In this introductory textbook, thermodynamics is presented as a natural extension of mechanics so that the laws and concepts learned in mechanics serve to get acquainted with the theory. The foundations of thermodynamics are presented in the first part. The second part covers a wide range of applications, which are of central importance in the fields of physics, chemistry and engineering, including calorimetry, phase transitions, heat engines and chemical reactions. In the third part, devoted to continuous media, Fourier and Fick’s laws, diffusion equations and many transport effects are derived using a unified approach. Each chapter concludes with a selection of worked examples and several exercises to reinforce key concepts under discussion. A full solutions manual is available at the end of the book. It contains more than 150 problems based on contemporary issues faced by scientists and engineers that are solved in detail for undergraduate and graduate students.

Jean-Philippe Ansermet is a professor of physics at École Polytechnique Fédérale de Lausanne (EPFL), a fellow of the American Physical Society and a past president of the Swiss Physical Society. He coordinated the teaching of physics at EPFL for 12 years. His course on mechanics, taught for 25 years, was based on his textbook and a massive open online course (MOOC) that has generated over half a million views. For more than 15 years, he has taught thermodynamics to engineering and physics students. An expert in spintronics, he applies thermodynamics to analyse his pioneering experiments on giant magneto-resistance, or heat–driven spin torques and predict novel effects.

Sylvain D. Brechet completed his PhD studies in theoretical cosmology at the Cavendish Laboratory of the University of Cambridge as an Isaac Newton fellow. He is lecturer at the Institute of Physics at EPFL. He teaches mechanics, thermodynamics and electromagnetism to first-year students. His current research focuses on theoretical modelling in condensed matter physics and more particularly in spintronics. Merging the fields of non-equilibrium thermodynamics, continuum mechanics and electromagnetism, he brought new insight to spintronics and fluid mechanics. In particular, he predicted in 2013 the existence of a fundamental irreversible thermodynamic effect now called the Magnetic Seebeck effect.
Principles of Thermodynamics

JEAN-PHILIPPE ANSERMET
École Polytechnique Fédérale de Lausanne

SYLVAIN D. BRECHET
École Polytechnique Fédérale de Lausanne