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Generally, the multi-armed has been studied under the setting that at each time step
over an infinite horizon a controller chooses to activate a single process or bandit out of a
finite collection of independent processes (statistical experiments, populations, etc.) for a
single period, receiving a reward that is a function of the activated process, and in doing
so advancing the chosen process. Classically, rewards are discounted by a constant factor
β ∈ (0, 1) per round.

In this paper, we present a solution to the problem, with potentially non-Markovian,
uncountable state space reward processes, under a framework in which, first, the discount
factors may be non-uniform and vary over time, and second, the periods of activation
of each bandit may be not be fixed or uniform, subject instead to a possibly stochastic
duration of activation before a change to a different bandit is allowed. The solution is
based on generalized restart-in-state indices, and it utilizes a view of the problem not as
“decisions over state space” but rather “decisions over time”.

1. INTRODUCTION AND SUMMARY

Generally, the multi-armed bandit problem has been described in terms of sequentially
allocating effort to one of N independent processes, or bandits, for instance sequentially
assigning measurements to one of N possible statistical populations or measurements in
clinical trials. In what follows, we discuss the problem in terms of bandit activation. In each
period, a controller chooses a single bandit to activate from the N available, basing that
decision on all information available about all bandits at that time. The activated bandit
yields a reward that depends on its current state, and then moves to a new state according
to a probability law of motion that is a function of that bandit’s history. Each bandit is
taken to be independent of the others. Inactive bandits in a period yield no rewards, and
their states remain frozen for that period.
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Central results are the existence and form of index-based policies for certain models
that maximize the present value of expected rewards, cf. Gittins et al. [19], Frostig and
Weiss [18], Mahajan and Teneketzis [37], Kaspi and Mandelbaum [28], Ishikida and Varaiya
[27], El Karoui and Karatzas [14], Gittins [22], Gittins [21] and Gittins et al. [20].

Important extensions of the basic problem were given by Agrawal et al. [3] that consid-
ered multiple plays and switching costs, and by Caro and Yoo [9] that considered response
delays. Further, in Ouyang and Teneketzis [41] conditions are given under which a myopic
policy is optimal for a multi-state channel probing environment, and in Niño-Mora [38]
who presents indexability conditions for discrete-state semi-Markov bandits.

Other interesting formulations and applications are discussed in Glazebrook et al. [23],
Glazebrook et al. [24], Su et al. [46], Agmon et al. [2], Lai et al. [34], Liu et al. [36] and Aalto
et al. [1], Katehakis et al. [30], Weber [51], Weber and Weiss [52] and Chang and Lai [10].

Following Lai et al. [35], alternative treatments have involved minimizing the rate of
increase of a regret function, cf. Katehakis and Robbins [32], Burnetas et al. [7], Burnetas
and Katehakis [8], Ortner and Auer [40], Oksanen et al. [39]. For other related work we
refer to the following: Flint et al. [17], Fernández-Gaucherand et al. [15], Govindarajulu and
Katehakis [25], Honda and Takemura [26], Tekin and Liu [47], Tewari and Bartlett [48],
Filippi et al. [16], Bertsekas [4], Bubeck and Cesa-Bianchi [5] and Burnetas et al. [6].

In this paper, we consider the following formulation of the problem. In a discrete-time-
step model, future rewards from all processes depreciate from period to period according
to a possibly stochastic sequence of bandit-dependent discount factors. We show that the
optimal policy for the multi-armed under this generalized depreciation model is an index
policy, where the indices are propitiously generalized restart in state indices, cf. Katehakis
and Veinott [33] and Katehakis et al. [29]; see also Sonin [43], Sonin [44] and Steinberg and
Sonin [45]. Furthermore, the overall proof suggests a way of understanding the structure of
the reward processes, relative to a “natural” time scale of possibly stochastic intervals of
activation or “restart blocks”, rather than steps of unit time.

We note that this problem can be treated to some extent in the classical semi-Markov
formulation of the multi-armed, in which the duration a reward process remains in a given
state determines the discounting on future rewards. However, the treatment given in this
paper is justified by the following reasons:

One, the reward processes and discount factor processes as treated here are defined
in considerable generality, as potentially non-Markovian processes over uncountable state
spaces. As a result, many classical solutions to this problem, cf. Denardo et al. [12], and
Tsitsiklis [49], formulated with finite-state Markov chains, do not apply. The benefit of this
increased generality is broader applicability, such as in the case of time-dependent reward
processes, or partially observed reward processes (i.e. POMDPs).

Two, many classical treatments of these types of problems treat them as what might
be called “decisions over state space”, determining what decision to make in each potential
state of the reward processes. The approach taken here might well be described as “decisions
over time”, determining when to make what decision and for how long. This can be viewed
as a generalization of the approach taken in Kaspi and Mandelbaum [28]. To demonstrate
the difference in perspectives, from the first, a simple reward process might be a two-state
Markov chain. From the second, a simple reward process would be one characterized simply
over time, such as an infinite, monotone process. This perspective leads to a reformulation
of the problem, which can be solved simply via a sample-pathwise optimization argument,
cf. proof of Theorem 3.

The rest of the paper is organized as follows. In Section 2, we formulate the generalized
depreciation model rigorously. Section 3 is devoted to useful notions of the “value” of a set
or block of activations of a bandit. In Section 4, we define the generalized restart-in-state
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indices and use them to develop the appropriate time scale to understand the structure
of reward processes. The necessity of the restart-in-state index is established by example
in Section 4.1. In Section 5, we use the generalized restart-in-state indices to construct
alternative “summary” reward processes, which are then used to derive the optimal policy
in Section 6. Section 7 introduces a model under which activation is subject to periods of
commitment, and reduces this model to the previous depreciation model. To close, Section 8
discusses the meaning and implications of a key assumption that allows the techniques
presented here to work.

2. FRAMEWORK: A GENERALIZED DEPRECIATION MODEL

A controller is presented with a collection of filtered probability spaces, (Ωi,F i, Pi, Fi),
for 1 � i � N < ∞, representing N environments in which experiments will be performed
or rewards collected – the “bandits”. To each space, we associate a reward process
Xi = {Xi

t}t�0, and a discount factor sequence βi = {βi
t}t�0. For t ∈ {0, 1, . . .}, we take

Xi
t(= Xi

t(ω
i)) ∈ R to represent the reward received from bandit i on its tth activation.

Additionally, however, we take all rewards collected after the tth activation of bandit i to be
discounted, reduced by a factor of βi

t(= βi
t(ω

i)) ∈ (0, 1). Following tradition, we take both
Xi and βi to be Fi-adapted. We denote the reward process collection as X, and the discount
factor sequence collection as B.

We state the following key assumption that insures that the bandits are mutually
independent.

Assumption A: There is a larger “global” probability space (Ω,G, P) = (⊗N
i=1Ω

i,⊗N
i=1F i,

⊗N
i=1Pi), a standard product-space construction, representing the environment of the

controller – aware information from all bandits.
Expectations relative to the local space, that is, bandit i, will be denoted Ei, while

expectations relative to the global space are simply E. Note that Assumption A ensures
that Xi,Xj are independent relative to P for i �= j, so too are the βi, βj , though βi,Xi

need not be independent.

Remark 1: We adopt the following notational liberty, allowing a random variable Z defined
on a local space Ωi to also be considered as a random variable on the global space Ω, taking
Z(ω) = Z(ωi), where ω = (ω1, . . . , ωN ) ∈ Ω. Via this extension, we may take expectations
involving a process Xi, or Fi-stopping times, relative to P instead of Pi, without additional
notational overhead.

In what follows, we reserve the term “round” to differentiate global, controller time,
denoted with s, from local bandit times, denoted by t.

The following assumption formally states that in every round a reward is received from
the activated bandit, whose state may change, while unactivated bandits remain frozen and
yield no rewards.

Assumption B: In each round, the controller selects a bandit i to activate, receiving
its current reward Xi

t where t is the current local time for that bandit, and advancing
that bandit’s local time one step. All bandits begin at local time 0, and advance only on
activation.

For each bandit i, it is convenient to define a total depreciation sequence {αi
t}t�0, such

that αi
t represents the total discounting incurred by the first t activations of bandit i. That
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is, we may take αi
0 = 1, and

αi
t =

t−1∏
t′=0

βi
t′ . (1)

We additionally make the following assumption stated in terms of restrictions on each
bandit i:

Assumption C:

lim
t→∞αi

t =
∞∏

t=0

βi
t = 0(Pi − a.e.), (2)

and

E
i

[ ∞∑
t=0

αi
t|Xi

t |
]

< ∞. (3)

The latter implies immediately that the expected total reward from any bandit is finite.
Aiming to maximize her expected total reward, in every round the controller’s decision

of which bandit to activate must balance not only which reward to collect in that round, but
also the effect of the incurred discounting on all future rewards from all bandits. A control
policy π is a stochastic process on (Ω,G, P) that specifies, at each round s of global time,
which bandit to activate and collect from, e.g., π(s)(= π(s, ω)) = i, specifies to activate
bandit i at global time s. We restrict ourselves to the set of policies P defined to be non-
anticipatory, that is, polices for which π(s) does not depend on outcomes that have not yet
occurred, or information not yet available.

Given a policy π, it is convenient to be able to translate between global time and local
time. Define Si

π(t) to be the round at which process i is activated for the tth time when the
controller operates according to policy π. This may be expressed as

Si
π(0) = inf{s � 0 : π(s) = i},

Si
π(t + 1) = inf{s > Si

π(t) : π(s) = i}.
(4)

We may also define T i
π(s) to denote the local time of bandit i just prior to the sth round

under a policy π, that is, T i
π(0) = 0, and for s > 0, and

T i
π(s) =

s−1∑
s′=0

1{π(s′) = i}. (5)

It is convenient to define the global time analog, Tπ(s) = T
π(s)
π (s) to denote the current

local time of the bandit activated at round s under policy π. This will allow us to define
concise global time analogs of several processes. For instance, we define the global reward

process Xπ on (Ω,G, P) as Xπ(s) = X
π(s)
Tπ(s), giving the reward from collection X under policy

π at round s.
Given a policy π ∈ P, the reward collected at round s under π is discounted by a factor

of

Aπ(s) =
N∏

i=1

αi
T i

π(s). (6)

While αi
t gives the depreciation on Xi

t due to the activations of bandit i, given a policy π it
is also convenient to define the depreciation on Xi

t on its collection, due to activations of any
process under that policy. This policy-dependent depreciation is given by αi

π(t) = Aπ(Si
π(t)).

https://doi.org/10.1017/S0269964814000217 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000217


MULTI-ARMED BANDITS UNDER GENERAL DEPRECIATION AND COMMITMENT 55

In what follows, we let Vπ(X, B) denote the value of a policy, the expected total reward
given the reward–discount pair X, B under policy π ∈ P. Taking G0 = ⊗N

i=1F i(0) as the
initial global information available to the controller, we may express the value of a policy
as

Vπ(X, B) = E

[ ∞∑
s=0

Aπ(s)Xπ(s)
∣∣G0

]
, (7)

relative to global time, or relative to local time as

Vπ(X, B) =
N∑

i=1

E

[ ∞∑
t=0

αi
π(t)Xi

t

∣∣G0

]
. (8)

The problem the controller faces is to determine a policy π∗ ∈ P that is optimal in the
sense that for any other π ∈ P,

Vπ(X, B) � Vπ∗(X, B)(P − a.e.). (9)

In the remainder of the paper, we construct just such an optimal policy.

2.1. Global Information Versus Local Information

One of the intricacies of the results to follow is in properly distinguishing and determining
what information is available to the controller to act on at any given time. For each bandit i,
the filtration Fi = {F i(t)}t�0 represents the progression of information available about that
bandit – the σ-algebra F i(t) representing the local information available about bandit i at
local time t, such as the process history of Xi. Taking Xi as Fi-adapted as we do, we have
σ(Xi

0,X
i
1, . . . , X

i
t) ⊂ F i(t).1

At round s, the total, global information available to the controller is determined by
the state of each bandit at that round, that is, acting under a given policy π until round s,
the global information available at round s is given by the σ-algebra

⊗N
i=1 F i(T i

π(s)). We
may therefore refine the prior definition of non-anticipatory policies to be the set of policies
P such that for each s � 0, π(s) is measurable with respect to the prior σ-algebra, that is,
determined by the information available at round s. Weaker definitions of non-anticipatory,
such as dependence on random events, e.g., coin flips, are addressed in Section 6.

Additionally, given a policy π, it is necessary to define a set of policy-dependent fil-
trations in the following way: let Hi

π = {Hi
π(t)}t�0, where Hi

π(t) =
⊗N

j=1 F j(T j
π(Si

π(t)))
represents the total information available to the controller about all bandits, prior to the
tth activation of bandit i under π. It is indexed by the local time of bandit i, but at each
time t gives the current state of information of each bandit. Note that, since T i

π(Si
π(t)) = t,

Hi
π(t) contains the information available in F i(t). This filtration is necessary for express-

ing local stopping times, that is, concerning Xi, from the perspective of the controller –
Fi-stopping times no longer suffice, since the controller has access to information from all
the other processes as well. Note though, Fi-stopping times may be viewed as Hi

π-stopping
times, cf. Remark 1. Ultimately, the optimal policy result demonstrates that any decision
about a given bandit depends only on information from that bandit, thus rendering these

1 This means the value of Xi
t is revealed prior to its collection by the controller, determined by the

information available up to time t. A more general model might consider Xi
t to remain uncertain just prior

to its collection, that is have Xi
t be measurable with respect to F i(t + 1), but not F i(t). However, this may

be reduced to the case we present here, taking the reward process to be given by X̂i
t = Ei

[
Xi

t |F i(t)
]
.
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filtrations unnecessary in practice. However, they are a technical necessity for the proof of
that result.

When discussing stopping times, we will utilizing the following notation: For a general
filtration J (e.g., J = Fi, Hi

π), we denote by Ĵ(t) the set of all J-stopping times strictly greater
than t (Pi, P-a.e.). For a J-stopping time τ , Ĵ(τ) is similarly defined.

3. BLOCK VALUES

This section introduces a way of considering the “value” of a set of activations of a bandit.
As noted previously, the “true” value of a decision to activate a bandit is not simply the
reward gained through that decision, but instead must balance the immediate reward with
the effect on all future rewards of the discounting incurred through that decision.

We start with the following definitions.

Definition 1 (Process Blocks and their Values): Given times t′ < t′′, and a policy π with
Si

π(t′) < ∞, we define the following quantities.

1. The restart value of the [t′, t′′) - block of Xi as:

ρi(t′, t′′) =
Ei

[∑t′′−1
t=t′ αi

tX
i
t

∣∣F i(t′)
]

Ei
[∑t′′−1

t=t′ αi
t(1 − βi

t)
∣∣F i(t′)

] . (10)

2. The [t′, t′′) - π-block value of Xi as:

νi
π(t′, t′′) =

E

[∑t′′−1
t=t′ αi

π(t)Xi
t

∣∣Hi
π(t′)

]
E

[∑t′′−1
t=t′ αi

π(t)(1 − βi
t)
∣∣Hi

π(t′)
] . (11)

Note, the above quantities are all measurable with respect to the indicated σ-fields, and
finite, due to the assumptions of Eq. (3) and that βi

t < 1 for all i, t, (Pi, P -a.e.).

Remark 2: We might offer the following justification of the above block “values”. Not-
ing that αi

t+1 = βi
tα

i
t, the denominator of ρi(t′, t′′) becomes telescoping, and we may

equivalently express it as

ρi(t′, t′′) =
Ei

[∑t′′−1
t=t′ αi

tX
i
t

∣∣F i(t′)
]

Ei
[
αi

t′ − αi
t′′
∣∣F i(t′)

] . (12)

In this form, it can be shown that ρi(t′, t′′) represents the total reward accrued from bandit
i starting at time t′ if the controller could, at time t′′, restart the block at time t′ and
continue to collect rewards, repeating this on an infinite-time horizon.

From this perspective, it can be seen that the less depreciation a block incurs over its
duration, the higher the corresponding value of ρi. As such, a block that yields a small reward
but very little depreciation might in fact have a higher value than a block yielding high
reward but incurring serious depreciation. This seems to capture the balance the controller
must strike, between reward and depreciation – and indeed does so, as the optimal policy
will demonstrate.

https://doi.org/10.1017/S0269964814000217 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000217


MULTI-ARMED BANDITS UNDER GENERAL DEPRECIATION AND COMMITMENT 57

Note, νi
π as in Eq. (11) is the obvious policy-dependent generalization of ρi in Eq. (10),

rather than ρi as in Eq. (12). It has no immediate “restart”-type interpretation in this form.
Taking view that the π-block value νi

π is the value of a block of Xi when activated under
a specific policy π, ρi should be viewed as the value of a block with respect to consecutive
activation.

The following theorem illustrates the relationship between ρi and νi
π, essentially stating

that the value of any block under some policy π is at most the value of some block activated
consecutively. It depends on the following lemma concerning stochastic control, inspired by
a lemma in Varaiya et al. [50]. We present its proof in Appendix A.1.

Lemma 1: In an arbitrary probability space (Ω,J , P) consider a discrete-time process
{Zt}t�0 such that E [

∑∞
t=0 |Zt|] < ∞. Let J = {Jt}t�0 be a filtration, and {αt}t�0 be a

J-adapted process such that αt � αt+1 � 0(P − a.e.). In such a case the following is true for
any τ ∈ Ĵ (0):

E

[
τ−1∑
t=0

αtZt

∣∣J0

]
� α0 ess sup

τ ′∈Ĵ(0)

E

⎡
⎣τ ′−1∑

t=0

Zt

∣∣J0

⎤
⎦ (P − a.e.). (13)

Theorem 1 (Block Value Comparison): For bandit i under policy π, for any time t0 such
that Si

π(t0) < ∞, the following holds for any Hi
π-stopping time τ with t0 < τ :

νi
π(t0, τ) � ess sup

τ̂∈F̂i(t0)

ρi(t0, τ̂)(P − a.e.). (14)

Note that by Eq. (3), the essential supremum is finite (P-a.e).

Proof: Denote the essential supremum above by ρ, which is F i(t0)-measurable. Note, for
any τ̂ ∈ F̂i(t0),

Ei
[∑τ̂−1

t=t0
αi

tX
i
t

∣∣F i(t0)
]

Ei
[∑τ̂−1

t=t0
αi

t(1 − βi
t)
∣∣F i(t0)

] � ρ (Pi − a.e.). (15)

We may rearrange Eq. (15) to yield

E
i

[
τ̂−1∑
t=t0

αi
t(X

i
t − ρ (1 − βi

t))
∣∣F i(t0)

]
� 0 (Pi − a.e.). (16)

Since this holds for all such τ̂ , we have:

ess sup
τ̂∈F̂i(t0)

E
i

[
τ̂−1∑
t=t0

αi
t(X

i
t − ρ (1 − βi

t))
∣∣F i(t0)

]
� 0 (Pi − a.e.). (17)

To demonstrate that νi
π(t0, τ) � ρ(P − a.e.), it is enough to show that

E

[
τ−1∑
t=t0

αi
π(t)(Xi

t − ρ (1 − βi
t))

∣∣Hi
π(t0)

]
� 0 (P − a.e.). (18)

It is useful to factor αi
π into contributions to the discounting from bandit i and

contributions from the remaining bandits. That is, we take

αi
π(t) = Âi

π(Si
π(t))αi(t), (19)
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where
Âi

π(s) =
∏
j �=i

αj

T j
π(s)

. (20)

In the spirit of applying Lemma A.1, note that Âi
π(Si

π(t)) is Hi
π-adapted, and

1 � Âi
π(Si

π(t)) � Âi
π(Si

π(t + 1)) � 0 (P − a.e.).

Noting that the integrability conditions follow from Eq. (3), Lemma A.1 may then be
applied to demonstrate Eq. (18) in the following way. Defining Zi

t = Xi
t − ρ (1 − βi

t),

E

[
τ−1∑
t=t0

αi
π(t)Zi

t

∣∣Hi
π(t0)

]
= E

[
τ−1∑
t=t0

Âi
π(Si

π(t))αi
tZ

i
t

∣∣Hi
π(t0)

]

� Âi
π(Si

π(t0)) ess sup
τ̂∈Ĥi

π(t0)

E

[
τ̂−1∑
t=t0

αi
tZ

i
t

∣∣Hi
π(t0)

]

� Âi
π(Si

π(t0)) ess sup
τ̂∈F̂i(t0)

E
i

[
τ̂−1∑
t=t0

αi
tZ

i
t

∣∣F i(t0)

]

� 0

(21)

the above relations holding (P-a.e.). The exchange from the essential sup over Hi
π-stopping

times to Fi-stopping times follows as the αi
t, Z

i
t depend only on bandit i, and independent

information about non-i bandits cannot help in maximizing that sum. This exchange is
proven in more detail in Appendix B.1, but the proof simply amounts to integrating out
the independent bandits. The last step follows from Eq. (17).

This gives Eq. (18), and completes the proof. �

The following proposition provides, using ρi and νi
π, alternative expressions for the

reward accrued through the activation of a block. They follow immediately from Eqs (10)
and (11).

Proposition 1: The following hold for any Fi-stopping times τ ′ < τ ′′. Equality also holds
when conditioning with respect to the initial information F i(0), G0 respectively via the tower
property.

E
i

⎡
⎣τ ′′−1∑

t=τ ′
αi

tX
i
t

∣∣F i(τ ′)

⎤
⎦ = E

i

⎡
⎣τ ′′−1∑

t=τ ′
αi

tρ
i(τ ′, τ ′′)(1 − βi

t)
∣∣F i(τ ′)

⎤
⎦ , (22)

E

⎡
⎣τ ′′−1∑

t=τ ′
αi

tX
i
t

∣∣Hi
π(τ ′)

⎤
⎦ = E

⎡
⎣τ ′′−1∑

t=τ ′
αi

tρ
i(τ ′, τ ′′)(1 − βi

t)
∣∣Hi

π(τ ′)

⎤
⎦ , (23)

E

⎡
⎣τ ′′−1∑

t=τ ′
αi

π(t)Xi
t

∣∣Hi
π(τ ′)

⎤
⎦ = E

⎡
⎣τ ′′−1∑

t=τ ′
αi

π(t)νi
π(τ ′, τ ′′)(1 − βi

t)
∣∣Hi

π(τ ′)

⎤
⎦ . (24)

Remark 3: Note the relationship the above suggests between Xi
t and ρi(τ ′, τ ′′)(1 − βi

t), and
between Xi

t and νi
π(τ ′, τ ′′)(1 − βi

t) under π, for τ ′ � t < τ ′′. This will prove to be central to
the final proof.
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4. THE RESTART-IN-STATE INDEX: DEFINITION AND PROPERTIES

Theorem 1 indicates the significance of the following quantity.

Definition 2 (The Restart-in-State Index): For any t < ∞, the Restart-in-State Index at
t is defined to be

ρi(t) = ess sup
τ∈F̂i(t)

ρi(t, τ). (25)

This form of the index, based on the quotient in Eq. (10), was anticipated by Sonin [44],
who defined it on Markov chain reward processes as a generalization of the classical Gittins
dynamic allocation index, and as an extension of the restart-in-state index of Katehakis and
Veinott [33]. Note that if all the discount factors are equal across bandits, that is, βi

t = β
for some β, for all i, and t, then this index differs from the classical Gittins index by merely
a factor of 1/(1 − β), and index policies based on either index will be equivalent. However,
taking βi

t in its full generality, no such relationship exists between the indices and therefore
between policies.

The necessity of the restart-in-state index, within the discrete-time model framework,
is established by example in Section 4.1.

Noting that ρi(t, τ) is the value of the [t, τ) – block, we may interpret ρi(t) as the
maximal block value achievable from bandit i from time t. The use of the terms maximal
and achievable is justified here as ρi(t) is realized (Pi − a.e.) as the value of some block
starting at t. To show this requires the following technical lemma, which follows as a special
case of classic results of Snell [42] and others, cf. the Optional Stopping Lemma of Derman
and Sacks [13] and its discussion in Katehakis et al. [31].

Lemma 2: In an arbitrary probability space, consider a discrete-time process {Zt}t�0 such
that E [

∑∞
t=0 |Zt|] < ∞. Let J = {Jt}t�0 be a filtration such that the Zt are J-adapted. Then,

there exists a (potentially infinite) stopping time τ∗ ∈ Ĵ(0) such that

E

[
τ∗−1∑
t=0

Zt

∣∣∣J0

]
= ess sup

τ∈Ĵ(0)

E

[
τ−1∑
t=0

Zt

∣∣∣J0

]
(P − a.e.). (26)

In particular, we may take

τ∗ = inf

{
n > 0 : ess sup

τ∈Ĵ(n)

E

[
τ−1∑
t=n

Zt

∣∣Jn

]
< 0

}
. (27)

Note, we allow infinite stopping times, as the sum in Eq. (27) is well defined by assumption.

Utilizing this lemma, we have the following result.

Proposition 2: For any time t0 < ∞, there exists a τ ∈ F̂i(t0) such that ρi(t0) =
ρi(t0, τ)(Pi − a.e.).
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Proof: We have that for all τ̂ ∈ F̂i(t0), ρi(t0, τ̂) � ρi(t0) (Pi − a.e.), or in parallel with
Eq. (16),

E
i

[
τ̂−1∑
t=t0

αi
t

(
Xi

t − ρi(t0)(1 − βi
t)
) ∣∣F i(t0)

]
� 0 (Pi − a.e.). (28)

Defining

ε = − ess sup
τ̂∈F̂i(t0)

E
i

[
τ̂−1∑
t=t0

αi
t

(
Xi

t − ρi(t0)(1 − βi
t)
) ∣∣F i(t0)

]
, (29)

we have that ε � 0(Pi − a.e.). We may use −ε as an improved upper bound in Eq. (28).
This may be rearranged to yield

ρi(t0, τ̂) � ρi(t0) − ε

Ei
[∑τ̂−1

t=t0
αi

t(1 − βi
t)
∣∣F i(t0)

]
= ρi(t0) − ε

Ei
[
αi

t0 − αi
τ̂

∣∣F i(t0)
]

� ρi(t0) − ε(Pi − a.e.).

(30)

Since the above property holds for all such τ̂ , it extends to the essential supremum,
yielding

ρi(t0) � ρi(t0) − ε (Pi − a.e.), (31)

or equivalently that ε � 0(Pi − a.e.). In conjunction with the first observation, that ε �
0 (Pi − a.e.), we have ε = 0 (Pi − a.e.), that is,

ess sup
τ̂∈F̂i(t0)

E
i

[
τ̂−1∑
t=t0

αi
t

(
Xi

t − ρi(t0)(1 − βi
t)
) ∣∣F i(t0)

]
= 0 (Pi − a.e.). (32)

To satisfy the hypotheses of Lemma 2, note that the integrability stems by the assump-
tion of (3). We may apply Lemma 2 in this instance to yield a stopping time τ∗ ∈ F̂i(t0)
such that

E
i

[
τ∗−1∑
t=t0

αi
t

(
Xi

t − ρi(t0)(1 − βi
t)
) ∣∣F i(t0)

]
= 0 (Pi − a.e.), (33)

or

ρi(t0) =
Ei

[∑τ∗−1
t=t0

αi
tX

i
t

∣∣F i(t0)
]

Ei
[∑τ∗−1

t=t0
αi

t(1 − βi
t)
∣∣F i(t0)

] = ρi(t0, τ∗) (Pi − a.e.). (34)

Hence, the restart-in-state index ρi(t0) is realized (Pi − a.e.) for some Fi-stopping time
τ∗ > t0. In particular, the block value of Xi, starting at t0, is maximized (Pi − a.e.) by the
[t0, τ∗) – block. �

The restart-in-state indices and their realizing blocks provide a natural time scale to
view the bandits in, in terms of a sequence of blocks. In particular, we define the following
sequence.
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Definition 3 (Restart-in-State Index Times): Define a sequence of Fi-stopping times
{τ i

k}k�0 in the following way, that τ i
0 = 0, and for k > 0,

τ i
k+1 = arg ess sup{ρi(τ i

k, τ) : τ ∈ F̂
i(τ i

k)}. (35)

In the case that τ i
k is infinite for some k, then τ i

k′ is taken to be infinite for all larger k′.
In the case that τ i

k < ∞, we have that ρi(τ i
k) = ρi(τ i

k, τ i
k+1). The question of whether the

“arg ess sup” exists in this case is resolved in the positive by Proposition 3; if there is more
than one stopping time that attains the “arg ess sup” above we take τ i

k+1 to be the one
demonstrated by the application of Lemma 2.

Using this sequence of stopping times, we partition the local process times
Ni = {0, 1, 2, . . .} into

N
i = [0, τ i

1) ∪ [τ i
1, τ

i
2) ∪ [τ i

2, τ
i
3) ∪ . . . .

One important property of this partition is the following.

Proposition 3 (Restart-in-State Indices Non-Increasing over Index Times): For any k >
0 such that τ i

k < ∞, the following is true:

ρi(τ i
k−1) � ρi(τ i

k)(Pi − a.e.).

Proof: For k > 0, if τ i
k < ∞ and therefore τ i

k−1 < ∞, we have that the restart-in-state
index from time τ i

k−1 is realized (Pi − a.e.) by a τ i
k such that, via Lemma 2,

ess sup
τ̂∈F̂i(τ i

k)

E
i

⎡
⎣ τ̂−1∑

t=τ i
k

αi
t

(
Xi

t − ρi(τ i
k−1)(1 − βi

t)
) ∣∣F i(τ i

k)

⎤
⎦ < 0 (Pi − a.e.). (36)

From the above, for any τ̂ ∈ F̂i(τ i
k), we have

Ei
[∑τ̂−1

t=τ i
k
αi

tX
i
t

∣∣F i(τ i
k)
]

Ei
[∑τ̂−1

t=τ i
k
αi

t(1 − βi
t)
∣∣F i(τ i

k)
] < ρi(τ i

k−1)(P
i − a.e.). (37)

Taking the essential supremum over such τ̂ (and noting that the essential sup will again
be realized) establishes that ρi(τ i

k) � ρi(τ i
k−1), (Pi − a.e.). �

4.1. Necessity of the Restart in State Indices

We construct the following toy example to demonstrates the inapplicability of the classical
form of the dynamic allocation (Gittins) indices, within the discrete-time model frame-
work. Suppose the controller is given two deterministic, finite processes, X1 = {1, 2} and
X2 = {100}; they can also be thought of as infinite processes with infinite trailing 0’s.
Further, each activation of X1 incurs a discount factor of a (i.e. β1

0 = β1
1 = a) and each

activation of X2 incurs a discount factor of b (i.e. β2
0 = b) with a, b ∈ (0, 1).

The classic Gittins (1979) DAI dynamic allocation indices of X1 and X2 at s = 0 are:
γX1 = (1 + 2a)/(1 + a) = max{1/1 , (1 + 2a)/(1 + a) } and γX2 = 100. From this, it is clear
that for any value of a ∈ (0, 1), γX1 < γX2 . Hence, the DAI based dynamic allocation policy
specifies to activate X2 first, then X1 twice. This gives a value of VDAI = 100 + 1b + 2ab.
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However, consider the alternative strategy of activating X1 twice first, then activating X2.
This gives a value of V ′ = 1 + 2 a + 100 a2. Comparing the two, we have

V ′ − VDAI

(1 − b)(1 − a2)
=

1 + 2 a

1 − a2
− 100

1 − b
.

It is clear from the above that for a especially large and b small, the difference in values
is positive, and the policy determined by the restart dynamic allocation indices is in fact
superior in value to the policy determined by the DAI indices, that is, the traditional DAI
policy may specify a non-optimal policy. On the other hand, it is easy to see that the policy
based on the restart in state indices of X1 and X2 which at s = 0 are: ρX1 = (1 + 2a)/(1 −
a2) = max{1/(1 − a), (1 + 2a)/(1 − a2) }, ρX2 = 100/(1 − b) is always optimal.

5. BANDIT AND POLICY EQUIVALENT REWARD PROCESSES

For each bandit, we have developed a partition of local time for into blocks of activations, via
the restart-in-state index stopping times. We extend on the remarks at the end of Section 3,
by defining the following alternative reward processes.

Definition 4: Given the collection of reward processes X = (X1,X2, . . . , XN ), discount
factor sequences B = (β1, β2, . . . , βN ), and {τ i

k}k�0 as by Definition 3, we define:

1. The reward-equivalent collection YX = (Y 1, . . . , Y N ) by

Y i(t) = ρi(τ i
k)(1 − βi

t), if τ i
k � t < τ i

k+1. (38)

2. For π ∈ P, the π-equivalent collection YX
π = (Y 1

π , . . . , Y N
π ), by

Y i
π(t) = νi

π(τ i
k, τ i

k+1)(1 − βi
t), if τ i

k � t < τ i
k+1. (39)

Like Xi, the process Y i is defined on (Ωi,F i, Pi, Fi) and is Fi-adapted, as ρi(τ i
k) is

defined by the information available locally at time τ i
k. However, as the νi

π(τ i
k, τ i

k+1) depend
on the specifics of a policy π, so do the Y i

π processes; the Y i
π processes are Hi

π-adapted, but
not Fi-adapted. Note that, should bandit i be activated only finitely many times under π,
Y i

π will only really be defined up to some τ i
k+1 such that Si

π(τ i
k+1) = ∞. For such undefined

Y i
π(t), we take 0 ∗ Y i

π(t) = 0.
The following are simple, but important, properties of the Y i, Y i

π processes.

Proposition 4: For each bandit i, the following hold any k � 0:

E
i

⎡
⎣τ i

k+1−1∑
t=τ i

k

αi
tX

i
t

∣∣F i(τ i
k)

⎤
⎦ = E

i

⎡
⎣τ i

k+1−1∑
t=τ i

k

αi
tY

i(t)
∣∣F i(τ i

k)

⎤
⎦ , (40)

E

⎡
⎣τ i

k+1−1∑
t=τ i

k

αi
tX

i
t

∣∣Hi
π(τ i

k)

⎤
⎦ = E

⎡
⎣τ i

k+1−1∑
t=τ i

k

αi
tY

i(t)
∣∣Hi

π(τ i
k)

⎤
⎦ , (41)

E

⎡
⎣τ i

k+1−1∑
t=τ i

k

αi
π(t)Xi

t

∣∣Hi
π(τ i

k)

⎤
⎦ = E

⎡
⎣τ i

k+1−1∑
t=τ i

k

αi
π(t)Y i

π(t)
∣∣Hi

π(τ i
k)

⎤
⎦ . (42)

As with Proposition 1, equality also holds when conditioning with respect to F i(0),G0.
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Proof: This follows as an application of Proposition 1 and the definitions of Y i, Y i
π . �

The following proposition serves as a justification of the term “equivalent” to describe
Y i, Y i

π .

Proposition 5: For each bandit i,

E
i

[ ∞∑
t=0

αi
tX

i
t

∣∣F i(0)

]
= E

i

[ ∞∑
t=0

αi
tY

i(t)
∣∣F i(0)

]
, (43)

E

[ ∞∑
t=0

αi
π(t)Xi

t

∣∣G0

]
= E

[ ∞∑
t=0

αi
π(t)Y i

π(t)
∣∣G0

]
. (44)

Proof: Each follows from the corresponding equation in Prop. 4, summing over k and
taking expectations from the initial time, via the tower property. �

Theorem 2 (Comparison of the Equivalent Processes): For each i and all time t, we have:

αi
π(t)Y i

π(t) � αi
π(t)Y i(t) (P − a.e.). (45)

Proof: If the controller does not activate bandit i at least t times under π, ever (i.e.
Si

π(t) = ∞), then some bandit j �= i must be activated infinitely many times under π. As
such, αi

π(t) � αj
∞ = 0, by Eq. (2). Hence, αi

π(t) = 0, and the inequality holds.
If the controller does activate bandit i at least t times under π, then αi

π(t) is non-zero
and can be ignored on both sides of the inequality. In that case, we have for some k that
τ i
k � t < τ i

k+1, and as an application of Theorem 1,

Y i
π(t) = νi

π(τ i
k, τ i

k+1)(1 − βi
t) � ρi(τ i

k)(1 − βi
t) = Y i(t) (P − a.e.). (46)

�

6. A GREEDY RESULT AND THE OPTIMAL CONTROL POLICY

The importance of the YX collection is that the optimal policy for these reward processes
may be derived with relative ease. In fact, for these processes, not only may the total reward
be maximized in expectation, but a policy exists which maximizes the reward almost surely.
That is, we have the following theorem.

Theorem 3 (Pointwise Optimization on YX Processes): Given a reward - discount pair
(X, B), let YX be the collection of reward-equivalent processes. There exists a policy π∗ ∈ P
such that for any other policy π ∈ P, π∗ yields a greater total reward, almost surely. That
is, defining Y X

π (s) = Y π(s)(Tπ(s)),

∞∑
s=0

Aπ(s)Y X
π (s) �

∞∑
s=0

Aπ∗(s)Y X
π∗ (s)(P − a.e.). (47)

In particular, such a π∗ is given by the following rule: activate bandit i corresponding to
the largest current value of ρi(τ i

k), for a duration corresponding to the realizing [τ i
k, τ i

k+1)-
block, repeating this ad infinitum.
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Proof: Without loss of generality, let ρ1(0) � ρi(0) for all i. Since the ρi(τ i
k) are decreasing

with k, we have for all i, k that

ρ1(0) � ρi(τ i
k)(P − a.e.). (48)

Let π be an arbitrary policy in P, and define S = S1
π(0), the first time bandit 1 is

activated under π. Note, if bandit 1 is never activated, we take S to be infinite.
We may express the total reward under π sample path wise as

Rπ =
∞∑

s=0

Aπ(s)Y X
π (s)

=
S−1∑
s=0

Aπ(s)Y X
π (s) + Aπ(S)Y 1(0) +

∞∑
s=S+1

Aπ(s)Y X
π (s).

(49)

From π, we construct a policy π′ ∈ P in the following way: π′ is identical to π in that
it activates bandits in the same order, but it advances the first activation of bandit i from
round s = S to round s = 0. That is,

π′(s) =

⎧⎪⎨
⎪⎩

1 for s = 0,

π(s − 1) for s = 1, 2, . . . S,

π(s) for s � S + 1.

(50)

It is important to observe that π′ is in P, as at every round s, the information available
under π′ is greater than or equal to the information available under π.

Using this relation, we may express the sample path wise reward under policy π′, relative
to π, as

Rπ′ =
∞∑

s=0

Aπ′(s)Y X
π′ (s)

= Y 1(0) +
S∑

s=1

Aπ′(s)Y X
π′ (s) +

∞∑
s=S+1

Aπ′(s)Y X
π′ (s)

= Y 1(0) +
S∑

s=1

β1
0Aπ(s − 1)Y X

π (s − 1) +
∞∑

s=S+1

Aπ(s)Y X
π (s)

= Y 1(0) + β1
0

S−1∑
s=0

Aπ(s)Y X
π (s) +

∞∑
s=S+1

Aπ(s)Y X
π (s).

(51)

Comparing the two, we have

Rπ′ − Rπ =

(
Y 1(0) + β1

0

S−1∑
s=0

Aπ(s)Y X
π (s)

)
−
(

S−1∑
s=0

Aπ(s)Y X
π (s) + Aπ(S)Y 1(0)

)

= Y 1(0)(1 − Aπ(S)) − (1 − β1
0)

S−1∑
s=0

Aπ(s)Y X
π (s)

= Y 1(0)(1 − Aπ(S)) −
S−1∑
s=0

Aπ(s)(1 − β1
0)Y X

π (s).

(52)
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Defining βπ(s) = β
π(s)
Tπ(s), we have by Eq. (48) that (1 − β1

0)Y X
π (s) � (1 − βπ(s))Y 1(0).

Hence,

Rπ′ − Rπ � Y 1(0)(1 − Aπ(S)) −
S−1∑
s=0

Aπ(s)(1 − βπ(s))Y 1(0)

= Y 1(0)(1 − Aπ(S)) − Y 1(0)
S−1∑
s=0

(Aπ(s) − Aπ(s)βπ(s))

= Y 1(0)(1 − Aπ(S)) − Y 1(0)
S−1∑
s=0

(Aπ(s) − Aπ(s + 1))

= Y 1(0)(1 − Aπ(S)) − Y 1(0) (1 − Aπ(S))

= 0 (P − a.e.).

(53)

Immediately, for any policy π, advancing the first activation of the bandit with the
largest current ρi value almost surely increases, or does not change, the value of the policy.
This argument can be extended, via a forward induction-type argument, to show that any
finite number of these ρ-greedy advancements almost surely improves or does not change
the value of the policy. Collisions, when two bandits have the same current ρ-value, are left
to the discretion of the controller, but may be resolved with a simple rule such as always
picking the lowest numbered bandit.

It remains to compare these improved strategies to the completely ρ-greedy strategy as
in the theorem. Let π∗ ∈ P be the completely ρ-greedy strategy, described in the theorem.
For a given π ∈ P, let πN ∈ P be the policy that results from π after N -many ρ-greedy
advancements. Notice, π∗ and πN agree for the first N rounds. Let τ̃ i

N = T i
π∗(N). Recall-

ing the definition of Âi
π(s), cf. Eq. ¡eqref¿eq:Ahat¡/eqref¿, as the discounting due to non-i

bandits at round s, we have the following bound:

|Rπ∗ − RπN
| �

N∑
i=1

∞∑
t=τ̃ i

N

|αi
π∗(t) − αi

πN
(t)||Y i(t)|

�
N∑

i=1

∞∑
t=τ̃ i

N

αi
tÂ

i
π∗(Si

π∗(τ̃ i
N ))|Y i(t)|

�
N∑

i=1

Âi
π∗(Si

π∗(τ̃ i
N ))

⎛
⎝ ∞∑

t=τ̃ i
N

αi
t|Y i(t)|

⎞
⎠ .

(54)

Note that it follows from the definition of Y i and Eq. (3) that
∑∞

t=0 αi
t|Y i(t)| < ∞(Pi-

a.e.).
For a given bandit i under π∗, two things may happen: either i is activated infinitely

many times, or i is activated finitely many times.
If i is activated infinitely many times under π∗, then τ̃ i

N increases without bound with
N . As such,

∑∞
t=τ̃ i

N
αi

t|Y i(t)| converges to 0 (P − a.e.). As the depreciation due to the non-i
bandits is at most 1, the contribution of bandit i in the above sum converges to 0 with N .

If i is activated finitely many times under π∗, then some bandit j �= i is activated
infinitely many times under π∗. Thus, for some finite N , Si

π∗(τ̃ i
N ) = ∞, and for the infinitely

activated bandit j �= i we have Âi
π∗(Si

π∗(τ̃ i
N )) � αj

∞ = 0(P − a.e.), by Eqs (2) and (20). In
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other words, the depreciation incurred at infinity is at most the depreciation incurred from
j at infinity, which is 0. Since the total remaining reward from bandit i is finite almost
surely, the contribution of bandit i to the above sum converges to 0 with N (P − a.e.).

The above imply the following:

lim
N→∞

|Rπ∗ − RπN
| = 0 (P − a.e.). (55)

Since the value of any policy may be improved by a finite number of ρ-greedy advance-
ments, and the value of a policy under N ρ-greedy advancements converges to the value of
the total ρ-greedy policy π∗, it follows that for any policy π ∈ P we have (P − a.e.) that
Rπ � Rπ∗ , verifying the theorem. �

Remark 4: An important feature of the optimal policy π∗ for the YX processes is that
it preserves restart in state index blocks. Because it is ρ-greedy, we have explicitly, for
τ i
k � τ i

k + t < τ i
k+1, that π∗(Si

π∗(τ i
k) + t) = i, (P-a.e.).

We then have the following result.

Theorem 4 (The Optimal Control Policy for Generalized Deprecation): For a collection
of reward processes X = (X1,X2, . . . , XN ), and discount factor sequences B = (β1, β2, . . . , βN ),
there exists a strategy π∗ ∈ P such that for all π ∈ P,

Vπ(X, B) � Vπ∗(X, B)(P − a.e.). (56)

In particular, such an optimal π∗ can be described in the following way: Successively, activate
the bandit with the largest restart in state index ρi, for the duration of the corresponding
index block.

Proof: For an arbitrary policy π, and π∗ as indicated above, we establish the following
relations:

Vπ(X, B) = Vπ(YX
π , B) � Vπ(YX , B) � Vπ∗(YX , B) = Vπ∗(X, B)(P − a.e.), (57)

that is, for any policy π, we have that Vπ(X, B) � Vπ∗(X, B)(P − a.e.) and therefore π∗ is
an optimal policy. In the following steps, we prove relations (57).

Step 1: Vπ(X, B) = Vπ(YX
π , B), (P − a.e.).

We have, by Proposition 5,

Vπ(X, B) =
N∑

i=1

E

[ ∞∑
t=0

αi
π(t)Xi

t

∣∣G0

]
=

N∑
i=1

E

[ ∞∑
t=0

αi
π(t)Y i

π(t)
∣∣G0

]
= Vπ(YX

π , B).

Note, because the Y i
π processes are defined in terms of π, they are not Fi-adapted, and

cannot be utilized under any other policy. However, the value Vπ(YX
π ) is well defined via

the above equation.
Step 2: Vπ(YX

π , B) � Vπ(YX , B)(P − a.e.).
This follows simply from the almost sure comparison of Theorem 2, giving

Vπ(YX
π , B) =

N∑
i=1

E

[ ∞∑
t=0

αi
π(t)Y i

π(t)
∣∣G0

]
�

N∑
i=1

E

[ ∞∑
t=0

αi
π(t)Y i(t)

∣∣G0

]
= Vπ(YX , B). (58)

Step 3: Vπ(YX , B) � Vπ∗(YX , B)(P − a.e.).
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This is simply an application of Theorem 3, as Vπ(YX , B) = E [Rπ|G0], with Rπ as in
the theorem.

Step 4: Vπ∗(YX , B) = Vπ∗(X, B)(P − a.e.).
By the factorization of αi

π(t) as in Eq. (19), and Remark 4, we may express the total
reward under π∗ relative to the [τ i

k, τ i
k+1)-blocks. In this way, we may apply Proposition 4

to yield the following equivalence:

Vπ∗(YX , B) =
N∑

i=1

∞∑
k=0

E

⎡
⎣Âi

π(Si
π(τ i

k))E

⎡
⎣τ i

k+1−1∑
t=τ i

k

αi
tY

i(t)
∣∣Hi

π(τ i
k)

⎤
⎦ ∣∣G0

⎤
⎦

=
N∑

i=1

∞∑
k=0

E

⎡
⎣Âi

π(Si
π(τ i

k))E

⎡
⎣τ i

k+1−1∑
t=τ i

k

αi
tX

i
t

∣∣Hi
π(τ i

k)

⎤
⎦ ∣∣G0

⎤
⎦

= Vπ∗(X, B)(P − a.e.).

This completes the proof. �

Remark 5: The above theorem demonstrates a policy π∗ ∈ P that is P-a.e. superior (or
equivalent) to every other policy π ∈ P. However, the set of non-anticipatory policies P
was defined in a fairly restrictive sense in Section 2.1, so that the decision in any round
was completely determined by the results of the past. This might be weakened to allow for
randomized policies, so that the decision in a given round might depend on the results of
independent events, e.g., coin flips. However, such a construction simply amounts to placing
a distribution on P. Since π∗ is P − a.e. superior to any π ∈ P, π∗ would be similarly superior
to any policy sampled randomly from P.

7. A MODEL OF COMMITMENTS

One way of interpreting the discount factor βi
t in the previous model is as related to the

duration of the tth activation of bandit i-durations that may be non-uniform across bandits,
and across time. This section lays out this relationship in detail: we define a continuous
time model, in which rewards are discounted continuously at a fixed rate, and in which
activation of a bandit is subject to a (potentially stochastic) period of commitment that
must pass before the controller is again free to select a bandit to activate. Such commitments
might arise as the product of contractual obligations, or properties of the bandits such as
operational speeds, or the controller may simply require a certain condition be met before
switching.

The key assumptions are again that the bandits are independent, and unactivated
bandits remain frozen. The controller’s goal remains the maximization her expected total
reward. As such, each decision of which bandit to activate must balance not only the imme-
diate reward collected, but potential delay in collection and additional discounting of all
future rewards, due to commitment.

A controller is presented with a collection of filtered probability spaces, (Ωi,F i, Pi, Fi),
for 1 � i � N < ∞, each indexed in continuous time, and satisfying the usual conditions.
To each space, we associate a continuous time reward rate process Xi = {Xi

t}t�0. For t ∈
[0,∞), we take Xi

t(= Xi
t(ω

i)) ∈ R to represent the reward rate received from bandit i at
time t during its activation. Rewards are discounted at a fixed rate r > 0, compounded
continuously. We take Xi to be Fi-adapted, and denote the collection of reward processes
as X.
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Additionally, to each bandit we associate a commitment process ci = {ci
k}k�0. Commit-

ment processes function in the following way: when bandit i is activated for the kth time, it
must be continuously activated for a duration of ci

k(ωi) ∈ R+ before the controller is again
free to activate from the N bandits as she chooses. We will refer to ci

k as the duration of
the kth commitment epoch of bandit i. We denote the collection of commitment processes
as C.

For each bandit, it is convenient to define a sequence {Ci
k}k�0 of process epoch times by

Ci
0 = 0, and Ci

k =
∑k−1

k′=0 ci
k′ . Note that Ci

k gives the “local” time at which the kth activation
epoch of bandit i begins. In addition to the assumption that Xi is Fi-adapted, we take each
ci
k as F i(Ci

k)-measurable, that is, the duration of a given epoch is determined by all the
results prior to the start of that epoch. Note then that the Ci

k represent Fi-stopping times.
In addition to Assumptions A and B, we take the following additional restrictions on

each bandit i.

Assumption C′.

lim
k→∞

Ci
k =

∞∑
k=0

ci
k = ∞ (Pi − a.e.), (59)

and

E
i

[∫ ∞

0

e−rt|Xi
t |dt

]
< ∞. (60)

The former restriction implies the total time of each bandit is infinite, and the latter again
implies that the expected total reward from any one bandit is finite.

A control policy π now becomes a right-continuous stochastic process on the global
space, such that π(s) = i means the controller is activating bandit i at global time s. Note,
in continuous time, the use of “round” to describe a unit of global time is no longer sensible.

Given a policy π, we may define continuous time versions of T i
π(s) and Si

π(t) as

T i
π(s) =

∫ s

0

1{π(s′)=i}ds′, (61)

and, utilizing the above,

Si
π(t) = inf{s � 0 : T i

π(s) � t}. (62)

Extending the ideas of Section 2.1, we define a policy π to be non-anticipatory if for
s � 0, π(s) is measurable with respect to

⊗N
i=1 F i(T i

π(s)). However, we are only interested
in the set PC of non-anticipatory policies π that satisfy the commitment constraints, that
is, for each bandit i, for each k � 0,

Si
π(Ci

k + t) = Si
π(Ci

k) + t, for 0 � t < ci
k,

π(Si
π(Ci

k + t)) = i, for all 0 � t < ci
k.

(63)

In parallel with the previous sections, we let V C
π (X, C) denote the value of a policy, the

expected total reward given the reward–commitment pair (X, C) under policy π ∈ PC . We

https://doi.org/10.1017/S0269964814000217 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964814000217


MULTI-ARMED BANDITS UNDER GENERAL DEPRECIATION AND COMMITMENT 69

may therefore express the value of a policy as

V C
π (X, C) = E

[∫ ∞

0

e−rsXπ(s)ds
∣∣G0

]
, (64)

relative to global time, or relative to local time as

V C
π (X, C) =

N∑
i=1

E

[∫ ∞

0

e−rSi
π(t)Xi

tdt
∣∣G0

]
. (65)

The problem the controller faces is to determine a policy π∗ ∈ PC that is optimal in
the sense that, for any other π ∈ PC ,

V C
π (X, C) � V C

π∗(X, C) (P − a.e.). (66)

We resolve this be reducing this commitment model to the previous depreciation model.
That is, we have the following result.

Theorem 5: Given a collection of bandits {(Ωi,F i, Pi, Fi)}1�i�N in continuous
time, with the reward–commitment pair (X, C), there exists a collection of bandits
{(Ωi,F i, Pi, F̂i)}1�i�N in discrete time, with the reward–discount pair (X̂, B̂), such that
for any policy π ∈ PC , there exists a policy π̂ ∈ P such that

V C
π (X, C) = Vπ̂(X̂, B̂) (P − a.e.), (67)

and vice versa, such a π ∈ PC exists for any π̂ ∈ P.

Proof: The construction is fairly natural, amounting to a translation from the continuous
“commitment time” to a discrete “decision time”, in which one unit of time indicates a
single decision by the controller. To the kth activation of bandit i, we associate the following
quantities:

X̂i
k := E

i

[∫ ci
k

0

e−rtXi
Ci

k+tdt
∣∣F i(Ci

k)

]
,

β̂i
k := e−rci

k ,

F̂ i(k) := F i(Ci
k).

(68)

These represent, respectively, the expected reward collected during the kth commitment
period, the depreciation incurred on all future rewards due to the kth commitment period,
and the information available about bandit i prior to the kth decision to activate it.
These define, therefore, a discrete-time reward process X̂i = {X̂i

k}k�0, a discount factor
sequence β̂i = {β̂i

k}k�0, and a discrete-time filtration F̂i = {F̂ i(k)}k�0 to which they are
both adapted. We may then define the total depreciation sequence α̂i = {α̂i

k}k�0 by Eq. (1)
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using β̂i, which yields α̂i
k = e−rCi

k . Observe then that we have the following:

lim
k→∞

α̂i
k = lim

k→∞
e−rCi

k = 0 (Pi − a.e.), (69)

and

E
i

[ ∞∑
k=0

α̂i
k|X̂i

k|
]

� E
i

[ ∞∑
k=0

∫ Ci
k+1

Ci
k

e−rt|Xi
t |dt

]

= E
i

[∫ ∞

0

e−rt|Xi
t |dt

]
< ∞.

(70)

This gives us an instance (X̂, B̂) of the depreciation model on the bandits
{(Ωi,F i, Pi, F̂i)}1�i�N .

Taking a policy π ∈ PC on (X, C), we may translate it into a discrete-time policy π̂ ∈ P
on (X̂, B̂) in the following way: if the hth decision made under policy π is to activate bandit
i, we have π̂(h) = i. Similarly, given a π̂ ∈ P, it may be translated into a policy π ∈ PC by
taking π to be the continuous-time extension of π̂ that satisfies the commitment periods. In
this way, we may go back and forth between models. Note then, we may define the a policy-
dependent depreciation sequence by α̂i

π̂(k) = e−rSi
π(Ci

k), the total depreciation incurred on
the kth commitment period by all previous activation.

Hence, given π ∈ PC and the corresponding π̂ ∈ P, or vice versa,

V C
π (X, C) =

N∑
i=1

E

[∫ ∞

0

e−rSi
π(t)Xi

tdt
∣∣G0

]

=
N∑

i=1

E

[ ∞∑
k=0

∫ Ci
k+1

Ci
k

e−rSi
π(t)Xi

tdt
∣∣G0

]

=
N∑

i=1

E

[ ∞∑
k=0

∫ ci
k

0

e−rSi
π(Ci

k+t)Xi
Ci

k+tdt
∣∣G0

]

=
N∑

i=1

E

[ ∞∑
k=0

∫ ci
k

0

e−r(Si
π(Ci

k)+t)Xi
Ci

k+tdt
∣∣G0

]

=
N∑

i=1

E

[ ∞∑
k=0

e−rSi
π(Ci

k)

∫ ci
k

0

e−rtXi
Ci

k+tdt
∣∣G0

]

=
N∑

i=1

E

[ ∞∑
k=0

α̂i
π̂(k)X̂i

k

∣∣G0

]

= Vπ̂(X̂, B̂)(P − a.e.).

(71)

�

This connection between the commitment model and the depreciation model can also
be used to construct a continuous-time commitment model that is equivalent of a given
depreciation model, essentially by inverting the relationships in Eq. (68), for example, taking
commitment durations as ci

k = − ln(βi
k)/r (for a context specific choice of r > 0). In this
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way, it can be shown that the two models are equivalent. This construction will not be
explored further here.

Theorem 5 implies that any instance of the commitment model may be solved by
translating it into the corresponding depreciation model and solving it there, via the restart-
in-state index.

The model presented above was taken to be in continuous time. A discrete-time model
is also possible, in which case future rewards are discounted by some fixed factor β ∈ (0, 1)
per round, and each commitment duration refers to a fixed number of activations, ci

k ∈ N.
Everything done in the continuous case goes through for the discrete with X̂i(k) and β̂i

k

defined by the following as an extension of Eq. (68):

X̂i(k) = E
i

⎡
⎣ci

k−1∑
t=0

βtXi(Ci
k + t)

∣∣F i(Ci
k)

⎤
⎦ ,

β̂i
k = βci

k .

(72)

8. ASSUMPTIONS C AND C′, AND ZENO’S HYPOTHESIS

In both of the models presented in this paper, the individual bandits were restricted in two
ways, by Assumptions C and C′. First we assumed the integrability conditions of Eqs (3)
and (60), effectively requiring that the total expected reward from each bandit be finite.
This requirement was taken simply to ensure a degree of realism in the model.

Additionally the restrictions of Eqs (2) and (59):
∏∞

t=0 βi
t = 0,

∑∞
k=0 ci

k = ∞ (Pi −
a.e.)∀i, were respectively placed on each model as a matter of both necessity and conve-
nience. Through the relationships between the models defined in Eq. (68), these assumptions
were shown to be equivalent in Eq. (69).

The mathematical necessity of these assumptions arose in the proof of Theorem 3 in
Eq. (54), in proving that the values of finite-step ρ-greedy policy improvements converged
to the value of the infinite ρ-greedy policy. The key point was that if a bandit were only
activated finitely many times under a policy, the remaining rewards from that bandit were
discounted to 0 by the assumption of Eq. (2).

The convenience of these assumptions can be seen most directly in the continuous-time
commitment model. If the commitment durations of a given bandit summed to some finite
value, a situation may arise in which the controller may make infinitely many decisions in
finite time. For instance taking ci

k = 2−k for some i, the decisions to activate each commit-
ment period of bandit i would only take 2 units of time total. The controller would then be
faced with a Zeno-type problem of making the “next” activation decision after an infinite
sequence of activation decisions. Taking the assumption of Eq. (59) that the total commit-
ment time must be infinite sidesteps any potential entanglements of this type, guaranteeing
that only finitely many decisions can be made in finite time.

From this perspective, Assumptions C and C′ can be interpreted similarly for each
model: each ensures that after an infinite sequence of decisions, the value of uncollected
rewards is zero – either through the infinite delay of the commitment model, or the discount-
ing to 0 of the depreciation model. Hence, any decision made “after” an infinite sequence
of decisions contributes nothing to the total and can be ignored.

We note that in the case of a constant discount factor for all bandits and times, that
is, βi

t = β, and for commitment times bounded from below, that is, ci
k > δ for some δ > 0,

the hypotheses of Assumption C and C′ are automatically satisfied.
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APPENDIX A

A.1. Proof of Lemma A.1

Lemma A.1: In an arbitrary probability space (Ω,J , P) consider a discrete-time process {Zt}t�0

such that E
[∑∞

t=0 |Zt|
]

< ∞. Let J = {Jt}t�0 be a filtration, and {αt}t�0 be a J-adapted process

such that αt � αt+1 � 0(P − a.e.). In such a case the following is true for any τ ∈ Ĵ (0):

E

[
τ−1∑
t=0

αtZt

∣∣J0

]
� α0 ess sup

τ ′∈Ĵ(0)

E

⎡
⎣τ ′−1∑

t=0

Zt

∣∣J0

⎤
⎦ (P − a.e.). (A.1)

Proof: If the result can be shown for infinite τ , the case for arbitrary τ > 0 follows simply, defining
a new sequence α̂t = αt1{τ>t}. Hence it suffices to take τ = ∞.

This result follows straightforwardly in the case the {Zt} sequence has finitely many terms.
The result is trivial if there is a single term. In the case of two terms,

E

[
α0Z0 + α1Z1

∣∣∣J0

]
(A.2)

is maximized taking α1 to be the J1-measurable random variable defined by

α1 =

⎧⎪⎨
⎪⎩

α0 if E

[
Z1

∣∣∣J1

]
> 0,

0 if E

[
Z1

∣∣∣J1

]
� 0.

(A.3)

In short, if the remaining contribution is positive, make α1 as large as possible (i.e. equal to α0),
else make α1 as small as possible (i.e. equal to 0). Either way, this factors simply, giving in all
cases,

E

[
α0Z0 + α1Z1

∣∣∣J0

]
� α0 ess sup

τ∈Ĵ(0),τ�2

E

[
τ−1∑
t=0

Zt

∣∣J0

]
(P − a.e.). (A.4)

We may apply this result inductively in the following way. Allowing N < ∞ terms,

E

[
N−1∑
t=0

αtZt

∣∣J0

]
= E

[
α0Z0 + E

[
N−1∑
t=1

αtZt

∣∣J1

] ∣∣J0

]

� E

[
α0Z0 + α1 ess sup

τ∈Ĵ(1),τ�N

E

[
τ−1∑
t=1

Zt

∣∣J1

] ∣∣J0

]
.

(A.5)

Again, the optimal choice of α1 is the J1-measurable random variable given by α0 if the essential
sup is positive and 0 if it is negative. In either case, we have the following,

E

[
N−1∑
t=0

αtZt

∣∣J0

]
� α0 ess sup

τ∈Ĵ(0),τ�N

E

[
τ−1∑
t=0

Zt

∣∣J0

]
(P − a.e.). (A.6)

This extends immediately to all finite, J0-measurable N . We next extend the finite result to
the infinite.
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The initial assumption E
[∑∞

t=0 |Zt|
]

< ∞ implies that E
[∑∞

t=0 |Zt||J0
]

< ∞ (P − a.e.). Thus
for any fixed ε > 0, we may find a J0-measurable and finite N > 0 (P − a.e.) such that

E

[ ∞∑
t=N

|Zt|
∣∣J0

]
� ε (P − a.e.). (A.7)

Then,

E

[ ∞∑
t=0

αtZt

∣∣J0

]
= E

[
N−1∑
t=0

αtZt

∣∣J0

]
+ E

[ ∞∑
t=N

αtZt

∣∣J0

]

� E

[
N−1∑
t=0

αtZt

∣∣J0

]
+ E

[ ∞∑
t=N

|Zt|
∣∣J0

]

� α0 ess sup
τ∈Ĵ(0),τ�N

E

[
τ−1∑
t=0

Zt

∣∣J0

]
+ ε(P − a.e.)

� α0 ess sup
τ∈Ĵ(0)

E

[
τ−1∑
t=0

Zt

∣∣J0

]
+ ε(P − a.e.).

(A.8)

The last step follows simply, extending the set of τ in question from stopping times at most N , to
all possible stopping times in Ĵ(0). Since the above holds for all ε > 0, the result is immediate. By
the previous remarks, τ = ∞ is sufficient, and the proof is complete. �

APPENDIX B

B.1. Integration Exchange in Theorem 1

In the proof of Theorem 1, it remains to rigorously demonstrate the exchange of essential suprema
in the third step of relations (21), that is, that for Zi

t = Xi
t − ρ (1 − βi

t),

ess sup
τ̂∈Ĥi

π(t0)

E

⎡
⎣ τ̂−1∑

t=t0

αi
tZ

i
t

∣∣Hi
π(t0)

⎤
⎦ � ess sup

τ̂∈F̂i(t0)

E
i

⎡
⎣ τ̂−1∑

t=t0

αi
tZ

i
t

∣∣F i(t0)

⎤
⎦ (P − a.e.). (B.1)

This essentially amounts to integrating out the independent bandits, since Zi depends only on ban-
dit i. For compactness of argument, we take N = 2, i = 1, though the following argument generalizes
to arbitrary bandits in the obvious way.

For notational compactness, we define W i
t′ =

∑t′−1
t=t0

αi
tZ

i
t .

Note that for any set A ∈ H1
π(t0), and any τ ∈ Ĥ

i
π(t0),

E

[
1AE

[
W 1

τ

∣∣H1
π(t0)

]]
= E

[
1AW 1

τ

]
. (B.2)

Taking A as a rectangle in H1
π(t0), A = A1 × A2, observe that A1 ∈ F1(t0). The indicator

may be decomposed as 1A(ω) = 1A1(ω
1)1A2(ω

2). As
∑∞

t=0 α1
t |Z1

t | < ∞ almost surely, we may
exchange the expectation over the product space for an iterated expectation.

E

[
1AW 1

τ

]
= E

2
[
E1

[
1A11A2W 1

τ

]]
= E

2
[
1A2E

1
[
1A1W 1

τ

]]
= E

2
[
1A2E

1
[
1A1E

1
[
W 1

τ

∣∣F1(t0)
]]]

.

(B.3)

Observe that, while τ (being an H
1
π-stopping time) may have a dependence on Ω2, inside the

iterated integral with the dependence on Ω2 fixed, it is a F
i-stopping time. Hence, we have the
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bound

E

[
1AW 1

τ

]
� E

2

[
1A2E

1

[
1A1 ess sup

τ̂∈F̂1(t0)

E
1
[
W 1

τ̂

∣∣F1(t0)
]]]

= E
2

[
E

1

[
1A11A2 ess sup

τ̂∈F̂1(t0)

E
1
[
W 1

τ̂

∣∣F1(t0)
]]]

= E

[
1A ess sup

τ̂∈F̂1(t0)

E
1
[
W 1

τ̂

∣∣F1(t0)
]]

.

(B.4)

Hence, for all rectangles A ∈ H1
π(t0),

E

[
1AE

[
W 1

τ

∣∣H1
π(t0)

]]
� E

[
1A ess sup

τ̂∈F̂1(t0)

E
1
[
W 1

τ̂

∣∣F1(t0)
]]

. (B.5)

This extends via a monotone-class- type argument, cf. Chung [11], to all A ∈ H1
π(t0). Hence,

for all τ ∈ Ĥ
1
π(t0),

E

[
W 1

τ

∣∣H1
π(t0)

]
� ess sup

τ̂∈F̂1(t0)

E
1
[
W 1

τ̂

∣∣F1(t0)
]
(P − a.e.). (B.6)

This establishes the result.
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