freshwater reference state, ρ0 = 998.23 kg/m3 and μ0 = 0.001 NS/m2 at
20◦C and 1 atm.

The full set of equations is coupled between density ρ, viscosity μ, specific
discharge q and dispersive flux J. All variables with dimensions of length are scaled
with R, the radius of the column, so that

z∗ =
z
R

, r∗ =
r
R

, rn
∗ =

rn

R
, H∗ =

H
R

.
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FIGURE 1. Two different soil column study configuration diagrams: (a) experimental set-up of Watson
et al. [30]; and (b) set-up of the flow convergence study by Barry [6].

The other nondimensional variables are

ρ∗ =
ρ

ρ0
, μ∗ =

μ

μ0
, p∗ =

p
ρ0gR

and g∗ =
g
g

.

The reference hydraulic conductivity, K = κρ0g/μ0 with κ as the permeability, is used
to scale time t∗ = tK/nR, the discharge flux q∗ = q/qin, the hydrodynamic dispersion
tensor D∗ = D/Rqin and the dispersive mass flux J∗ = J/ρ0Rqin, where qin is the
discharge flux for 0 < r < R and z = 0. Then equations (2.1)–(2.6) can be rewritten
as follows.
Darcy’s law and Fick’s law

q∗ = − K
qin

1
μ∗

(∇p∗ + ρ∗g∗), (2.7)

J∗ = −ρ∗D∗ · ∇ω. (2.8)

Conservation of mass

∂(ρ∗)
∂t∗
+ ∇ · (ρ∗q∗) = 0, (2.9)

∂(ρ∗ω)
∂t∗

+ ∇ · (ρ∗ωq∗) + ∇ · J∗ = 0, (2.10)
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with

ρ∗ = exp(γω), (2.11)

μ∗ = 1 + 1.85ω − 4.10ω2 + 44.5ω3. (2.12)

The solute transport depends on the flow, as the velocity q∗ determines both
advective and dispersive transport. The density ρ∗(ω) and viscosity μ∗(ω) of the
solution are coupled back to the flow equation through their dependencies on the mass
fraction of the solution, which produces two nonlinear diffusive partial differential
equations for the variables ω and p∗ as functions of z∗, r∗ and t∗.

2.2. Initial and boundary conditions Following the experiment set-up of [29], it
is assumed that the fluid enters the column from the bottom and exits from the orifice
at the top. The initial conditions for the simulations are that the fluid in the column is
under hydrostatic condition and there is no solute, so that⎧⎪⎪⎨⎪⎪⎩

p∗ = z∗

ω∗ = 0
for t∗ = 0, 0 ≤ z∗ ≤ H∗ and 0 ≤ r∗ ≤ 1. (2.13)

Measured flow rate data at the influent boundary and measured pressure data at
the effluent boundary are used for the boundary conditions applied to the fluid mass
balance matrix equation for comparison with the experiment results. At the inlet, a
first-type of concentration-type input boundary condition (see, for example, [7, 28])
was used, where the measured flow rates q∗in and solute concentration ωin are specified:
that is,

q∗ = (0, q∗in), ω = ωin for 0 ≤ r∗ < 1, z∗ = 0 and all t∗. (2.14)

At the orifice, the most realistic assumption for the finite column apparatus is the
Danckwerts boundary condition [13, 25, 28] for the solute concentration and constant
pressure for the fluid: that is,

p∗ = 0,
∂ω

∂z∗
= 0 for 0 ≤ r∗ < r∗n, z∗ = H∗ at all t∗. (2.15)

In the present study, COMSOL Multiphysics modules of Darcy’s law and solute
transport are coupled for a numerical study on the above apparatus-induced dispersion
in porous media.

3. Simulations and analysis

3.1. Convergent flow The problem described above produces a two-dimensional
axisymmetric flow regime. When the outlet radius is much less than the column radius,
that is, rn ≤ R, the convergent flow forms near the outlet zone. The solute dispersion
coefficient depends on the flow rate, that is, the apparatus-induced dispersion in
laboratory apparatus is caused by the nonuniform fluid.
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Barry [6] developed an analytical solution for the steady-state case with a constant
ρ∗ and

ω = 0,
∂2φ∗

∂z∗2
+

1
r∗
∂

∂r∗

(
r∗
∂φ∗

∂r∗

)
= 0,

where φ is the hydraulic head, q∗r = −K(∂φ∗/∂r∗) and q∗z = −K(∂φ∗/∂z∗). The orien-
tation of the soil column is reversed, as shown in Figure 1, where the flow comes in
from the top and exits from the orifice at the bottom. The boundary conditions at z∗ = 0
are [6]

∂φ∗

∂z∗
=

(R∗
r∗n

)2
for 0 ≤ r∗ < r∗n and

∂φ∗

∂z∗
= 0 for r∗n ≤ r∗ < 1. (3.1)

The analytical solutions for the case where fluid exits the column through an orifice
with a radius less than the column radius, that is, rn

∗ = 0.01, 0.25, 0.5 and 0.75, and
with no variability in the head condition at the column entry, are compared with the
present numerical results. For the comparison, the parameters used in the simulations
include H∗ = 2, R∗ = 1 and φ∗(z∗ = H∗) = 20, which are consistent with those in [6].
The nonuniformities introduced by the orifice radius of the typical soil column in
Figure 1(b) are further investigated for the boundary conditions of p∗ = 0 at z∗ = H∗

and q∗ = qin
∗ = 1 at z∗ = 0. To determine the converging flow zone, both the radial

flux q∗r and the longitudinal flux q∗z are examined. For an ideal uniform flow in a
column, the steady discharge rate is q∗ = (0, q∗in). The disturbance to q∗ is defined as
Δq∗ = (Δq∗r ,Δq∗z ), where Δq∗r = |q∗r − 0| and Δq∗z = |q∗z − q∗in|. Following [6], we define
the disturbed region of fluid as that in which |Δq∗| > 0.02q∗in, and the dissipation height
of the orifice disturbance is defined as the maximum vertical height d∗ between the
centre of the orifice and the location where |Δq∗(r∗ = 0)| = 0.02q∗in. The disturbance
factor 0.02 was selected to be consistent with that used by Barry [6].

To identify the impact of the orifice on the flow pattern in the column, the flow
distributions for rn

∗ = 0.1, 0.25, 0.5 and 0.75 were simulated and presented in Figure 2.
The vectors present the discharge rates and directions, the approximately horizontal
black contour lines are hydraulic head and the black lines parallel to discharge rate
vectors are streamlines. The red-cross lines represent where |Δq∗| = 0.02q∗in, and
the domain under it is the disturbed zone, that is, |Δq∗| > 0.02q∗in. It can be seen that
the dissipation height d∗ is larger for a smaller orifice radius, that is, there is a larger
converging flow zone. The nonuniform domain size increases when rn

∗ decreases.
When r∗n → 0.1, d∗ → 3/2. On the other hand, when r∗n → R, no converging flow zone
exists, that is, the flow in the column is uniform. These results are in a good agreement
with the analytical solution in [6], which provides some supporting evidence that
COMSOL Multiphysics is a valid numerical tool for the study of Darcy flows.

The impact of the soil column height on the nonuniform flow was also examined.
For the orifice radius rn

∗ = 0.1, the same boundary conditions were used, but column
heights of H∗ = 2 and 4 are simulated. Figure 3 shows the flow distributions in
the converging zones. It can be seen that the disturbance height d∗ ≈ 1.50 for both
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(a)                                                       (b)                                                           (c) (d)
r

z z

r r r

FIGURE 2. Steady flow for H∗ = 2, R∗ = 1 and various orifice radii: (a) rn
∗ = 0.1; (b) rn

∗ = 0.25; (c)
rn
∗ = 0.5; and (d) rn

∗ = 0.75. The vectors present the discharge rates and directions, the approximately
horizontal black contour lines are hydraulic head and the black lines parallel to discharge rate vectors
are streamlines. The red-cross lines represent where |Δq∗| = 0.02q∗in, the domain under it is the disturbed
zone, that is, |Δq∗| > 0.02q∗in.

(a)                                 (b)
r r

z z

FIGURE 3. Steady flow for rn
∗ = 0.1, R∗ = 0.1: (a) H∗ = 4; and (b) H∗ = 2.
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cases, and when z∗ > 3/2 in the column, the flow is always uniform. The disturbance
distance due to the orifice is summarized in Figure 5. This confirms that the maximum
dissipation length scale is less than 3/2 of the column radius. Therefore, once the
column dimension and the orifice size are known, the converging zone height can
be determined, which is a useful reference for the design of laboratory transport
experiments.

The apparatus-induced dispersion occurs mainly in this converging zone. In other
words, outside the convergent flow zone, solute breakthrough curves measured in-situ
can be used to obtain accurate soil parameter estimates.

3.2. Solute transport model The magnitude of the hydrodynamic dispersion
results from external forces acting on the liquid and variation in liquid properties,
such as density and viscosity. Consider a solute transported in a saturated, uniform
flow through a porous medium in a column, as in Figure 1(a) (that is, rn

∗ = R∗ = 1).
In [19] an analytical solution was developed that described the advection-dispersion
transport for uniform flow, that is, the solution of equations (2.7)–(2.12) for a constant
ρ∗ and R∗/H∗ ≤ 1, (or infinite H∗), as

ω(z, t) =
ωin

2

[
erfc
(z∗ − q∗z t∗√

4D∗z t∗

)
+ exp

(q∗z z∗

D∗z

)
erfc
(z∗ + q∗z t∗√

4D∗z t∗

)]
, (3.2)

where Dz
∗ is the longitudinal dispersion coefficient. Substituting equation (2.15) into

the solute dispersion equation (2.8), gives the longitudinal dispersive flux

Jz
∗(t) = −ρ∗Dz

∗ ωin√
4πDz

∗t∗

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
− exp

( (z∗ − qz
∗t∗)2

4Dz
∗t∗

)
− exp

(z∗qz
∗

Dz
∗ −

(z∗ + qz
∗t∗)2

4Dz
∗t∗

)

+

√
4πt∗

Dz
∗ qz

∗ exp
(z∗qz

∗

Dz
∗

)
erfc
(z∗ + qz

∗t∗√
4Dz

∗t∗

)
.

(3.3)

To validate the COMSOL solute transport model, the breakthrough curve (BTC) for
uniform flow and its dispersive flux are calculated and compared with those estimated
using the analytical solution of equations (3.2) and (3.3) for the parameters in Table 1.

The analytical and numerical results for the BTC for uniform flow and the dispersive
flux at z∗ = 2 are shown in Figure 4, where reasonably good agreement is evident.

Watson et al. [30] designed laboratory column apparatus for an apparatus-induced
dispersion study that consisted of an acrylic column with a detachable base and piston
top cap. The data in [30] are also used to verify the COMSOL model for the solute
transport in a nonuniform flow. The case CS1-5U in [30] is selected, which has the
following parameters in Table 2.

The experimental data for cumulative effluent was compared with the analytical
solution using equations (3.2) and (3.3) and the numerical solution (Figure 5).
The analytical solution, equation (3.2), derived by Ogata and Banks [19] is for a
semiinfinite one-dimensional half-space with an imposed uniform flow. It obviously
is not able to calculate the nonuniform solute transport accurately, as the additional
dispersion caused by the apparatus is not included in these estimates. However, the
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TABLE 1. Parameters for a uniform flow simulation.

q∗in αL
∗ κ n ωin

1 0.01105 0.002027 0.36 0.005

0

0.001
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Analytic
COMSOL
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Time

FIGURE 4. The breakthrough curves, that is, the salt concentration at the exit, for uniform flow are
calculated using the analytical and numerical methods.

TABLE 2. Parameters for Case CS1-5U in [30].

qin (m/s) αL
∗ (m) κ (m2) n H (m) R (m) cin

2.38 × 10−4 3.1 × 10−4 2.07 × 10−10 0.36 0.44 0.04 0.005

0

1.5×10–5

1×10–5

5×10–6

0 10 20 30 40 50

Experimental
Numerical
Analytical

D
is

pe
rs

iv
e 

flu
x

Time

FIGURE 5. Comparison of the experimental cumulative effluent of solute with the analytical and
numerical solutions.
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numerical model provided a relatively accurate estimate of the solute transport, which
provides support for the use of COMSOL for studies on apparatus-induced dispersion.

3.3. Apparatus-induced dispersion When a solute is transported in a nonuniform,
density-dependent flow, the displacing solute concentration influences the velocity
field. The flow nonuniformity and the density variations will, consequently, affect
hydrodynamic dispersion. The transport process is complex. Therefore, the COMSOL
model is used to investigate the effects of the apparatus dimensions, the soil parameters
and the solution concentration on the dispersion.

3.3.1. Ratio between orifice radius and column radius, rn
∗ The flow of nonunifor-

mity near the orifice is determined by the ratio of the orifice radius and column radius
rn
∗. Owing to the convergence, the flow rate in the orifice centre is much greater than

that near the sidewall, as discussed in Section 3.1. The variation in local velocity, both
in magnitude and direction, causes the solute mass to spread. When the solute front
exits, the sidewall lag reduces the average effluent concentration and increases the time
over which breakthrough occurs. The dispersive flux of the effluent for several values
of rn

∗ is shown in Figure 6, where H∗ = 2 for all cases. When rn
∗ is small, that is,

with large flow nonuniformity, the breakthrough occurs earlier and the dispersive flux
increases earlier, but the peak value is small. It also takes longer for the dispersive flux
to return to zero. This means that the average breakthrough of the effluent takes longer
for smaller rn

∗. The total dispersive flux is also compared (Figure 7). When rn
∗ is small,

the dispersive flux is smallest, whereas when the flow is uniform the dispersive flux is
the largest.

3.3.2. Ratio between orifice radius and column height, rn
∗/H∗ As discussed in

Section 3.1, the influence of the converging flow can spread upwards to 3/2 of the
column radius from the orifice: that is, once H∗ > 3/2, the column height has no
influence on the converging flow pattern. However, equation (3.2) has shown that the
BTC depends on the solute travelling time for uniform flow. Therefore, at the orifice,
the solute concentration will depend on the column height and, consequently, the total
dispersive flux is affected. Figure 8(a) shows the dispersive flux at the orifice in relation
to the column height where rn

∗ = 0.14, which is the same as the experimental setting
in [30]. It is found that the taller the column, the longer the breakthrough process and
the smaller the maximum dispersive flux. However, the total dispersive flux is very
close, as shown in Figure 8(b): that is, the column height has little impact on the total
dispersive flux when the orifice radius is fixed.

3.3.3. Longitudinal dispersivity, αL
∗ The dispersivity is a material property that

determines the spreading of solute in a fluid parcel. Hydrodynamic dispersion for
the flow in a column, as shown in Figure 1, will be dominated by the longitudinal
dispersivity, αL, in the uniform flow zone according to equation (2.2). Using the
parameters in Table 2, simulations for various αL were carried out to examine its
effect on the dispersion. Figure 9 shows that when αL

∗ increases (0.01275–0.02775),
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FIGURE 9. Dispersive flux time series at the orifice for various dispersivities.
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FIGURE 10. (a) Dispersive flux time series and (b) Vertical flow velocity time series at the orifice for
various influent concentrations.

the dispersive flux decreases. However, when αL
∗ keeps increasing from 0.03225 to

0.05525, the dispersive flux increases and flattens out at the end.

3.3.4. Solute concentration of the influent, ωin Variations in solute concentration,
such as for brine, introduce density and viscosity changes in the fluid. Consequently,
this will produce convective currents and affect the flow pattern in the column. The
impact of the influent solute concentration, ωin, is examined using the parameters in
Table 1 with H∗ = 2 and rn

∗ = 0.14: ωin varies from 0.5% to 20%.
The nondimensional dispersive flux is illustrated in Figure 10(a). It can be seen

that the breakthrough occurs earliest and lasts longest for the smallest ωin. Conversely,
for the largest ωin, the breakthrough curve will be the steepest. The nondimensional
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TABLE 3. Normalized cumulative dispersive flux for various ωin.

ωin 0.5% 5% 10% 15% 20%

Cumulative dispersive flux 0.0088 0.0086 0.0082 0.0080 0.0078

dispersive fluxes for various ωin are listed as in Table 3, where the influent concentra-
tion has little impact on the dispersive flux.

When ωin is high, the density variation in the miscible zone is large. The denser
fluid tends to flow against the inflow direction. This is illustrated in Figure 10(b), which
shows the longitudinal velocity at the centre of the orifice. From equations (2.5) and
(2.6), the density and viscosity depend on the solute concentration. The ratio ρ/μ can
be calculated using equations (2.5) and (2.6), which apparently decreases with the
increase in ω. Consequently, the hydraulic conductivity decreases with the increase in
ω. Hence, the nondimensional velocity for a higher concentration of brine is greater if
all other conditions remain the same, as shown in Figure 10(b).

4. Conclusions

In this study, a multiphysics finite-element model was employed to investigate
apparatus-induced dispersion in nonuniform, density-dependent flow within a cylin-
drical column. The accuracy of the model was validated through comparisons with an
analytical solution and laboratory column test data. Our findings can be summarized
as follows.

(i) The simulations conducted using the model confirmed that flow nonunifor-
mities induced by the apparatus are effectively dissipated within the column
when the distance to the outlet exceeds 3R/2, where R represents the radius
of the column. Additionally, we observed that convergent flow in the column
apparatus introduced additional hydrodynamic dispersion, primarily when the
height of the soil column was relatively small. However, the influence of
convergent flow on dispersion diminished when the height of the column
exceeded 3R/2.

(ii) The apparatus-induced dispersion characteristics were found to be influenced
by soil properties, such as dispersivity. Moreover, we discovered that an
increase in the density gradient of the solution resulted in a decrement in flow
velocity at the breakthrough point. This phenomenon played a stabilizing role
in the flow dynamics and ultimately led to a reduction in dispersive mixing.

(iii) As the dispersion coefficient is known, the dispersive flux increase (or decrease)
due to the apparatus, as well as density, can be quantified.

In conclusion, this study provides valuable insights into the phenomenon of
apparatus-induced dispersion in nonuniform, density-dependent flow within a cylin-
drical column. By understanding the dissipation of flow nonuniformities, the effects
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of convergent flow and the impact of solution density gradient, we can improve our
understanding of dispersive mixing phenomena and contribute to the development
of more effective strategies for managing and mitigating dispersion in practical
applications.
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