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A N EXISTENCE THEOREM FOR
NONLINEAR HEMTVARIATIONAL INEQUALITIES AT RESONANCE

LESZEK GASINSKI AND NIKOLAOS S. PAPAGEORGIOU

We consider a nonlinear hemivariational inequality with the p-Laplacian at res-
onance. Using an extension of the nonsmooth mountain pass theorem of Chang,
which makes use of the Cerami compactness condition, we prove the existence
of a nontrivial solution. Our existence results here extends a recent theorem on
resonant hemivariational inequalities, by the authors in 1999.

1. INTRODUCTION

In a recent paper (see Gasinski and Papageorgiou [9]), we examined a nonlinear
hemivariational inequality at resonance. We proved an existence theorem under the
assumptions that the Clarke subdifferential of the generalised potential is bounded
and that it has nonzero limits at ±oo. In the present paper, we remove both these
restrictive hypotheses and instead we assume a general (p — 1)-growth condition for the
subdifferential and a behaviour in the "neighbourhood of ±oo", which is a variation of
the well known Ambrosetti-Rabinowitz condition (see [3]).

Semilinear (that is, for p = 2) hemivariational inequalities at resonance were stud-
ied by Goeleven, Motreanu and Panagiotopoulos in [12]. While our hypotheses do
not preclude the situation where lim fz j (z, tu\(z)) dz may be finite (ui being the

|t|—f+OO

principal eigenfunction of the p-Laplacian), in [12], when the problem is formulated in
our setting with p = 2 (that is, resonance at the principal eigenvalue Ai), the authors
always require that lim Jzj(z,tui(z))dz is infinite Moreover, their growth condi-

|t|—f+OO

tions on the subdifferential dj{z,Q are more restrictive and in [12, Section 5], they
assume that the Clarke subdifferential of J(x) = fzj(z,x(z)) dz admits a continuous
selector v : L2(Z) >-* L2{Z). This is a rather severe restriction if we take into consider-
ation the fact that in general the Clarke subdifferential of a locally Lipschitz function
is only upper semicontinuous from the Banach space into its dual furnished with the
w* -topology (see Section 2). Other (nonresonant) eigenvalue problems for hemivaria-
tional inequalities were studied recently by Goeleven, Motreanu and Panagiotopoulos
[11] and Gasinski and Papageorgiou [10].
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Hemivariational inequalities arise in physical and engineering problems, where the
consideration of more realistic laws leads to nonconvex, nonsmooth energy ninctionals
and to a new type of variational expression, namely the hemivariational inequality. For
such a model the eigenvalue problem is closely connected with the stability analysis
of the corresponding mechanical system. So for instance in beam buckling theory, the
lower eigenvalue corresponds to the critical loading, that is, to the Tnarimnm loading
sustained by the structure before instability occurs. Additional mechanical applications,
such as the study of adhesive joints in structural mechanics, the behaviour of composites,
noncovex semipermeability, unilateral contact and nonmonotone problems are studied
in the recent book of Panagiotopoulos [17].

Also we should mention that hemivariational inequalities include, as a special case,
problems with discontinuities. These correspond to the case when the generalised po-
tential function is of the form j(z, £) = f£ f(z,£) d£, with / being a Borel measurable
function, in general discontinuous in the second variable. Problems with discontinuities
were studied by Chang in [7], where, for this purpose, a nonsmooth extension of the
classical critical point theory is developed. Previous works for resonant elliptic prob-
lems deal with the semilinear case and of course assume that j(z, £) = f£ f(z,£)d£,
with / € C(Z x K) (hence j e C ' ( Z x R)). We refer to the works of Ahmad, Lazer
and Paul [2] (where j(z, £) -> +oo as £ -»• ±oo), Bartolo, Benci and Fortunato [4],
Thew [20] and Ward [22] (where j(z,Q has finite limits at ±oo; this is the so called
strong resonant problem).

2. PRELIMINARIES

Our approach is variational and uses the critical point theory of Chang [7] for
nonsmooth locally Lipschitz functionals. The work of Chang was based on the sub-
differential theory of Clarke [8]. In this section, for the convenience of the reader, we
recall some basic definitions and facts from these theories, which we shall use in the
sequel.

Let X be a Banach space and X* its topological dual. By || • || we shall denote
the norm in X, by || • ||» the norm in X*, and by (-, -) the duality brackets for the
pair (X, X*). A function <j>: X i-> R is said to be locally Lipschitz, if for every x € X
there exists a neighbourhood U of x and a constant k > 0 depending on U such that
\<j>(x) — 4>(y)\ ^ k\\z — y\\ for all z, y € U. From convex analysis it is known that a

proper, convex and lower semicontinuous function j : X ^ R = R u {+°°} is locally

Lipschitz in the interior of its effective domain dom<7 = {x € X : g(x) < +00}. In

analogy with the directional derivative of a convex function, we define the generalised

directional derivative of a locally Lipschitz function (f> at x € X in the direction he X,
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x*x
t\0

The function X 9 h •-»• <f>°(x; h) G R is sublinear, continuous and by the Hahn-Banach
Theorem it is the support function of a nonempty, convex and wm -compact set

d<j>(x) £ {x* G X* : <x*, h) ^ <f>°(x; h) for all h € X}.

This set is called the "generalised" or "Clarke" subdifferential of <f> at x. If <j>, ip : X *-* R

are locally Lipschitz functions, then d(<l> + ip)(x) C d<t>(x) + <ty(x) and d(t<j>){x) =

td<j>(x) for all t € R. Moreover, if <j>: X •-> R is also convex, then the subdifferential of <f>

in the sense of convex analysis coincides with the generalised subdifferential introduced

above. If <f> is strictly differentiate at x (in particular if <f> is continuously Gateaux

differentiate at x), then d<f>(x) = {<f>'(x)}.

Let 4> : X t-> R be a locally Lipschitz function on a Banach space X. A point

x e X is said to be a "critical point" of tf>, if 0 G d#(x ) . If a: € X is a critical point

of 0 , then the value c = 0(x) is called a "critical value" of <)>. I t is easy to see tha t ,

if i € X is a local extremum of 0 , then 0 G d(f>{x). Moreover, the multifunction

X 3 i 4 d(f>(x) G 2 X * is upper semicontinuous, where the space X* is equipped with

the w* -topology, tha t is, for any to*-open set U C X*, the set {x e X : d(j>{x) C U}

is open in X (see Hu and Papageorgiou [13]). For more details on the generalised

subdifferential we refer to Clarke [8].

The critical point theory for smooth functions uses a compactness condition known

as "the Palais-Smale condition". In our present nonsmooth setting, the condition takes

the following form:

A locally Lipschitz function <f>: X *-* R satisfies the "nonsmooth Palais-Smale

condition", if any sequence {xn}n^i Q X such that {<f>(xn)}n>1 is bounded

and m[xn) = min{| |x*| | , : x* G d<j>(xn)} - » 0 as n - > -f-co, has a strongly

convergent subsequence.

If ^ G Cl(X), then since d(f>(xn) = {^ ' (x n )} , we see that the above defintion of the

Palais-Smale condition coincides with the classical one (see Rabinowitz [18]).

A weaker form of the Palais-Smale condition was introduced in the context of

the smooth theory by Cerami [6]. In our nonsmooth setting this condition takes the

following form:

A locally Lipschitz function <f> : X •-> R satisfies the "nonsmooth Cerami

condition", if for any sequence {xn}n^i C X such that the sequence of values
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{ # ( x n ) } n > 1 is bounded and ( l + ||xn||)m(xn) -> 0 as n —• +co, there exists
a strongly convergent subsequence.

It was proved in the smooth case by Bartolo, Benci and Fortunato (see [4, Theorem
1.3]) that this weaker condition suffices for a deformation theorem and from that, one
derives minima^ principles. The same can be done in the nonsmooth case, by appro-
priate modification of the proof of Bartolo, Benci and Fortunato [4] using Chang [7,
Lemmata 3.1 up to 3.4] in order to obtain the deformation theorem or by using a recent
generalisation of the Ekeland variational principle due to Zhong [23] (see Kourogenis
and Papageorgiou [14]). So we can state the following slight generalisation of the non-
smooth mountain pass theorem, due to Chang [7]. (See also Ambrosetti and Rabinowitz
[3] for the original smooth version of the theorem.)

THEOREM 1 . If

(i) X is a reflexive Banach space and <j> : X •-»• R is locally Lipschitz func-
tional which satisfies the nonsmooth Cerami condition;

(ii) there exist real number r > 0 and two points x i , x2 € X such that
\\i2 — xi | | > r and max{<^(x1), ^(x2)} < inf{#(x) : ||x — xi| | = r } ;

(iii) c is de&ned by

ciinf

where

r i {7 € C([0,1],X) : 7(0) = Xl, 7(1) = x2},

then

(a) c is a critical value of 4>;
(b) c^ in f{^ (x ) : | | x -x i | | - r } ;
(c) if additionally c = inf{<£(x) : ||x — xi|| = r} , then there exists a critical

point xo € X of 4> such that <t>(zo) = c and ||xo - Xi|| = r.

In our hypotheses we shall use the first eigenvalue Ai of the negative p-Laplacian
—Apx = — div(||Vx||p~2Vx) with Dirichlet boundary conditions (that is, of ( -A p ,
wo'P(Z)))- This is denned as follows. Let Z C R " be a bounded domain with
boundary T and let us consider the following eigenvalue problem:

(EP)
r-div(||

1 x|r = 0.
Vx(z)||£N

2Vx(z)J = A|x(z)|p 2x(z) almost everywhere on Z

The least real number A for which (EP) has a nontrivial solution is called the first
eigenvalue Ax of (—Ap, WQ'P(Z)). This first eigenvalue Ai is positive, isolated and
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simple (that is, the associated eigenfunctions are constant multiples of each other).
Moreover, we have a variational characterisation of Ai via the Rayleigh quotient, that
is

This Tni-nirmi-m is realised at the normalised eigenfunction u i . Note that if ti\ minimises
the Rayleigh quotient, then so does |ui | and so we infer that the first eigenfunction u\
does not change sign on Z. In fact we can show that u\(z) ^ 0 almost everywhere
on Z and so we can assume that u\ > 0 almost everywhere on Z. Moreover by the
nonsmooth elliptic regularity theorem of Tolksdorf [21], we have that «i € C^(Z)
with 0 < /? < 1. For details on the first eigenvalue we refer to Lindqvist [16].

The Lusternik-Schnirelmann theory gives, in addition to Ai, a whole strictly in-
creasing sequence of positive numbers {An}n^i) for which there exist nontrivial sol-
utions of (EP). In other words, the spectrum <r(p) of (—Ap, WQ'P(Z)) contains at
least these points. For p ^ 2 nothing is known in general about the possible existence
of other points in <r(pj C [Ai, +oo). If p = 2 (linear case), the Lusternik-Schnirelmann
eigenvalues are the only eigenvalues.

3. HEMIVARIATIONAL INEQUALITIES AT RESONANCE

Let Z C R " be a bounded domain with C1-boundary F and let 2 ^ p < +oo.
We consider the following quasilinear hemivariational inequality at resonance:

f -div(||Vx(z)||^2Va:(z)) - A i l x W r ^ ^ )

(HVI) < e dj(z,x(z)) almost everywhere on Z

[ x\r = 0.

Our hypotheses on the generalised potential function j(z, £) are the following.

H(j) j-.ZxR^R

is a function such that:

(i) for all C € R, Z 3»-4 j(z, Q 6 R is measurable;
(ii) for almost ah z e Z, R9C>-> j(z, C) € R is locally Lipschtiz;
(iii) for ahnost a l l z e Z . a l l C ^ R and all rj e dj(z,Q we have |J?| <

a(z) + c|C|p~x with some a € L°°(Z) and c > 0;
(iv) there exist 0 > 0 and 0 < (j, < p such that

liminf "'<
KI-+OO
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or

ICr
uniformly for almost all z € Z and all u*(z, C) € dj(z, C), with «*(-, C) €

(v) lim (pj(z, C)/|CIP) ^ -Ai uniformly for almost all z e Z;

(vi) j(-,0) € L°°(Z), fzj(z,Q)dz ^ 0 and there exists f # 0 such that
fzj(z,ZUl(z))dz>0.

Let <£ : WQ'P(Z) I-» R be the energy functional defined by

4(x) « ±||V*||J - ^||x||» - Jgj{z,x{z)) dz-

Let <£ : WQ'P(Z) ^ E b e defined by tp{x) = fzj(z, x(z)) dz. By virtue of hypothesis
H(j) (iii) and Clarke [8, Theorem 2.7.5, p.83], we see that ^ is locally Lipschitz. Also
the functionals WQ'P(Z) 3 i 4 | |VX||P € R and W^P{Z) 3 i 4 ||X||P € R are convex,
continuous, hence locally Lipschitz on WQ'P(Z). Therefore <f> is locally Lipschitz.

LEMMA 2 . If hypotheses H(j) hold, then <f> satisfies the nonsmooth Ceraxni con-
dition.

PROOF: We assume that in hypothesis H(j) (iv) the first alternative holds. The
proof is similar if the second alternative is in effect.

Let {xn}nssi Q WQ'P(Z) be a sequence such that \<f>{xn)\ ^ M : for all n ^ 1 and
(l + | |xn | | )m(2n) -» 0 and n -> +oo.

Let Xn € d<f>(xn) be such that m(xn) = ||x*||», for n ^ 1. For every n ^ 1,
its existence is a consequence of the fact that d<f>(xn) C (WQ'P(Z))* = W~Xjfl'{Z)
(where 1/p + l/p' = 1) is weakly compact and the norm functional is weakly lower
semicontinuous. Let A : WQ'P(Z) *-> W~1>J>'{Z) be the nonlinear operator defined by

(Ax,y) I /
Jz
/ | | | | £ ( , Vy(z))RNdz Vx, y € W£'P(Z).
z

Here by (-, •> we denote the duality brackets for the pair (Wo
lj>(Z), W~l^(Z)). It

is straightforward to check that A is demicontinuous and strongly monotone, hence
maximal monotone (see Hu and Papageorgiou [13, Corollary III.1.35, p.309]). For
every n ^ 1, we have

(1) x*n = Axn-X1\xnr
2xn-u*n,

where u* € d\l){xn), for n ^ 1. From Chang [7, Theorem 2.2] and Clarke [8, Theorem
2.7.5, p.83], we know that ti* £ IP (Z) and u*(z) € dj(z, xn(z)) ahnost everywhere
on Z.
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Because (l + ||xn||)||*nlU -*Oasn-» +00, so choosing a subsequence if necessary,
we have |(x*, xn) | < 1/n. Thus, from (1), we have

(2) - | |Vxn | | | + AilMI* + « , * „ ) „ , < 1/n

(by (•»*)«/ we denote the duality brackets for the pair {V{Z), ^'{Z))). As
i for all n ^ 1, also

(3) ||Vxn||5 - AIHXBIIJ - / pj{z, xn{z))dz ^ pMx.

Adding (2) and (3), we obtain

(4) Jz(u*n(z)xn(z)-pj{z, xn(z)))dz < i +PMX.

By virtue of hypothesis H(j) (iv), we can find M2 = M2(/3) > 0 such that for almost
all z € Z, all ICI ^ M2 and all u*{z,Q € dj(z,Q, we have

(5) «'(*,OC-Pi(*.O>flCr

From the Lebourg mean value theorem (see Lebourg [15] or Clarke [8, Theorem 2.3.7,
p.41], we know that for almost all z e Z and all C £ K, we can find t € (0,1) and
T)£dj(z,tO, such that

and so from hypothesis H(j) (iii), for almost all z € Z and all £ € ffi, we have

(6) \j(z,C)| ^ \j(z,0)| + o(z)|C| + c|C|" ^ O!(z)(l + |C|p),

with ai G L°°(Z), namely ax(z) = |j(z,0)| + a(z) + c (recall that from H(j) (vi)
we have that i(-,0) G L°°(Z)). Hence and from hypothesis 2J(j) (iii), for ahnost all
z e Z, aU ICI < M2 and all u'(z,C) G »j(*.C). we have

(7) |«*(*,OC-pi(*,0|<02(*),

with o2 € X.°°(Z), namely a2(z) = M2a(z) + cAff + p(l + A/f )aj(z). FinaUy from (5)
and (7), we can say that for ahnost aU ze Z, allCGR and all u*(z, C) G 9>(z, C), we
have
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with a3 €.L°°(Z), namely az{z) = o2(z) + {0/2)Mg. Thus, returning to (4), we have

that

§ l l l l £ < f ( * ( ) ( ) j{ ())) d l f a h ^ l M | | a s | Uxn(z) -pj{a, xn(z))) dz + lfah ^l+pM1

and so the sequence {xn}n^i Q 1^(2) is bounded, that is,

(8) IknlU^Cx V £ l ,

"with c1>0, namely cx = [(2//?)(l + pMx + Kl l

Let p* be the Sobolev critical exponent, denned by

p =
+00

Let us choose q such that p < q < minjp*, p(max{ iV,p} + fi)/max{N,p} >. Prom (6),
we see that for almost all z € Z and all C € R, we have that

with c2 = 2||ai||oo and C3 = ||oi||oo. Let

. . ^ 4 if JV>p,

1 - H XN*p.

Using the interpolation inequality (see for example, Brezis [5, Remarque 2, p.57] and
noting that 0 < tf < 1 is chosen such that 1/q is the "convex combination" of l//i and
1/p*, namely 1/q = (1 — t?)/u + t?/p*), from inequality (8) and the Sobolev embedding
theorem, for n ^ 1, we have

with some c4 > 0. Recall that for all n ^ 1, we have that

-||Vxn|K - —||Xn||5 - / j(z, Xn(z)) dz ^ MX.
P p P p Jz
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So using also inequality (9), continuity of the imbedding Lq(Z) C IP{Z), the Young
inequality and inequality (10), we have

£ | | x | | | + c2\Z\ + C3||xn||5 + M1

< Cg + C5||xn||« + C2\Z\ + C3||xn||« + MY

= Ce + CrllXnH'^ C6 + Clc7||xnf«,

where c5 = \x\Z\(q-*V«/p, <% = c5 + c2\Z\ + Mx and c7 = c3 + c5. Using also the
Poincare inequality, we obtain.

(11) | | V x n | | ^ c 8 | | V x n | | ^ + c9,

with some cs = cs&i) > 0 and eg =pce-
Let us estimate the exponent tiq. First suppose N > p. Since M7 < JVp + ftp

(recall the choice of q), we have that

„ P ( g / * ) ^ Np ( g / x ) ( J V p ) iVp ( g / x ) ( J V p ) =
9 p*-A* iV-p Np-Nfi + fip N-p Nq-Nfi P'

Now suppose that N ^p. Then from the choice of q, we have that

, max{JV,p} +
' P max{iV,p}

and so q — (i < p. Hence we have

Therefore we see that in both cases, we have that tiq < p. Then from (11), it follows
that the sequence {xn}n^i C WQ'P(Z) is bounded. Thus by passing to a subsequence if
necessary, we may assume that x n -¥ x weakly in W\'V{Z), so also x n -> x in V(Z).
Thus we have (x£, i n - i ) - > 0 a s n - » +oo, so from (1), we have

{Axn, xn - x) - Ai ( |xn |p"2xn, xn - x)^ - {u'n, xn - x ) ^ - > 0 a s n - > +oo.

From the continuity of the operator LP{X) 3 x •-> |x|p~2x e / ^ ' (Z ) , we have that
\xn\

p~2xn -* \x\p~2x in 1?'{Z) as n -> +co. As u* € /^ ' (Z) and < ( z ) 6 aj(z, xn(z))
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almost everywhere on Z , from hypothesis H(j) (iii), we see that the sequence
{u*}n^i C IP (Z) is bounded. Thus, we obtain that

Umsup(Arn, xn - x) ^ 0.
n-*+oo

Because A is maximal monotone, it is generalised pseudomonotone as well (see Hu and
Papageorgiou [13, Definition 111.62 and Remark m.6.3, p.365]) and so we have

(Axn, xn) -»• (Ax, x) as n -*• +oo,

thus
HVxnlg-> HVxHJ asn->+co .

On the other hand, since xn -> x weakly in WQ'P(Z) a s n - 4 +oo, we have also that
Vx n —>• Vx weakly in LP{Z,RN) as n —* +oo and since J L ^ Z J R " ) is uniformly con-
vex, it has the Kadec-Klee property (see Hu and Papageorgiou [13, Definition I.1.72(d),
p.28]). Therefore we conclude that Vxn -> Vx in V(Z,RN) a s n - > +co and so
xn —* x in WQ'P(Z) as n —)• +00. Thus <l> satisfies the nonsmooth Cerami condi-
tion. D

LEMMA 3 . If hypotheses H(j) hold then there exists r0 > 0 such that for all
0 < r < r0, we have inf {<t>(x) : \\x\\ = r } > 0.

PROOF: By virtue of hypothesis H(j) (v), we can find 5 > 0 such that for almost
all z € Z and all C such that |£| ^ S, we have

(12) ikcx-^icr-

On the other hand, from the proof of Lemma 2 (see inequality (9)) we see that for
almost all z € Z and all C, such that |C| > S, we have

with c10 = c26~q + c3 and with p < q < p*. From (12) and (13), it follows that for

(13)

with
almost all 2 G Z and all £ € R, we have

where e n = c10 + Xi/(2pSg~p). Hence, for every x € WO
1>P(Z), we have
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Now, using the Rayleigh quotient, the Sobolev embedding theorem and the Poincafe
inequality, we obtain

^ £ 1' * Cl2||x||P "
with some C12 ^ 0. Since p < q, from the last inequality, we see that choosing 0 < r0 <
(ci2/cn)1/(9~p) we shall have that inf{^(x) : ||x|| = r} > 0 for any 0 < r < r0. D

Now are ready to state and prove an existence result for (HVI).

THEOREM 4 . If hypotheses H(j) hold, then the problem (HVI) has a nontrivial
solution xo e WQ'P(Z).

PROOF: Prom hypothesis H(J) (vi), we have that ^(0) < 0 and #(f«i) ^ 0.
From Proposition 2, we know that <f> satisfies the nonsmooth Cerami condition and
from Propsition 3, we can choose r < min{ro,f} such that inf{^(a;) : | |i | | = r} > 0.
Now we can apply Theorem 1 (with x\ = 0, £2 = £^i and r defined above) and
produce x0 e WQ'P(Z) such that 0 e d(j>{x0) and 4>{x0) > inf{^(x) : | |i | | = r} > 0.
Clearly XQ i=- 0 and we have

Ax0 = Aa |zo|
p~2*o + « ' in W~^{Z),

with u* € dip(x0), hence «* € ^'(Z) and u*(z) € dj(z, XQ(Z)) almost everywhere on
Z. Let <p e C^(Z). We have

(Axo,<p) =

and by Green's theorem

( - div(||Vxoir2Vxo),y>) = Axdxor^o, v)^ + («", ^ .

Note that from the representation theorem for the elements in the dual space W~ltP (Z) =
(Wl'p(Z))' (see Adams [1, Theorem 3.10, p.50]), we have that div(||Vafo||*"2V*o) e
W-X*\Z). Since C%>{Z) is dense in Wo

llP(Z), we deduce that

-div(||Vxo(2)||P"2Vxo(z)) - A1|x0(z)r"2x0(z)

= u*(z) € dj(z, XQ(Z)) almost everywhere on Z

xo|r = 0,

and so xo is a nontrivial solution of (HVI). D
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REMARK 5. From the proof of Theorem 4 one can see that the part of hypothesis H{j)
(vi) concerning the existence of f ^ 0 such that Jzj(z, £ui(z)) dz^O can be replaced
by a more general one, not involving the first eigenfunction u\, namely:

There exists x € WQ'P(Z), X ± 0, such that

\\Vx\\* %

1-S * IMSIM
As a simple illustrative example along the lines of those by Panagiotopoulos [17],

we consider the problem

= /(x(z)) almost everywhere on Z

= 0.

where 2 < p < +00 and / : R H* R is defined by

2C + 2 if C ^ - 1

. 2C - 2 if 1 ^ C

with 1 < s < p (see Figure 1). Let j : R i-+ R be defined by j(C) - fo / ( 0< f (see
Figure 2). Then

f — l^l5 if 1̂1 < 1

Uc 2 -2 ic i ) i f ic i>i .
Since / is discontinuous at £ = ± 1 , the problem need not have a solution (see Stuart
[19]). Following Chang [7], in order to obtain a solution, we pass to a multivalued
version of (14), by filling in the gaps at the discontinuity points. So we introduce

From Clarke [8, p.34], we know that j is locally Lipschitz and dj(£) = /(C) for all
( G E (see Figure 3). So instead of (14), we consider

j- div(| |Vx(z)| |p-2Vx(z)) ~X1\x{z)\J>-2x{z)

(16) < e dj(x(z)) almost everywhere on Z

I *lr = 0.
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We can easily check that hypotheses H(j) are satisfied and we can apply Theorem 4
to obtain a nontrivial solution x e WQJ>(Z) for problem (16).

We can have another example, by replacing function / in (14) (the right hand side
in problem (14)) by the function ; : Z x R i 4 R defined by g(z,Q = &(z)/(C)> where
b € L°°(Z), with b(z) ^ 7 > 0 for almost a l l z € Z a n d / : R » - > R defined by (15).
Then also hypotheses H(J) are satisfed and from Theorem 4 we obtain a nontrivial
solution x € WO

1>P(Z) for problem (16).

Fig. 1
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