
Mathematical Structures in Computer Science (2021), 31, pp. 1090–1134
doi:10.1017/S0960129521000499

PAPER

Three improvements to the top-down solver
Helmut Seidl∗ and Ralf Vogler

TUMünchen, Garching, Germany
∗Corresponding author. Email: seidl@in.tum.de

(Received 31 July 2020; revised 20 December 2021; accepted 21 December 2021; first published online 3 February 2022)

Abstract
The local solver TD is a generic fixpoint engine which explores a given system of equations on demand.
It has been successfully applied to the interprocedural analysis of procedural languages. The solver TD
gains efficiency by detecting dependencies between unknowns on the fly. This algorithm has been recently
extended to deal with widening and narrowing as well. In particular, it has been equipped with an auto-
matic detection of widening and narrowing points. That version, however, is only guaranteed to terminate
under two conditions: only finitely many unknowns are encountered, and all right-hand sides are mono-
tonic. While the first condition is unavoidable, the second limits the applicability of the solver. Another
limitation is that the solver maintains the current abstract values of all encountered unknowns instead of
a minimal set sufficient for performing the iteration. By consuming unnecessarily much space, interproce-
dural analyses may not succeed on seemingly small programs. In the present paper, we therefore extend the
top-down solver TD in three ways. First, we indicate how the restriction to monotonic right-hand sides can
be lifted without compromising termination. We then show how the solver can be tuned to store abstract
values only when their preservation is inevitable. Finally, we also show how the solver can be extended to
side-effecting equation systems. Right-hand sides of these may not only provide values for the correspond-
ing left-hand side unknowns but at the same time produce contributions to other unknowns. This practical
extension has successfully been used for a seamless combination of context-sensitive analyses (e.g., of local
states) with flow-insensitive analyses (e.g., of globals).

Keywords: Static analysis; local solvers; abstract interpretation

1. Introduction
Static analysis tools based on abstract interpretation are complicated software systems. They are
complicated due to the complications of programming language semantics and the subtle invari-
ants required to achieve meaningful results. They are also complicated when dedicated analysis
algorithms are required to deal with certain types of properties, for example, one algorithm for
inferring points-to information and another for checking array-out-of-bounds accesses. Thus,
static analysis tools themselves are subject to subtle programming errors. From a software engi-
neering perspective, it is therefore meaningful to separate the specification of the analysis as much
as possible from the algorithm solving the analysis problem for a given program. In order to be
widely applicable, this algorithm therefore should be as generic as possible.

In abstract interpretation-based static analysis, the analysis of a program, notably an imperative
or object-oriented program, can naturally be compiled into a system of abstract equations. The
unknowns represent places where invariants regarding the reaching program states are desired.
Such unknowns could be, for example, plain program points or, in case of interprocedural analysis,

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction, provided the original article is properly cited.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499
https://orcid.org/0000-0002-2135-1593
mailto:seidl@in.tum.de
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0960129521000499&domain=pdf
https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1091

program points together with abstract calling contexts. The sets of possible abstract values for
these unknowns then correspond to classes of possible invariants and typically form complete
lattices. Since for infinite complete lattices of abstract values the number of calling contexts is also
possibly infinite, interprocedural analysis has generally to deal with infinite systems of equations.
It turns out, however, that in this particular application, only the values of those unknowns are
of interest that directly or indirectly influence some initial unknown. Here, local solving comes as
a rescue: a local solver can be started with one initial unknown of interest. It then explores only
those unknowns whose values contribute to the value of this initial unknown.

One such generic local solver is the top-down solver TD (Charlier and Van Hentenryck 1992;
Muthukumar and Hermenegildo 1990). Originally, the TD solver has been conceived for goal-
directed static analysis of PROLOG programs (Hermenegildo and Muthukumar 1989, 1992) while
some basic ideas can be traced back to Bruynooghe et al. (1987). The same technology as developed
for PROLOG later turned out to be useful for imperative programs as well (Hermenegildo 2000)
and also was applied to other languages via translation to CLP programs (Gallagher andHenriksen
2006; Hermenegildo et al. 2007). A variant of it is still at the heart of the program analysis system
CIAO (Hermenegildo et al. 2012, 2005). TheTD solver is interesting in that it completely abandons
specific data structures such as work-lists, but solely relies on recursive evaluation of (right-hand
sides of) unknowns.

Subsequently, the idea of using generic local solvers has also been adopted for the design
and implementation of the static analysis tool GOBLINT (Vojdani et al. 2016) – now targeted
at the abstract interpretation of multi-threaded C. Since the precise analysis of programming
languages requires to employ abstract domains with possibly infinite ascending or descending
chains, the solvers provided by GOBLINT were extended with support for widening as well as nar-
rowing (Amato et al. 2016). Recall that widening and narrowing operators have been introduced
in Cousot and Cousot (1977, 1992) as an iteration strategy for solving finite systems of equations:
in a first phase, an upward Kleene fixpoint iteration is accelerated to obtain some post-solution,
which then, in a second phase, is improved by an accelerated downward iteration. This strict sep-
aration into phases is given up by the algorithms from Amato et al. (2016). Instead, the ascending
iteration on one unknown is possibly intertwined with the descending iteration on another. The
idea is to avoid unnecessary loss of precision by starting an improving iteration on an unknown
as soon as an over-approximation of the least solution for this unknown has been reached. On
the downside, the solvers developed in Amato et al. (2016) are only guaranteed to terminate for
monotonic systems of equations. Systems for interprocedural analysis, however, are not necessar-
ily monotonic. The problems concerning termination as encountered by the non-standard local
iteration strategy from Amato et al. (2016) were resolved in Frielinghaus et al. (2016) where the
switch from a widening to a narrowing iteration for an unknown was carefully redesigned.

When reviewing advantages and disadvantages of local generic solvers for GOBLINT,
we observed in Apinis et al. (2016) that the extension with widening and narrowing
fromAmato et al. (2016) could nicely be applied to the solver TD as well – it was left open, though,
how termination can be enforced not only for monotonic, but for arbitrary systems of equations.
In this paper, we settle this issue and present a variant of the TD solver with widening and narrow-
ing which is guaranteed to terminate for all systems of equations – whenever only finitely many
unknowns are encountered.

Besides termination, another obstacle for the practical application of static analysis is the
excessive space consumption incurred by storing abstract values for all encountered unknowns.
Storing all these values allows interprocedural static analysis tools like GOBLINT only to scale
to medium-sized programs of about 100k LOC. This is in stark contrast to the tool ASTRÉE,
which – while also being implemented in OCAML – succeeds in analyzing much larger input
programs (Cousot et al. 2009). One reason is that ASTRÉE only keeps the abstract values of a
subset of unknowns in memory, which is sufficient for proceeding with the current fixpoint iter-
ation. As our second contribution, we therefore show how to realize a space-efficient iteration

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1092 H. Seidl and R. Vogler

strategy within the framework of generic local solvers. Unlike ASTRÉE which iterates over the
syntax, generic local solvers are application-independent. They operate on systems of equations
– no matter where these are extracted from. As right-hand sides of equations are treated as black
boxes, inspection of the syntax of the input program is out of reach. Since for local solvers the
set of unknowns to be considered is only determined during the solving iteration, also the subset
of unknowns sufficient for reconstructing the analysis result must be identified on the fly. Our
idea for that purpose is to instrument the solver to observe when the value of an unknown is
queried, for which an iteration is already on the way. For equation systems corresponding to stan-
dard control-flow graphs, these unknowns correspond to the loop heads and are therefore ideal
candidates for widening and narrowing to be applied. That observation was already exploited in
Apinis et al. (2016) to identify a set of unknowns where widening and narrowing should be
applied. The values of these unknowns also suffice for reconstructing the values of all remain-
ing unknowns without further iteration. Finally, we present an extension of the TD solver with
side effects. Side effects during solving means that, while evaluating the right-hand side for some
unknown, contributions to other unknowns may be triggered. This extension allows to nicely
formulate partial context-sensitivity at procedure calls and also to combine flow-insensitive anal-
ysis, for example, of global data, with context-sensitive analysis of the local program state (Apinis
et al. 2012). The presented solvers have been implemented as part of GOBLINT, a static analysis
framework written in OCAML.

This paper is organized as follows: First, we recall the basics of abstract interpretation. In
Section 2, we show how the concrete semantics of a program can be defined using a system of
equations with monotonic right-hand sides. In Section 3, we describe how abstract equation sys-
tems can be used to compute sound approximations of the collecting semantics. Since the sets of
unknowns of concrete and abstract systems of equations may differ, we argue that soundness can
only be proven relative to a description relation between concrete and abstract unknowns. We also
recall the concepts of widening and narrowing and indicate in which sense these can be used to
effectively solve abstract systems of equations. In Section 4, we present the generic local solver
TDterm. In Section 5, we show that it is guaranteed to terminate even for abstract equation sys-
tems with non-monotonic right-hand sides. In Section 6, we prove that it will always compute a
solution that is a sound description of the least solution of the corresponding concrete system.
In Section 7, we present the solver TDspace, a space-efficient variation of TDterm that only keeps
values at widening points. In Section 8, we prove that it terminates and similar to TDterm com-
putes a sound description of the least solution of the corresponding concrete system. In Section 9,
we introduce side-effecting systems of equations, and the solver TDside, a variation of TDterm.
In order to argue about soundness in presence of side effects, it is now convenient to consider
description relations between concrete and abstract unknowns which are not static, but dynam-
ically computed during fixpoint iteration, that is, themselves depend on the analysis results. In
Section 10, we discuss the results of evaluating the solvers on a set of programs. In Section 11, we
summarize our main contributions. Throughout the presentation, we exemplify our notions and
concepts by small examples from interprocedural program analysis.

2. Concrete Systems of Equations
Solvers are meant to provide solutions to systems of equations over some complete lattice. Assume
that X is a (not necessarily finite) set of unknowns and D a complete lattice. Then, a system
of equations E (with unknowns from X and values in D) assigns a right-hand side Fx to each
unknown x ∈X . Since we not only interested in the values assigned to unknowns but also in
the dependencies between these, we assume that each right-hand side Fx is a function of type
(X →D)→D×P(X).

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1093

Figure 1. An example programwith procedures.

• The first component of the result of Fx is the value for x;
• The second component is a set of unknowns which is sufficient to determine the value.

More formally, we assume for the second component of Fx that for every assignment σ :X →D,
Fx σ = (d, X) implies that for any other assignment σ ′ :X →D with σ |X = σ ′|X , that is, which
agrees with σ on all unknowns from X , Fx σ = Fx σ ′ holds as well.

The set X thus can be considered as a superset of all unknowns onto which the unknown x
depends – w.r.t. the assignment σ . We remark this set very well may be different for different
assignments. For convenience, we denote these two components of the result Fx σ as (Fx σ)1 and
(Fx σ)2, respectively.

Systems of equations can be used to formulate the concrete (accumulating) semantics of a pro-
gram. In this case, the complete lattice D is of the form P(Q) whereQ is the set of states possibly
attained during program execution. Furthermore, all right-hand sides of the concrete semantics
should be monotonic w.r.t. the natural ordering on pairs. This means that on larger assignments,
the sets of states for x as well as the set of contributing unknowns may only increase.

Example 1. For X =Q=Z, a system of equations could have right-hand sides Fx : (Z→
P(Z))→ (P(Z)×P(Z)) where, for example,

F1 σ = ({0}, Ø)
F2 σ = (σ 1∪ σ 3, {1, 3})

Thus, F1 always returns the value {0} and accordingly depends on no other unknown, F2 on the
other hand returns the union of the values of unknowns 1 and 3. Therefore, it depends on both of
them.

Example 2. As a running example, consider the program from Figure 1 which consists of the pro-
ceduresmain and p. Assume that these operate on a set Q of program states where the functions
h1, h2 :Q→P(Q) represent the semantics of basic computation steps. The collecting seman-
tics for the program provides subsets of states for each program point u ∈ { 0, . . . , 7 } and each
possible calling context q ∈Q. The right-hand side function F〈u,q〉 for each such pair 〈u, q〉 is
given by:

F〈0,q〉 σ = ({q}, Ø)
F〈1,q〉 σ = (∪ {

h1(q′) | q′ ∈ σ 〈0, q〉 }
,
{ 〈0, q〉 }

)

F〈2,q〉 σ = (
{
combine q1 q2 | q1 ∈ σ 〈1, q〉, q2 ∈ σ 〈7, q1〉

}
,

{ 〈1, q〉 } ∪ { 〈7, q1〉 | q1 ∈ σ 〈1, q〉 }
)

F〈3,q〉 σ = (
{
q

}
, Ø)

F〈4,q〉 σ = (σ 〈3, q〉, { 〈3, q〉 }
)

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1094 H. Seidl and R. Vogler

F〈5,q〉 σ = (∪ {
h1(q1) | q1 ∈ σ 〈4, q〉 }

,
{ 〈4, q〉 }

)

F〈6,q〉 σ = (σ 〈3, q〉, { 〈3, q〉 }
)

F〈7,q〉 σ = (
{
combine q1 q2 | q1 ∈ σ 〈5, q〉, q2 ∈ σ 〈7, q1〉

}

∪ {
h2(q1) | q1 ∈ σ 〈6, q〉 }

,
{ 〈5, q〉 } ∪ { 〈7, q1〉 | q1 ∈ σ 〈5, q〉 } ∪ { 〈6, q〉 }

)

Recall that in presence of local scopes of program variables, the state after a call may also depend
on the state before the call. Accordingly, we use an auxiliary function combine :Q→Q→Q
which determines the program state after a call from the state before the call and the state attained
at the end of the procedure body. For simplicity, we have abandoned an extra function enter for
modeling passing of parameters as considered, e.g., in Apinis et al. (2012) and thus assume that
the full program state of the caller before the call is passed to the callee. If the setQ is of the form
Q=A× B where A, B are the sets of local and global states, respectively, the function combine
could, for example, be defined as

combine (a1, b1) (a2, b2)= (a1, b2)

We remark that the sets of unknowns onto which the right-hand sides for 〈2, q〉 as well as 〈7, q〉
depend themselves depend on the assignment σ .

Besides the concrete values provided for the unknowns, we also would like to determine the
subset of unknowns which contribute to a particular subset of unknowns of interest. Restricting to
this subset has the practical advantage that calculation may be restricted to a perhaps quite small
number of unknowns only. Also, that subset in itself contains some form of reachability informa-
tion. For interprocedural analysis, for example, of the program in Example 2, we are interested in
all pairs 〈retmain, q〉, q ∈Q0, that is, the endpoint of the initially called procedure main for every
initial calling context q ∈Q0. In the Example 2, these would be of the form 〈2, q〉, q ∈Q0. In order
to determine the sets of program states for the unknowns of interest, it suffices to consider only
those calling contexts for each procedure p (and thus each program point within p) in which p is
possibly called. The set of all such pairs is given as the least subset of unknowns which (directly or
indirectly) influences any of the unknowns of interest.

More technically for a system E of equations, consider an assignment σ :X →D and a subset
dom⊆X of unknowns. Then, dom is called (σ , E)-closed if (Fx σ)2 ⊆ dom is satisfied for all x ∈
dom. The pair (σ , dom) is called a partial post-solution of E , if dom is (σ , E)-closed, and for each
x ∈ dom, σ x
 (Fx σ)1 holds. The partial post-solution (σ , dom) of E is total (or just a post-
solution of E) if dom=X . In this case, we also skip the second component in this pair.

Example 3. Consider the following system of equations with X =Q=Z where

F1 σ = (σ 2, {2})
F2 σ = ({2}, Ø)
F3 σ = ({3}, Ø)
Fx σ = (Ø, Ø) otherwise

Assume we are given the set of unknowns of interest X = {1}. Then, (σ , dom) with dom= {1, 2},
σ 1= {2} and σ 2= {2} is the least partial post-solution with X ⊆ dom. For X′ = {1, 3} on the
other hand, the least partial solution (σ ′, dom′) with X′ ⊆ dom′ is given by dom′ = {1, 2, 3} and
σ ′ 1= {2}, σ ′ 2= {2} and σ ′ 3= {3}.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1095

For monotonic systems such as those used for representing the collecting semantics, and any
set X ⊆X of unknowns of interest, there always exists a least partial solution comprising X.

Proposition 1. Assume that the system E of equations is monotonic. Then for each subset X ⊆X
of unknowns, consider the set P of all partial post-solutions (σ ′, dom′) ∈ ((X →D)×P(X)) so that
X ⊆ dom′. Then, P has a unique least element (σX , domX). In particular, σX x′ = ⊥ for all x′ �∈
domX.

Proof. Consider the complete lattice L= (X →D)×P(X). The system E defines a function F :
L→L by F(σ 1, X1)= (σ 2, X2) where

X2 = X ∪ X1 ∪ ⋃{(Fx σ 1)2 | x ∈ X1}
σ 2 x = (Fx σ 1)1 for x ∈ X1 and⊥ otherwise

Since each right-hand side Fx in E is monotonic, so is the function F. Moreover, (σ , dom) is a post-
fixpoint of F iff (σ , dom) is a partial post-solution of E with X ⊆ dom. By the fixpoint theorem of
Knaster-Tarski, F has a unique least post-fixpoint – which happens to be also the least fixpoint
of F.

For a given set X, there thus is a least partial solution of E with a least domain domX comprising
X. Moreover for X ⊆ X′ and least partial solutions (σX , domX), (σX′ , domX′) comprising X and X′,
respectively, we have domX ⊆ domX′ and σX′ x= σX x for all x ∈ domX . In particular, this means
for the least total solution σ that σX x= σ x whenever x ∈ domX .

Example 4. Consider the program from Example 2. Assume that Q= {q0, q1, q2} where the set
of initial calling contexts is given by {q1}. Accordingly, the set of unknowns of interest is given by
X = {〈2, q1〉} (2 being the return point ofmain). Assume that the functions h1, h2 are given by

h1 = {q0 →Ø, q1 → {q2}, q2 → {q0}}
h2 = {q0 → {q0}, q1 →Ø, q2 →Ø}

while the function combine always returns its second argument, that is, combine q q′ = q′.
Let dom denote the set

{〈0, q1〉, 〈1, q1〉, 〈2, q1〉,
〈3, q0〉, 〈4, q0〉, 〈5, q0〉, 〈6, q0〉, 〈7, q0〉,
〈3, q2〉, 〈4, q2〉, 〈5, q2〉, 〈6, q2〉, 〈7, q2〉}.

Together with the assignment σ : dom→P(Q)×P(X) as shown in Figure 2, we obtain the least
partial solution of the given system of equations which we refer to as the collecting semantics of the
program.We remark that dom only has calls of procedure p for the calling contexts q0 and q2.

3. Abstract Systems of Equations
Systems of abstract equations are meant to provide sound information for concrete systems. In
order to distinguish abstract systems from concrete ones, we usually use superscripts � at all
corresponding entities. Abstract systems of equations differ from concrete ones in several aspects:

• Right-hand side functions need no longer be monotonic.
• Right-hand side functions should be effectively computable and thus may access the values
only of finitely many other unknowns in the system (which need not be the case for concrete
systems).

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1096 H. Seidl and R. Vogler

Figure 2. The collecting semantics.

Example 5. Consider again the program from Figure 1 consisting of the procedures main and
p. Assume that the abstract domain is given by some complete lattice D where the functions
h�
1, h

�
2 :D→D represent the semantics of basic computation steps. The abstract semantics for

the program provides an abstract state in D for each pair 〈u, a〉 (u program point from {0, . . . , 7},
a possible abstract calling context from D). The right-hand sides F�〈u,a〉 then are given by:

F�〈0,a〉 σ = (a, Ø)

F�〈1,a〉 σ = (h�
1 (σ 〈0, a〉), { 〈0, a〉 })

F�〈2,a〉 σ = (combine� (σ 〈1, a〉) (σ 〈7, σ 〈1, a〉〉),
{ 〈1, a〉, 〈7, σ 〈1, a〉〉 })

F�〈3,a〉 σ = (a, Ø)

F�〈4,a〉 σ = (σ 〈3, a〉, { 〈3, a〉 })
F�〈5,a〉 σ = (h�

1 (σ 〈4, a〉), { 〈4, a〉 })
F�〈6,a〉 σ = (σ 〈3, a〉, { 〈3, a〉 })
F�〈7,a〉 σ = (combine� (σ 〈5, a〉) (σ 〈7, σ 〈5, a〉〉) � h�

2 (σ 〈6, a〉),
{ 〈5, a〉, 〈7, σ 〈5, a〉〉, 〈6, a〉 })

Corresponding to the function combine required by the collecting semantics, the auxiliary func-
tion combine� :D→D→D determines the abstract program state after a call from the abstract
state before the call and the abstract state at the end of the procedure body.

Right-hand functions in practically given abstract systems of equations, however, usually do not
explicitly provide a set of unknowns onto which the evaluation depends. Instead, the latter set is
given implicitly via the implementation of the function computing the value for the left-hand side
unknown. If necessary, this set must be determined by the solver, for example, as in case of TD,
by keeping track of the unknowns accessed during the evaluation of the function.

Evaluation of the right-hand side function during solving may thus affect the internal state
of the solver. Such operational behavior can conveniently be made explicit by means of state
transformer monads. For a set S of (solver) states, the state transformer monad MS(A) for values

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1097

of type A consists of all functions S→ S×A. As a special case of a monad, the state transformer
monad MS(A) provides functions return :A→MS(A) and bind :MS(A)→ (A→MS(B))→
MS(B). These are defined by

return a = fun s→ (s, a)
bindm f = fun s→ let (s′, a)=m s

in f a s′

The solvers we consider only take actions when the current values of unknowns are accessed dur-
ing the evaluation of right-hand sides. In the monadic formulation, the right-hand side functions
f �x , x ∈X of the abstract system of equations E� therefore are of type (X →M(D))→M(D) for
any monad M, that is, are parametric in M (the system of equations should be ignorant of the
internals of the solver!). Such functions f �x have been called pure in Karbyshev (2013).

Example 6. For σ� :X →MS(D), the right-hand side functions in the monadic formulation of
the abstract system of equations for the program from Figure 1 now are given by

f �〈0,a〉 σ� = return a

f �〈1,a〉 σ = bind (σ 〈0, a〉) (fun b→
return (h�

1 b))

f �〈2,a〉 σ = bind (σ 〈1, a〉) (fun b1 →
bind (σ 〈7, b1〉) (funb2 →
return (combine� b1 b2)))

f �〈3,a〉 σ = return a

f �〈4,a〉 σ = σ 〈3, a〉
f �〈5,a〉 σ = bind (σ 〈4, a〉) (fun b→

return (h�
1 b))

f �〈6,a〉 σ = σ 〈3, a〉
f �〈7,a〉 σ = bind (σ 〈5, a〉) (fun b1 →

bind (σ 〈7, b1〉) (fun b2 →
bind (σ 〈6, a〉) (fun b3 →
return (combine� b1 b2 � h�

2 b3))))

According to the considerations in Karbyshev (2013), each pure function f of type (X →
M(D))→M(D) equals the semantics �t� of some computation tree t. Computation trees make
explicit in which order the values of unknowns are queried when computing the result values of a
function. The set of all computation trees (over the unknowns X � and the set of values D) is the
least set T with

T ::= AD |Q (X �,D→ T)

The computation tree A d immediately returns the answer d, while the computation tree Q (x, f)
queries the value of the unknown x in order to apply the continuation f to the obtained value.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1098 H. Seidl and R. Vogler

Example 7. Consider again the program from Figure 1 consisting of the proceduresmain and p
and the abstract system of equations as provided in Example 6. The computation trees t〈u,a〉 for
the right-hand side functions f �〈u,a〉 then are given by:

t〈0,a〉 = A a

t〈1,a〉 = Q (〈0, a〉, fun b→ A (h�
1 b))

t〈2,a〉 = Q (〈1, a〉, fun b→
Q (〈7, b〉, fun b′ →
A (combine� b b′)))

t〈3,a〉 = A a

t〈4,a〉 = Q (〈3, a〉, fun b→ A b)

t〈5,a〉 = Q (〈4, a〉, fun b→ A (h�
1 b))

t〈6,a〉 = Q (〈3, a〉, fun b→ A b)

t〈7,a〉 = Q (〈5, a〉, fun b→
Q (〈7, b〉, fun b′ →
Q (〈6, a〉, fun b′′ →
A (combine� b b′ � h�

2 b′′))))

The semantics of a computation tree t is a function �t� : (X � →M(D))→M(D) where for get :
X →M(D),

�A d� get = return d
�Q (x, f)� get = bind (get x) (fun d → �f d� get)

In the particular case thatM is the state transformer monad for a set of states S, we have:

�A d� get s = (s, d)
�Q (x, f)� get s = let (s′, d)= get x s

in �f d� get s′

When reasoning about (partial post-)solutions of abstract systems of equations, we prefer to have
right-hand side functions where (a superset of) the set of accessed unknowns is explicit, as we used
for concrete systems of equations. These functions, however, can be recovered from right-hand
side functions in monadic form, as we indicate now.

One instance of state transformer monads is a monad which tracks the variables accessed
during the evaluation. Consider the set of states S= (X � →D)×P(X �) together with the
function

get x (σ , X) = let d = σ x
in ((σ , X ∪ {x}), d)

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1099

Proposition 2. For a mapping σ :X � →D and s= (σ , Ø), assume that �t� get s= (s1, d). Then for
s1 = (σ 1, X) the following holds:

1. σ = σ 1;
2. Assume that σ ′ :X � →D is another mapping and s′ = (σ ′, Ø). Let �t� get s′ = ((σ ′, X′), d′).

If σ ′ agrees with σ on X, that is, σ |X = σ ′|X, then X′ = X and d′ = d holds.

We strengthen the statement by claiming that the conclusions also hold when s and s′ are given
by (σ , X0) and (σ ′, X0), respectively, for the same set X0. Then, the proof is by induction on the
structure of t.

Now assume that for each abstract unknown x ∈X �, the system E� provides us with a right-
hand side function f �x : (X →M(D))→M(D). Then, the elaborated abstract right-hand side
function F�

x : (X � →D)→D×P(X �) of x is given by:

F�
x σ = let ((_, X), d)= f �x get (σ , Ø)

in (d, X)

In fact, the explicit right-hand side functions F�
〈u,a〉 of Example 5 are obtained in this way from the

functions f �〈u,a〉 of Example 6.
In order to relate the abstract with a corresponding concrete system of equations, we assume

that there is a Galois connection (Cousot and Cousot 1977) between the complete lattices P(Q)
and D, that is, monotonic mappings α :P(Q)→D (the abstraction) and γ :D→P(Q) (the
concretization) so that

α Q� a iff Q⊆ γ a
holds for all Q ∈P(Q) and a ∈D.

In general, the sets of unknowns of the concrete system to be analyzed and the corresponding
abstract system need not coincide. For interprocedural context-sensitive analysis, for example,
the set of concrete unknowns is given by the set of all pairs 〈u, q〉 where u is a program point
and q ∈Q is a program state. The set of abstract unknowns are of the same form. The second
components of pairs, however, now represent abstract calling contexts. Therefore, we assume that
we are given a description relation R⊆X ×X � between the concrete and abstract unknowns. In
case of interprocedural analysis, for example, we defineR by

〈u, q〉R 〈u, a〉 iff q ∈ γ (a)
Using the concretization γ , the description relationR on unknowns is extended as follows.

• For sets of unknowns Y ⊆X and Y� ⊆X �, Y R Y� iff for each y ∈ Y , yR y� for some
y� ∈ Y�.

• For sets of states Q ∈P(Q) and d ∈D, QR d iff Q⊆ γ d;
• For partial assignments (σ , dom) and (σ�, dom�) with σ :X →D, σ� :X � →D

� and dom⊆
X , dom� ⊆X �, (σ , dom)R (σ�, dom�) holds if domR dom�, and for all y ∈ dom, y ∈ dom�

with yR y�, σ y⊆ γ (σ� y�).
• For (elaborated) right-hand sides F : (X →P(Q))→ (P(Q)×P(X)) and F� : (X � →
D)→ (D×P(X �)), FR F� iff (F σ)1 ⊆ γ (F� σ �)1, and (F σ)2 R (F� σ �)2 whenever
(σ , dom)R (σ�, dom�) holds for domains dom, dom� which are (σ , E)-closed and (σ�, E�)-
closed, respectively.

• For equation systems E :X → ((X →P(Q))→ (P(Q)×P(X))) and E� :X � → ((X � →
MS(D))→MS(D)), E R E� iff (E x)R F�

x� for each x ∈X , x� ∈X �, where F�
x� is the

elaboration of E� x�.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1100 H. Seidl and R. Vogler

Let (σ , dom) be the least solution of the concrete system E for some set X of interesting unknowns.
Let E� denote an abstract system corresponding to E and X� a set of abstract unknowns and R a
description relation between the unknowns of E and E� such that E R E� and X R X� holds. A
local solver then determines for E� and X� a pair (σ�, dom�) so that X ⊆ dom�, dom� is σ�-closed
and (σ , dom) R (σ�, dom�) holds, that is, the result produced by the solver is a sound description
of the least partial solution of the concrete system.

In absence of narrowing, the correctness of a solver can be proven intrinsically, that is, just by
verifying that it terminates with a post-solution of the system of equations.

We first convince ourselves that the following holds:

Proposition 3. Assume that E R E� holds and XR X� for subsets X and X� concrete and abstract
unknowns, respectively. Assume that (σ , dom) is the least partial post-solution of E with X ⊆ dom,
and (σ�, dom�) some partial post-solution of E� with X� ⊆ dom�. Then (σ , dom)R (σ�, dom�)
holds.

Proposition 3 is a special case of Proposition 4 where additionally side effects and dynamic
description relations are taken into account. Therefore, the proof of Proposition 3 is omitted.
Proposition 3 can be used to prove soundness for local solver algorithms which perform accu-
mulating fixpoint iteration and thus return partial post-solutions. These kinds of solvers require
abstract domains where strictly ascending chains are always finite. This assumption, however, is no
longer met for more complicated domains such as the interval domain (Cousot and Cousot 1977)
or octagons (Mine 2001). As already observed in Cousot and Cousot (1977), their applicability
to these domains can still be extended by introducing widening operators. According to Cousot
and Cousot (1992), Cousot (2015), a widening operator ∇ is a mapping ∇ :D×D→D with the
following two properties:

(1) a � b� a∇ b for all a, b ∈D;
(2) Every sequence a0, a1, . . . defined by ai+1 = ai ∇ bi, i≥ 0 for any bi ∈D is ultimately stable.

Acceleration with widening thenmeans that the occurrences of� in the solver are replaced with∇ .

Example 8. For intervals over Z+∞−∞ we could use primitive widening:

[a1, b1]∇ [a2, b2]= [if a2 < a1 then − ∞ else a1,
if b2 > b1 then + ∞ else b1]

Alternatively, we could use threshold widening where several intermediate bounds are introduced
that can be jumped to. Note that widening in general is not monotonic in the first argument:
[0, 1]� [0, 2] but [0, 1]∇ [0, 2]= [0,+∞] �� [0, 2]= [0, 2]∇ [0, 2].

We remark that Cousot and Cousot (1992), Cousot (2015) provide a more general notion of
widening which refers not to the ordering of D but (via γ) to the ordering in the concrete lat-
tice P(Q) alone. W.r.t. that definition, a � b is no longer necessarily less or equal a∇ b. In many
applications, however, accelerated loss of precision due to widening may result in unacceptable
analysis results. Therefore, Cousot and Cousot (1977) proposed to complement a terminating
widening iteration with a narrowing iteration which subsequently tries to recover some of the
precision loss. Following Cousot and Cousot (1992), Cousot (2015), a narrowing operator � is a
mapping � :D×D→D with the following two properties:

(1) a � b� (a� b)� a for all a, b ∈D;
(2) Every sequence a0, a1, . . . defined by ai+1 = ai � bi, i≥ 0 for any bi ∈D is ultimately stable.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1101

Example 9. For intervals over Z+∞−∞ we could use primitive narrowing:

[a1, b1]� [a2, b2]= [if a1 = −∞ then a2 else a1,
if b1 = +∞ then b2 else b1]

which improves infinite bounds only. More sophisticated narrowing operators may allow a
bounded number of improvements of finite bounds as well.

Again we remark that, according to the more general definition in Cousot and Cousot (1992),
Cousot (2015), the first property need not necessarily be satisfied. For monotonic systems of
equations, the narrowing iteration when starting with a (partial) post-solution still will return a
(partial) post-solution. The correctness of the solver started with an initial query x� and returning
a partial assignment σ� with domain dom� thus can readily be checked by verifying that

1. x� ∈ dom�;
2. (F�x σ�)2 ⊆ dom� for all x ∈ dom�, that is, dom� is (σ�, E�)-closed; and
3. σ� x
 (F�x σ�)1 for all x ∈ dom�.

When the system of equations is non-monotonic, though, the computed assignment still is a
sound description. It is, however, no longer guaranteed to be a post-solution of E�. In Section 6,
we come back to this point.

4. The Terminating Solver TDterm
In this section, we present our modification to the TD solver with widening and narrowing which
improves on the variant in Apinis et al. (2016) in that termination guarantees can be proven even
for non-monotonic abstract systems of equations. The vanilla TD solver from Muthukumar and
Hermenegildo (1990), Charlier and Van Hentenryck (1992) (see Appendix A for a pseudo code
formulation of this solver along the lines presented in Fecht and Seidl 1999) starts by querying
the value of a given unknown. In order to answer the query, the solver evaluates the correspond-
ing right-hand side. Whenever in the course of that evaluation, the value of another unknown
is required, the best possible value for that unknown is computed first, before evaluation of the
current right-hand side continues. Interestingly, the strategy employed by TD for choosing the
next unknown to iterate upon, thereby resembles the iteration orders considered in Bourdoncle
(1993) (see Fecht and Seidl 1999 for a detailed comparison) for systems of equations derived from
control-flow graphs of programs. Themost remarkable difference, however, is thatTD determines
its order on-the-fly, while the ordering in Bourdoncle (1993) is determined via preprocessing.

In Apinis et al. (2016), the vanilla TD solver from Muthukumar and Hermenegildo (1990),
Charlier and Van Hentenryck (1992), Fecht and Seidl (1999) is enhanced with widening and nar-
rowing. For that, the solver is equipped with a novel technique for identifying not only accesses
to unknowns, but also widening and narrowing points on-the-fly. Moreover, that solver does not
delegate the narrowing iteration to a separate second phase (as was done in the original papers on
widening and narrowing Cousot 2015; Cousot and Cousot 1992), once a proceeding widening iter-
ation has completed. Instead, widening and narrowing iterations may occur intertwined (Amato
et al. 2016). This is achieved by combining the widening operator ∇ with the narrowing operator
� into a single warrowing operator �:

a� b= if b� a then a� b
else a∇ b

This operator applies � whenever values decrease and otherwise applies ∇ .

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1102 H. Seidl and R. Vogler

In Apinis et al. (2016), it is proven that solver TD (in the formulation of Fecht and Seidl 1999)
and equipped with warrowing at dynamically detected widening/narrowing points terminates
for monotonic systems – whenever only finitely many unknowns are encountered. Example 10,
though, shows a non-monotonic system for which this solver does not terminate – while the new
solver TDterm does.

Example 10. Consider the single equation:
x= if x= 0 then 1 else 0

over the lattice of naturals (with infinity) with a∇ b= ∞whenever a< b and a� b= bwhenever
a= ∞. The right-hand side of this equation is not monotonic. An iteration with warrowing leads
to the sequence of values for x

0→ ∞ → 0→ ∞ → . . .

and thus will not terminate.

In order to deal with non-monotonic systems, we do no longer rely on warrowing. Instead, we
equip the solver with extra logic to switch for each unknown from widening to narrowing (and
never back). Our new solver is presented as OCAML pseudocode operating on abstract systems of
equations. W.l.o.g., we also assume that solving starts with a single unknown of interest. In case
that simultaneously values for unknowns from an arbitrary finite set X are of interest, we may
introduce an artificial fresh unknown x0 whose right-hand side successively queries the values of
x ∈ X.

For better readability, the solver state is not threaded through the evaluation of right-hand
sides by means of a monad, but realized by mutable data structures:

Here, the functional argument f to the functionMap.create is meant to return an initial value f ()
for a key which has not yet been assigned in the given map data structure.

Under that proviso, the OCAML type of a right-hand side function f �x thus is just (X →D)→
D. When reasoning about the values computed by right-hand sides as well as the sets of unknowns
accessed during the evaluation, we will refer to the elaborated right-hand sides F�

x corresponding to
the f �x . The solver itself consists of three functions: the function solvewhich performs the iteration
for a given unknown x; the function eval which wraps lookups of values of unknowns in the
current state; and finally, the function destabilize which marks encountered unknowns possibly
affected by a change to the value of some unknown, for re-evaluation.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1103

We briefly sketch the intuition behind this algorithm. The set called is the set of all unknowns
where iteration currently is in progress, that is, which are contained in the call stack of the solver.
The set stable on the other hand consists of all unknowns where the iteration (relative to the
current values of unknowns on the call stack) has terminated. For unknowns in any of these two
sets, solving should immediately terminate.

A key issue is to propagate the information that the value of some unknown y has changed, to
all unknowns whose right-hand sides have been evaluated under wrong assumptions on y. A key

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1104 H. Seidl and R. Vogler

ingredient both of the original TD solver and the variant in Apinis et al. (2016) is that dependences
between unknowns are dynamically detected and recorded in the map infl :X � →P(X �). The set
infl y is meant to record the set of unknowns xwhere the evaluation of f �x has accessed the current
value of y, that is, where y influences x.

As soon as the value of an unknown y is changed, therefore, the function destabilize is called.
destabilize y removes all unknowns directly or indirectly influenced by y from the set stable. That
recursive removal only stops at unknowns which are contained in the set called. We remark that
by the call destabilize y, also the set infl y is reset to Ø.

The current values for unknowns are maintained in the map σ . In order to track dependences
between unknowns, we wrap the access to entries in σ into the call eval x where x is the unknown
in whose right-hand side the values in σ are queried. Thus, a call eval x y ultimately returns the
latest value in σ for y. Before that, however, it checks whether y ∈ called holds. If this is the case,
y is turned into an unknown where widening and narrowing is applied. All these unknowns are
collected into the set point. If this is not the case, the call solve ∇ y is evaluated to determine the
best possible value for y before-hand. Then, x is added to the set infl y of unknowns influenced by
y, and finally, the value for y in σ is returned.

The main ingredient of the algorithm, though, is the function solve. The function solve ∇ is
applied to an unknown x to determine the best possible value for x. In case that x ∈ point, the
computation starts with a local widening iteration on x which is followed by a call solve � x to
subsequently perform a local narrowing iteration on x. Any call solve p x immediately terminates
if x is already found to be in called∪ stable. If this is not the case, x is added to stable and called,
and the right-hand side f �x of x is evaluated for the argument eval x, and the first component of
the result stored in the temporary tmp. After the evaluation, x is removed from called. If x has been
found to be in point, we use p to combine the old value for x as stored in σ with the new value in
tmp. Otherwise, we use tmp directly.

Assume that the new value is the same as the old value for x as provided by σ . If p= ∇ , then
the widening phase is completed. Therefore, x is removed from stable and solve � x is called.
Otherwise, we are done.

Now assume that the new value is different from the old value for x. Then, we update the
value of σ for x to the new value, call destabilize x in order to propagate this information, and
recursively call solve p x.

5. Termination of TDterm
Each state s attained by the solver during its evaluation, consists of the tuple of mutable data
structures s= (σ , infl, stable, called, point). We call s consistent if

1. for all x ∈ (stable \ called), and all y ∈ (F�xσ)2, y ∈ (stable ∪ called) and x ∈ infl y holds; and
2. for each x �∈ (stable ∪ called), infl x=Ø.

Each call solve p x encountered during the evaluation of the initial call, starts in a consistent solver
state s. Upon its termination, a solver state s′ = (σ ′, infl′, stable′, called′, point′) is attained such that
s= s′ whenever x ∈ stable∪ called. Otherwise, it holds that

1. s′ is again consistent;
2. called′ = called and stable⊆ stable′ where for all y ∈ stable∪ called, σ ′ y= σ y and infl y⊆

infl′ y;
3. point⊆ point′;
4. x ∈ stable′.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1105

Also, each call eval x y encountered during the evaluation starts in a consistent state s where x ∈
(stable ∩ called). Upon its termination, a solver state s′ is attained such that

1. s′ is again consistent;
2. called′ = called;
3. stable⊆ stable′ where for all y′ ∈ stable∪ called, σ ′ y′ = σ y′ and infl y′ ⊆ infl′ y′;
4. point⊆ point′;
5. If y ∈ stable∪ called, then

• σ ′ = σ , stable′ = stable and point′ = point if y �∈ called whereas point′ = point∪ {y} if
y �∈ called; ;

• infl′ y′ = infl y′ for all y′ �= y, and
• infl′ y= infl y ∪ {x};

6. y ∈ stable′, x ∈ infl′ y, and the value σ ′ y is returned.

In particular, x is still contained in stable′ ∩ called′. Finally, consider the call to destabilize x in the
body of solve, and let s= (σ , infl, stable, called, point) before this call. Then, s is consistent with
x ∈ stable\called, where upon termination of the call, a solver state s′ is attained so that

1. s′ is again consistent;
2. σ ′ = σ , called= called′, point= point′;
3. stable′ ⊆ stable, and
4. for all y, infl′ y either equals Ø or infl y where infl′ and stable′ are maximal so that s′ is

consistent while infl′ x=Ø and infl x ∩ stable′ =Ø.

This invariant allows us to prove that the solver TDterm indeed terminates for arbitrary systems
of abstract equations.

Theorem 1. Let E� denote an arbitrary system of abstract equations, and let x0 be the initial
unknown of interest. Assume that initially the sets called and stable are empty, and likewise, infl
maps each unknown to the empty set. Then, the call solve ∇ x0 will always terminate, as long as
only finitely many unknowns are encountered.

Proof. First we note that every call destabilize y terminates. This is immediate in case when infl y
is empty. Moreover, infl y′ is non-empty for only finitely many unknowns y′. Since the set infl y is
set to Ø, before any recursive call to unknowns, termination follows.

Assume now that during evaluation of the initial call solve ∇ x0, only finitely many unknowns
x are encountered for which solve p x is called for some p. In order to prove termination of all
calls solve p x encountered during the evaluation of solve ∇ x0, we perform an induction on the
cardinality of the set of unknowns which are not in called. Let Y denote the set of all unknowns
y ∈X \ ({x} ∪ called∪ stable) for which solve ∇ y is called during the call solve p x and proceeds
to the evaluation of the right-hand side of y.

Assume for a contradiction that the call solve p x would not terminate. Let us first assume that
x �∈ point throughout the iteration, that is, all tail-recursive calls to solve p x. In particular, this
means that for none of the unknowns y ∈ Y , evaluation of the right-hand side f �y accessed the
unknown x – as in this case, x would have been added to point. Therefore, when p= ∇ , infl x
does not contain any of the unknowns in Y , that is, is still empty after the first update of σ x.
Accordingly, destabilization of x will immediately terminate and leave x in the set stable. If p= �,
infl x=Ø at least for all calls after the first call to solve � x. As a consequence, the call solve p x
terminates for each phase p – in contradiction to our assumption.

Therefore, necessarily, x ∈ point at least after the first evaluation of f �x. We distinguish two
cases.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1106 H. Seidl and R. Vogler

Case 1. p= �.
By inductive hypothesis, all occurring calls solve p y with y ∈ Y terminate. Let ai, i≥ 0 denote

the sequence of values of σ x before the ith tail-recursive call to solve � x. Then necessarily
ai �= ai+1 for all i≥ 0. Let b1, . . . , bi, . . . denote the sequence of values returned by the ith
evaluation of the right-hand side f �x of x. Then, ai+1 = ai � bi+1 for i≥ 0. Due to the properties
of narrowing, however, the latter sequence is ultimately stable, that is, ai = ai+1 for some i – in
which case the recursion terminates: contradiction. Therefore, each call solve � x eventually
terminates.

Case 2. p= ∇ .
By inductive hypothesis, again all calls solve ∇ y with y ∈ Y terminate. Let ai, i≥ 0 denote the

sequence of values of σ x before the ith tail-recursive call to solve ∇ x. Assume that ai �= ai+1 for
all i≥ 0. Let b1, . . . denote the sequence of values returned by the ith evaluation of the right-hand
side f �x of x. Then, ai+1 = ai ∇ bi+1 for i≥ 0. Due to the properties of widening, however, the
latter sequence is ultimately stable, that is, ai = ai+1 for some i. Therefore eventually, solve � x
is tail-recursively called. But then, termination follows due to termination of the call solve � x:
contradiction!

Accordingly, we conclude that all encountered calls solve p x terminate, and thus also the call
solve ∇ x0.

6. Correctness of TDterm
Our goal is to prove that the result of our algorithm is a sound description of the least partial solu-
tion of the concrete system. In case of monotonic abstract systems and total solutions, soundness
is known to hold for any post-solution of the abstract system, whenever the concrete system is
described by the abstract system. Recall that while the right-hand sides of our concrete system are
monotonic, this need not necessarily be the case for the abstract system. Consider, for example, an
interprocedural analysis as in Examples 5 and 6 and there the elaborated right-hand side

F�
〈2,a〉 = fun σ → (combine� (σ 〈1, a〉) (σ 〈7, σ 〈1, a〉〉),

{ 〈1, a〉, 〈7, σ 〈1, a〉〉 })
for the unknown 〈2, a〉. Since for different values in σ for 〈1, a〉, different unknowns are queried,
this function cannot be monotonic. In order to deal with such non-monotonicities, Frielinghaus
et al. (2016) have introduced the concept of a lower monotonization of the abstract system E�.

For the system E� with set of unknowns X �, the lower monotonization E� is a system of equa-
tions with the same set of unknowns where the elaborated right-hand side F�

x for x ∈X � is given
by F�

x σ = (d, X) with

d = � {
(F�x σ ′)1 | σ ′
 σ

}

X = X �

Thus, we over-approximate the sets of unknowns influencing the result of a right-hand side by
the full set X � while d is the greatest lower bound to all first components of results of F�x for
assignments exceeding σ .

Since all right-hand sides of E� are monotonic, the system has a least total solution σ . Let σ

denote the least total solution of some concrete system E which is described by E�. In Frielinghaus
et al. (2016), it has been proven that then also σ R σ holds. Moreover, let dom denote the least
(σ , E)-closed subset containing some initial unknown x. Let xR y for some unknown y ∈X �. Let
σ ′ :X � →D be some abstract assignment, and dom� be (σ ′, E�)-closed with y ∈ dom�. Assume

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1107

further that σ y′ � σ ′ y′ for all y′ ∈ dom�. Then by the results of Frielinghaus et al. (2016),
also domR dom� holds. Accordingly, the pair (σ ′, dom�) can then be understood as a sound
description of the least partial post-solution of the concrete system E for x.

Therefore, now assume that we are given a set X of unknowns of the concrete system of equa-
tions E , together with a an abstract unknown x0 so that for all x ∈ X, xR x0 holds. Assume further
that the solver TDterm, when started with the call solve ∇ x0, returns the abstract assignment σ�

where by default, σ� y= ⊥ for all unknowns y which have not been encountered during solving.
It therefore suffices to prove:

1. There is a subset dom� ⊆X � containing x0 which is (σ�, E�)-closed.
2. σ� y� σ� y holds for all y ∈ dom�.

After evaluation of each call solve p x, evaluation of the right-hand side of an unknown in stable
will access only unknowns which are either again in stable, or in called. As a consequence, the set
of all stable unknowns after termination of all calls solve ∇ x0 is (σ�, E�)-closed. Therefore, it
remains to verify the second property. Let dom� denote the subset stable⊆X � upon termination
of the call solve ∇ x0. Let σ :X � →D denote the least solution of the lower monotonization E�

of E�. Our goal is to show that σ x� σ� x for all x ∈ dom�.
Assume that we are given a subset Y of unknowns together with an assignment τ : Y →D.

Here, we assume Y and τ to represent the set of unknowns which are currently stable (or called)
together with their current values. In the following, we use the binary operator ⊕ to denote an
update of the left argument with the bindings provided by the right argument. Let E�

τ denote the
system of equations with unknowns from X � \ Y where the right-hand side f �τ ,y of y behaves like
the right-hand side f �y of E�, but looks up the values for encountered unknowns from Y in τ .
Technically, this means that

f �τ ,y σ = f �y (σ ⊕ (return ◦ τ))

Accordingly, the elaborated right-hand side F�
τ ,y for the unknown y is given by

F�
τ ,y σ = let (d, X)= F�y (σ ⊕ τ)

in (d, X \ Y)
Let s= (σ , infl, stable, called, point) denote a consistent solver state. Let τ : called→D denote the
restriction of σ to the set called. We call s saturated if for all x ∈ stable \ called, σ x� σ x where
(σ , X� \ called) is the least total solution of the lower monotonization of E�

τ . We claim:

Theorem 2. Each call solve ∇ x starting in a saturated solver state, results upon termination, in
a solver state s′ = (σ ′, infl′, stable′, called′, point′) which is again saturated where additionally, x ∈
stable′.

Since before the initial call solve ∇ x0 the set called is empty, this theorem implies that upon
termination, dom� is (σ ′, E�)-closed with x0 ∈ dom�, and σ x� σ ′ x for all x ∈ dom�.

Proof. We proceed by induction on the set X ′ of unknowns not contained in the set stable of
stable unknowns before the call. ForX ′ =Ø, the assertion obviously holds. For the inductive step,
first assume that after the evaluation of the right-hand side f �x, x is not included in point. This
means that no variable in X ′ may depend on the unknown x. Assume that the values of x before
and after solve are d and d′, respectively. Consider the least total solutions σ and σ ′ of the lower
monotonizations of the systems E�

τ and E�
τ⊕{x →d′}, respectively, where τ : stable→D records

the values of all unknowns from stable. Let Y = (F�
τ⊕{x →d},x)2 \ stable be the set of unknowns

accessed during the evaluation of the right-hand side for x (in particular, x �∈ Y). Then X ′ \ {x} is

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1108 H. Seidl and R. Vogler

the disjoint union of subsets X ′
y, y ∈ Y , where X ′

y is the subset of unknowns freshly solved when y
is encountered. By applying the inductive hypothesis to the unknowns in y in sequence, we obtain
that for all y ∈ Y , σ ′ y′ � σ y′ for all y′ ∈X y. Accordingly, we have for all y ∈X ′ \ {x}, that

(F′
yσ

′)1 � σ ′ y

Here, F′
y denotes the elaborated right-hand side of the lower monotonization of Eτ⊕{x →d′} for y.

This allows us to deduce for x that

(F�
τ ,x(σ ′ ⊕ {x → d′}))1 � (F�

τ ,x(σ ⊕ {x → d′}))1
� (F�

τ ,x(σ ⊕ {x → d′}))1
= (F�

τ ,x(σ ⊕ {x → d}))1
= d′

Thereby, we have used that the value of the unknown x is not contained in (F�x(σ ⊕ {x → d′}))2
– implying that it is also not contained in (F�x(σ ⊕ {x → d}))2. Moreover, for y ∈X ′ different
from x,

(F�
τ ,y (σ ′ ⊕ {x → d′}))1 � (F′

y σ ′)1 � σ ′ y

Accordingly, σ ′ ⊕ {x → d′} is a post-solution of the lower monotonization of Eτ , implying that
σ � σ ′.

Now assume that after the evaluation of the right-hand side f �x, x ∈ point holds. We
concentrate on the last tail-recursive call solve ∇ x before the call to solve � x. Let s0 =
(σ 0, infl0, stable0, called0, point0). Let d denote the value of x before the evaluation of the right-
hand side, and d′ the value returned by evaluating the right-hand side. Let X ′ denote the set of
unknowns accessed during the call which are not stable before. Since subsequently solve � x is
called, after that the evaluation of f �x , x is still stable. Therefore, one of the following two situations
is encountered after the evaluation of the right-hand side:

1. d′ � d, that is, the value d′ is subsumed by the current value of x; or
2. subsequent destabilization will not destabilize x.

In the second case, the unknowns from X ′ that directly or indirectly influence x cannot depend
on x (w.r.t. the current map infl). Thus, a similar argument as for unknowns not in point applies.

Accordingly, it remains to consider the first case. Consider the lower monotonizations of the
abstract systems E�

τ and E�
τ⊕{x →d} with least solutions σ and σ ′, respectively. By inductive

hypothesis applied to the unknowns in X ′ \ {x} and τ ⊕ {x → d}, we find that σ ′ y� σ 0 y for
all unknowns y ∈X ′ \ {x}. This allows us to prove that σ ′ ⊕ {x → d} is a post-solution of the
lower monotonization of E�

τ . Therefore, σ y� (σ ′ ⊕ {x → d}) y� (σ 0 ⊕ {x → d}) y for all y ∈X ′
holds, and the claim follows.

Now consider the narrowing iteration performed for x in the subsequent call solve � x. Let
d0 denote the value after the last call to solve ∇ x, and d1, . . . , dk denote the values returned
by evaluating the right-hand side of x during this iteration and define d′

0 = d0 and for i> 0,
d′
i = d′

i−1 � di. Let σ i denote the assignment attained after the ith narrowing step restricted to the
unknowns X � \ (X 0 ∪ {x}). For i> 0, let σ i denote the least solution of the lower monotoniza-
tion of E�

τ⊕{x →di−1}. By inductive hypothesis, σ i y� σ i for all y �= x which are stable after the
ith iteration. By induction on i, we prove that σ x� di and thus also σ x� d′

i, and σ y� σ i y for
every y ∈X � \ (X 0 ∪ {x}) which is stable after the ith narrowing iteration. This assertion holds for

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1109

i= 0. For i> 0, the assertion on the y �= x follows by inductive hypothesis for a larger set of called
unknowns. And for x, we have

di = (F�x(τ ⊕ σ i ⊕ {x → d′
i−1}))1

 (F(i)x (σ i))1

 (F(i)x (σ i))1

 (F�x(σ i ⊕ {x → di−1}))1

 (F�xσ)1

Here, F�x and F(i)x are the right-hand sides of the lower monotonizations of E�
τ and E�

τ⊕{x →di−1}
for x, respectively. This completes the proof of the theorem.

7. The Space-efficient Solver TDspace
So far, our solver maintains an abstract value for each queried unknown. Given that the pro-
gram to be analyzed is not small (e.g., more than 10,000 LOC) and program points must be
analyzed for multiple contexts, the number of unknowns to be considered by the solver can
be quite large. For more complicated properties to be analyzed, these abstract values to be
recorded for these unknowns in themselves are space-consuming. The applicability of solvers
for interprocedural analysis based on such solvers therefore is significantly increased if space
consumption can be reduced. This is the objective of our second modification to the local generic
solver TD.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1110 H. Seidl and R. Vogler

In contrast to algorithm TDterm, the new solver maintains abstract values only for widening
and narrowing points as collected in the set point. The intuition is that the current values in σ

for all other unknowns can be reconstructed by evaluating their right-hand sides. Thus, we only
call solve for unknowns in point, which is why we now always perform widening or narrowing in
solve.

We remark that in absence of procedure calls, the set pointmay be statically chosen as the set of
loop heads – given that each loop is dominated by a single program point. In presence of procedure
calls, however, this is no longer easily possible.

Example 11. Consider again the example program from Figure 1, and the corresponding elabo-
rated right-hand sides from Example 5. For the assignment σ with σ 〈3, a〉 = σ 〈4, a〉 = σ 〈6, a〉 = a
and σ 〈5, a〉 = h�1 a, the right-hand side of unknown 〈7, a〉 accesses, for example, the unknown
〈7, σ 〈5, a〉〉 = 〈7, h�

1 a〉 which may put 〈7, a〉 into point only if (h�
1)ra= a for some r > 0.

The call eval x y behaves the same as before for unknowns y ∈ point. For unknowns y �∈ point,
the value now must be recovered. For that, y first is marked as called. Then, the right-hand side of
y is evaluated (still passing x as first argument to eval); finally, y is again removed from called. If y
is still not in point, the result for y is plainly returned. If, however, the evaluation of f �y has inserted
y into the set point, the function eval proceeds as if y had been contained in point right from the
beginning. This means that solve ∇ y is called, x is inserted into the set infl y, and subsequently,
the value of σ for y is returned.

We remark that on some inputs, the solver TDspace may be rather inefficient, since the same
unknown y �∈ point must be re-evaluated whenever the value of y is queried. At the expense of
slightly more space, this deficiency can be remedied bymaintaining the values for these unknowns
encountered during the re-evaluation of the right-hand side of some unknown x ∈ point in a
separate map τ (see the algorithm in Section B of the appendix).

8. Termination and Correctness of TDspace
In the following, we convince ourselves that the solver TDspace has the same termination behavior
as the solver TDterm.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1111

For a finite subset of unknowns Y ⊆X �, we construct from E� the residual system E�Y where
the right-hand sides f̄ �Y ,y are obtained from the right-hand sides f �y successively exploring the right-
hand sides of unknowns not contained in Y . Technically, this means that for y ∈ Y and σ : Y →
M(D),

f �Y ,y σ = f �y (barY σ) where
barY σ y = if y ∈ Y then σ y else f �y (barY σ)

Example 12. Consider the monadic right-hand side f �〈7,a〉 from Example 6 for the program from
Figure 1, and Y = {〈7, a〉 | a ∈D}, we have

f �Y ,〈7,a〉 σ = f �〈7,a〉 (barY σ)

= bind (barY σ 〈5, a〉) (fun b1 →
bind (bar σ 〈7, b1〉) (fun b2 →
bind (barY σ 〈6, a〉) (fun b3 →
return (combine� b1 b2 � h�

2 b3))))

= bind (return (h�
1 a)) (fun b1 →

bind (σ 〈7, b1〉) (fun b2 →
bind (return a) (fun b3 →
return (combine� b1 b2 � h�

2 b3))))

= bind (σ 〈7, h�
1 a〉) (fun b2 →

return (combine� (h�
1 a) b2 � h�

2 a))

In general, let F�Y ,y be the elaboration of f �Y ,y. For some y ∈ Y and some σ , the evaluation
of the right-hand side f �Y ,y may not terminate – in which case, F�Y ,y σ is undefined. For ⊆ Y ,
let us call σ (Y , dom)-consistent if F�Y ,y σ is defined for all y ∈ dom. In that case, there is a set
Ȳ = Y ∪ {y1, . . . , yh} ⊆X together with a map σ̄ : Ȳ →D such that σ̄ |Y = σ , and

1. (F�yj σ̄)1 = σ̄ yj and (F�yj σ̄)2 ⊆ Ȳ ∪ {y1, . . . , yj−1} for all j= 1, . . . , h; and
2. (F�y σ̄)2 ⊆ Ȳ for all y ∈ dom.

The values of the unknowns in Ȳ thus are sufficient to evaluate all right-hand sides of unknowns
in dom∪ (Ȳ\Y), while the values of Ȳ \ Y can be recovered from the values of the unknowns in Y .

Example 13. Continuing with Example 12, we have that the elaborated right-hand side F�Y ,〈7,a〉
is given by:

F�Y ,〈7,a〉 σ = (combine� (h�
1 a) (σ 〈7, h�

1 a〉) � h�
2 a, {〈7, h�

1 a〉})
where the required auxiliary unknowns y are given by

〈3, a〉, 〈4, a〉, 〈5, a〉, 〈6, a〉

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1112 H. Seidl and R. Vogler

Subsequently, we adapt the notion of consistency from Section 5 to the case where values from
D are only recorded for unknowns in point. Moreover, we maintain that stable as well as all sets
infl y are all subsets of point. We now call a solver state s= (σ , infl, stable, called, point) consistent
if for Y = (stable∪ called)∩ point and dom= stable\called,

1. σ is (Y , dom)-consistent;
2. for all x ∈ dom and all y ∈ (F�Y ,x σ)2, y ∈ Y and x ∈ infl y holds;
3. for each x �∈ Y , infl x=Ø.

With this new notion, the invariants for the calls solve p x, and destabilize x from Section 5, now
stay literally the same – with the extra assumption that x should necessarily be contained in point.
For eval x y, the new invariant must distinguish whether y is contained in point or not. Assuming
that the solver state s= (σ , infl, stable, called, point) before the call is consistent where x ∈ stable∩
called∩ point, the solver state s′ = (σ ′, infl′, stable′, called′, point′) after the call should now satisfy:

1. s′ is again consistent;
2. called= called′, and
3. stable⊆ stable′ where for all y′ ∈ (stable∪ called)∩ point, σ ′ y′ = σ y′ and infl y′ ⊆ infl′ y′;
4. point⊆ point′ where y ∈ point′ whenever y ∈ called;
5. If y ∈ (stable∪ called)∩ point, then

• σ = σ ′, stable= stable′ and point= point′;
• infl′ y′ = infl′ y′ for all y′ �= y, and
• infl′ y= infl y ∪ {x}.

6. In all cases when y ∈ point′, then y ∈ stable′ and x ∈ infl′ y and the value σ ′ y is returned;
7. If y �∈ point′, then F�

Y ′,y σ ′ is defined and produces the return value where Y ′ = (stable′ ∪
called′)∩ point′.

In particular, x is still contained in stable′ ∩ called′.What we additionally need is an extra argument
why evaluation of the right-hand sides of unknowns y �∈ point will necessarily terminate. For that,
we observe that, according to our assumption, evaluation of each right-hand side f �y will access
only finitely many unknowns from X . Also, we note that before evaluation of f �y, the set called
additionally receives the unknown y. An unknown z accessed during the evaluation of the right-
hand side f �y can only be found not in point, if z �∈ called∪ {y}, that is, each unknown into which
recursive evaluation descends must be different from all unknowns added to the set called so far.

Assuming that altogether only finitely many unknowns are encountered during solving, recur-
sive evaluation will eventually terminate having called finitely many times solve for unknowns in
point. Therefore, we can adapt the proof of Theorem 1 to obtain:

Theorem 3. Let E� denote an arbitrary system of abstract equations, and x0 ∈X � the unknown
of interest. Assume that initially the sets called and stable are empty, and likewise, infl maps each
unknown to the empty set. Assume further that x ∈ point. Then, the call solve x0 of solver TDspace
will always terminate, as long as only finitely many unknowns are encountered.

The notion of saturation of solver states literally stays the same. Let s=
(σ , infl, stable, called, point) denote a consistent solver state. Let τ : called→D denote the
restriction of σ to the set called. We call s saturated if for all x ∈ stable \ called, σ x� σ x
where (σ , X� \ called) is the least total solution of the lower monotonization of E�

τ . For the
space-efficient solver TDspace, Theorem 2 must be re-phrased as follows:

Theorem 4. Let x ∈ point, and consider a call solve ∇ x encountered by the solver TDspace dur-
ing the evaluation of the initial call. Then it always starts in a saturated solver state, and upon

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1113

termination, it results in a solver state s′ = (σ ′, infl′, stable′, called′, point′) which is again saturated
so that x ∈ stable′.
The proof is along the same lines as the proof for Theorem 2 – only that now the assignment σ

must be replaced with Y-consistent mappings σ̄Y for suitable Y with stable \ called⊆ Y ⊆ stable′ \
called.

Proof. Let X ′ denote the set of all unknowns in stable′ \ called′. In particular, x ∈X ′. We proceed
by induction on the set of unknowns not contained in the set X 0 of called unknowns. Again, we
concentrate on the last tail-recursive call solve ∇ x before the call to solve � x. Let d denote the
value of x before the evaluation of the right-hand side, and d′ the value returned by evaluating the
right-hand side. Let X ′ denote the set of unknowns accessed during the call. Since subsequently
solve � x is called, after that call x is contained in stable. Therefore, one of the following two
situations is encountered after the evaluation of the right-hand side:

1. d′ � d, that is, the value d′ is subsumed by the current value of x; or
2. subsequent destabilization will not destabilize x.

In the second case, the unknowns that directly or indirectly influence x do cannot depend on
x (w.r.t. the current sets infl). Thus, a similar argument as for unknowns not in point in the
proof of Theorem 2 applies. Accordingly, it remains to consider the first case. Let Y denote
the set stable∪ called in the current solver state, and τ the restriction of σ to called∩ point,
extended with {y → ⊥ | y ∈ called \ point}. Consider the lower monotonizations of the abstract
systems E�

τ and E�
τ⊕{x →d} with least solutions σ and σ ′, respectively. Let σ 0 denote the assign-

ment to the unknowns in X � \ (X 0 ∪ {x}) before the call solve � x. By inductive hypothesis
applied to the unknowns in X ′ \ {x} and τ ⊕ {x → d}, we find that σ ′ y� σ 0 y for all unknowns
y ∈X ′ \ {x}where σ ′ ⊕ {x → d} is a post-solution of the lower monotonization of E�

τ . Therefore,
σ y� σ ′ ⊕ {x → d} � (σ 0 ⊕ {x → d}) y for all y ∈X ′ holds, and the claim follows. Now consider
the narrowing iteration performed for x in the subsequent call solve � x. Let d0 denote the value
after the last call to solve ∇ x, and d1, . . . , dk denote the values returned by evaluating the right-
hand side of x during this iteration, and define d′

0 = d0 and for i> 0, d′
i = d′

i−1 � di. Let σ i denote
the assignment attained after the ith narrowing step restricted to the unknowns X � \ (X 0 ∪ {x}).
For i> 0, let σ i denote the least solution of the lower monotonization of E�

τ⊕{x →di−1}. By induc-
tive hypothesis, σ i y� σ i for all y �= x which are stable after the ith iteration. By induction on i,
we prove that σ x� di and thus also σ x� d′

i, and σ y� σ i y for every y ∈X � \ (X 0 ∪ {x}) which
is stable after the ith narrowing iteration. This assertion holds for i= 0. For i> 0, the assertion
on the y �= x follows by inductive hypothesis for a larger set of called unknowns. And for x,
we have

di = (F�Yi,x(τ ⊕ σ i ⊕ {x → d′
i−1}))1

 (F(i)x (σ i))1

 (F(i)x (σ i))1

 (F�x(σ i ⊕ {di−1}))1

 (F�xσ)1

Here, F�Yi,x is the elaborated right-hand side for f �x ◦ barYi where Yi equals the union of the set
point∪ called after the ith iteration of solve � x. Moreover, F�x and F(i)x are the right-hand sides
of the lowermonotonizations of E�

τ and E�
τ⊕{x →di−1} for x, respectively. This completes the proof

of the theorem.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1114 H. Seidl and R. Vogler

9. Side-Effecting Systems of Equations
Concurrency libraries such as POSIX threads (Walli 1995) or OSEK (Lemieux 2001) support com-
munication between threads by means of shared program variables and data structures, while
primitives such asmutexes or resources are provided to synchronize their executions.

Example 14. Consider the program

with global variables g, h, where the call create(f) is meant to spawn a new thread which executes
the parameterless function f. The functionmain thus first initializes the globals g, h. Then, a thread
is spawned executing the function f. Finally, g is set to 1, followed by returning with 0. The function
f, when executed, checks the global variable g. If it is different from 0, 1 is assigned to h. Finally, 0
is returned. Accordingly, the two threads communicate via the shared program variable g.

One natural way to de-couple the analysis of multi-threaded code is to interprocedurally ana-
lyze only the thread-local states, while a flow-insensitive global invariant is accumulated for
shared data (Seidl and Vogler 2017; Vojdani and Vene 2009). This idea is realized in the ana-
lyzer GOBLINT (Vojdani et al. 2016). To a certain extent, this approach can be accommodated
also to analyses taking mutexes into account such as Mine (2012, 2014). One way of conveniently
combining flow-insensitive analysis of shared data with context-sensitive analysis of local state is
by extending systems of equations with side effects (Apinis et al. 2012). Side effects during solving
should be seen in analogy to the meta-predicate assert in PROLOG clauses: while computing a
contribution to the predicate of the head, a contribution to some other predicate is triggered. A
right-hand side function f �x in monadic form now has type:

(X � →M(D))→ (X →D→M(•))→M(D)

for any monad M. The • here represents the one-element complete lattice • = {()}. The second
argument function is meant to be called for triggering side effects. These events are observed by
the solver, but otherwise do not affect the computed value. Accordingly, the return values of the
second argument function should be inM(•).

Example 15. Consider the program from Example 14. Let us assume that we use intervals as
values for each of these unknowns. Since the functions have no local variables, but a return value
each, let us represent the local state of a function by a single interval as well which may initially be
thought of having value � = [− ∞,∞]. The part of the system of abstract equations for calling
contexts � is given by the right-hand sides (in monadic form) of the unknowns g, h as well as
main, and f corresponding to the end points of the respective functions:

f �g get set = returnØ
f �h get set = returnØ

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1115

f �main get set = bind (set g [0, 0]) (fun ()→
bind (set h [0, 0]) (fun ()→
bind (get f) (fun _ →
bind (set g [1, 1]) (fun ()→
return [0, 0]))))

f �f get set = bind (get g) (fun d →
if¬(d ⊆ [0, 0]) then

bind (set h [1, 1]) (fun ()→
return [0, 0])

else return [0, 0])

The unknowns g and h corresponding to the global variables of the program thus have trivial
right-hand sides. Both unknowns are meant to receive their values solely via side effects.

Due to parametricity in the monad, each right-hand side function of a side-effecting abstract
system of equations again can be represented by a generalized execution tree tx such that f �x =
�tx�. Generalized execution trees now make not only explicit which unknowns are accessed, but
also which side effects should be triggered during evaluation. Therefore, they additionally may
contain a constructor

S (X �,D, T)

The intention is that evaluation of S (x, d, t) first adds d ∈D to the value of x and then continues
with the evaluation of t. Accordingly, the semantics of such a generalized tree t is the function
�t� : (X � →M(D))→ (X � →D→M(•))→M(D) which for functions get :X →M(D) and
set :X →D→M(•) is defined by

�A d� get set = return d
�Q (x, f)� get set = bind (get x) (fun d → �f d� get set)
�S (x, d, t)� get set = bind (set x d) (fun ()→ �t� get set)

In case of a state transformer monad with set of states S, this amounts to

�A d� get set s = (s, d)
�Q (x, f)� get set s = let (s′, d)= get x s

in �f d� get set s′
�S (x, d, t)� get set s = let (s′, _)= set x d s

in �t� get set s′

Consider the set of extended states S= (X � →D)×P(X �)× (X � →D) where the third compo-
nent accumulates side effects. Consider the functions

get x (σ , X, ρ) = let d = σ x
in ((σ , X ∪ {x}, ρ), d)

set x d (σ , X, ρ) = let ρ = ρ ⊕ {x → ρ x � d}
in ((σ , X, ρ), •)

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1116 H. Seidl and R. Vogler

Then, the elaborated right-hand side function F�x has type

F�
x : (X � →D)→ (D×P(X �)× (X � →D))

where the third component of the result represents the side effects to other unknowns encoun-
tered during evaluation of f �x. This function is given by:

F�
x σ = let ((_, X, ρ), d)= f �x get set (σ , Ø,⊥)

in (d, X, ρ)

Example 16. Let us consider the right-hand side functions from Example 15 for the interval
analysis of the program in Example 14 at the beginning of this section. These are now are given by

tg = AØ
th = AØ
tmain = S (g, [0, 0], S (h, [0, 0],

Q (f , fun _ → S (g, [1, 1], A [0, 0]))))
tf = Q (g, fun d → if¬(d ⊆ [0, 0]) then S (h, [1, 1], A [0, 0])

else A [0, 0])

The computation tree tmain formain first produces side effects [0, 0] onto the unknowns g and h,
respectively. Then, it queries the return value of f , but ignores that value. This query enables the
local solver to start the evaluation of the unknown f and thus the exploration of the function f.
Subsequently, another side effect [1, 1] is produced onto the unknown g, before the value [0, 0]
is returned. The computation tree tf for f first queries g. Depending on the obtained value, a
side effect of [1, 1] is produced onto the variable h or omitted. Eventually then the value [0, 0] is
returned. Elaboration of the right-hand side functions results in the functions

F�g σ = (Ø, Ø,⊥)
F�

h σ = (Ø, Ø,⊥)
F�
main σ = ([0, 0],

{
f
}
,⊥ ⊕ {g → [0, 1]})

F�
f σ = ([0, 0],

{
g

}
,⊥ ⊕ {h → if¬(σ g ⊆ [0, 0]) then [1, 1] elseØ})

Here, ⊥ denotes the assignment mapping each unknown to ⊥ – which in the example equals Ø.
As can be seen for main, elaborated right-hand side functions may combine multiple side effects
to the same unknown (in this case, g) into one and also no longer differentiate when during the
evaluation, each side effect is produced.

Side effects also come in handy when only parts of the context are used to discriminate procedure
calls (Apinis et al. 2012). Assume that we are given a mapping π :D→A for some set A of dis-
tinguishing abstract properties of contexts. Consider the abstract effect of a call to a procedure p.
Let u, v denote the program points before and after the call, respectively. Then for every abstract
context a ∈A, the right-hand side for the unknown 〈v, a〉 is given by

f �v,a get set= bind (get 〈u, a〉) (fun d → let a′ = π d in
bind (set 〈stp, a′〉 d) (fun () →
bind (get 〈retp, a′〉) (fun d′ →
return (combine� d d′))))

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1117

or, alternatively, by the computation tree

Q (〈u, a〉, fun d → let a′ = π d in
S (〈stp, a′〉, d,
Q (〈retp, a′〉, fun d′ →
A (combine� d d′))))

where combine� :D→D→D again combines the abstract program state attained at the end-
point retp of p with the state before the call to the state of the caller after the call.

In this formalization, the side effect to the start point stp of the called procedure p is used to
accumulate all values d leading to the same abstract context a′ for which p is analyzed. In order
to prove the resulting analysis sound, it is convenient to reformulate also the concrete collecting
semantics by introducing side effects. For a concrete program state q, the right-hand side E 〈v, q〉 σ

for the unknown representing the procedure call in concrete calling context q, is given by

let S = σ 〈u, q〉 in
let S′ = {combine q′ q′′ | q′ ∈ S, q′′ ∈ σ 〈retf , q′〉} in
let X′ = {〈u, q〉} ∪ {〈retf , q′〉 | q′ ∈ S} in
let E′ = {〈stf , q′〉 → {q′} | q′ ∈ S} in

(S′, X′, E′)

For convenience we here introduce the convention that those unknowns not explicitly listed as
arguments in E′ are implicitly all mapped to ⊥ (Ø in case of the concrete collecting semantics).

Interestingly, the description relation R between unknowns of the concrete and abstract sys-
tems can now no longer be specified as is, but must take some over-approximation ρ of all abstract
side effects into account. In order to see this, assume for a moment that the set A contains a single
element •, that is, procedures are analyzed without context. Consider the unknown 〈stp, •〉 for
the procedure p. This unknown should describe concrete unknowns 〈stp, q〉 – however, not for all
program states q. Instead, only those qmust be taken into account which actually occur as calling
contexts of p in the collecting semantics of the program. A (hopefully not too large) superset of
these is given by γ (ρ〈stp, •〉) if ρ is an over-approximation of the side effects encountered during
the abstract fixpoint iteration. More generally, we define for interprocedural analysis with a set A
of abstract distinguishing contexts,

〈u′, q〉Rρ 〈u′, a〉 iff q ∈ γ (ρ 〈stp, a〉)
if u′ is a program point of the procedure p and a ∈A. Subsequently, we therefore assume that
we are given a description relation Rρ⊆X ×X � between the concrete and abstract unknowns
depending on some over-approximation of the side effects ρ. As in Section 3, the description
relation Rρ on unknowns is extended to sets of unknowns and assignments to unknowns, right-
hand sides and systems of equations. For elaborated right-hand side functions F, F�, FRρ F� is
meant to hold whenever for assignments σ , σ� with σ Rρ σ �, the following holds:

• (F σ)1 ⊆ γ (F� σ �)1;
• (F σ)2 Rρ (F� σ �)2 where
• (F σ)3 Rρ ρ as well as (F� σ �)3 � ρ.

while then for equation systems E , E�, E Rρ E� holds if Fx Rρ F�
x� holds for all unknowns x, x�

with xRρ x�.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1118 H. Seidl and R. Vogler

Accordingly, the mapping ρ is used to de-couple individual occurrences of side effects in right-
hand sides of the concrete and the abstract semantics, respectively. Now assume that we are given
a system E� of abstract equations with side effects where the elaborated right-hand side for an
unknown x ∈X � is given by F�x : (X � →D)→ (D×P(X �)× (X � →D)). Assume that leaf is a
subset of abstract unknowns y where the right-hand side is described by the computation tree
A⊥, that is, F�y σ = (⊥, Ø,⊥) where ⊥ is the mapping which assigns ⊥ to each unknown. For
convenience, we make the extra assumption that side effects only occur to unknowns in leaf.

A partial post-solution of E� has to take side effects incurred by the evaluation of the right-
hand sides into account. Let σ :X � →D and dom� ⊆X �. Then we call dom� (σ , E�)-closed if for
all x ∈ dom� and F�x σ = (d, X, E), X ⊆ dom� and also E y �= ⊥ only for unknowns y ∈ dom�. The
pair (σ , dom�) is a partial post-solution of E� if

1. dom� is (σ , E�)-closed, and
2. for all x ∈ dom� with F�x σ = (d, X, E),

(a) σ
 E, and
(b) σ x
 d.

Our goal is to design an extension of the generic local solver TDterm which is able to deal with
side-effecting systems of abstract equations. Due to the intertwined narrowing iterations, property
(2.b) may be violated. Therefore, consider a pair (σ , dom�) satisfying properties (1) and (2.a). Let
ρ :X � →D denote the accumulated side effects of the pair, that is,

ρ y=
⊔

{(F�
x σ)3 y | x ∈ dom�}

We remark that ρ y �= ⊥ only for unknowns y ∈ dom�. Let Eρ denote the system of abstract
equations (without side effects) where the right-hand side f ρx of x ∈X � is given by

f ρx σ ′′ = bind (f �x σ ′′ (fun _ _→ return ())) (fun b→ return (ρ x � b))
for σ ′′ :X →M(D). This means that all side effects are now ignored, while instead the returned
values take the contributions of ρ into account. For the elaborated right-hand side for x and σ :
X →D, this means that

Fρ
x σ ′ = let d = ρ x � (F�x σ ′)1 in

let X = (F�x σ ′)2 in
(d, X)

Let σρ denote the least solution of the lower monotonization of Eρ . Then, we replace condition
(2.b) for (σ , dom�) with the condition

(2.b′) σρ x� σ x for all x ∈ dom�.

In this case, we call (σ , dom�) an improved partial post-condition. The significance of that notion
is provided by the next proposition.

In the following, we assume that the concrete system E of equations may have side effects, but is
monotonic. In that case, it also has for each subset X of unknowns, a unique least partial solution
(σ , dom) with X ⊆ dom. For the following proposition, we make the reasonable assumption that
the abstract value ⊥ only describes an empty set of concrete states, that is, γ ⊥ =Ø. In an earlier
version of this paper, we additionally introduced the restriction that each concrete unknown x
is described by at most one unknown x� in the abstract. This property, for example, is met for
unknowns representing global variables such as g and h in Example 14 – but is violated when par-
tial contexts are used. Removal of the given restriction is now possible due to the parametrization

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1119

of the description relation R, that is, the (perhaps) surprising observation that the description
relation may not be given before-hand – but is calculated by the analysis itself. We have:

Proposition 4. Assume that (σ�, dom�) is an improved partial post-solution of E� with X� ⊆ dom�,
and that E Rρ E� holds and XRρ X� for some set X of concrete unknowns. Assume further that
(σ , dom) is the least partial solution of the concrete system with X ⊆ dom, Then (σ , dom)Rρ

(σ�, dom�) holds.

Proof. Let ρ = ⊔{(F�y σ�)3 | y ∈ dom�} denote the accumulated side effect corresponding to
σ�. Let σρ denote the least solution of the lower monotonization Eρ . As in the case without
side effects, we proceed by ordinal induction. For each ordinal ι, we define the corresponding
approximation (σ ι, domι) of (σ , dom) by:

• σ 0 x=Ø for all x ∈X and dom0 = X;
• For each successor ordinal ι′ = ι + 1,

σ ι′ y = (Fy σ ι)1 ∪ {(Fz σ ι)3 y | z ∈ domι}
domι′ = domι ∪ ⋃{(Fy σ ι)2 | y ∈ domι} ∪

{y | z ∈ domι, (Fz σ ι)3 y �=Ø}
• For each limit ordinal ι′, σ ι′ y= ⋃{σ ι y | ι < ι′}, and domι′ = ⋃{domι | ι < ι′}.

where generally, σ ι′ y=Ø for all y �∈ domι′ . Our goal is to prove for each ordinal ι′, that
(σ ι′ , domι′)Rρ (σ�, dom�) holds. This assertion clearly holds for ι′ = 0, and also for each limit
ordinal ι′, if it holds for each ordinal ι < ι′. Therefore, it remains to consider the case of a succes-
sor ordinal ι′ = ι + 1. Then, we have by inductive hypothesis, for each y ∈ domι, there exists some
y� ∈ dom� with yRρ y�, and also σ ι Rρ σ �. Since E Rρ E�, we have that for each such y�,

(Fy σ ι)1 ⊆ γ ((F�
y� σ �)1)

and thus likewise,

(Fy σ ι)1 ⊆ γ ((F�
y� σ �)1)

⊆ γ (σρ y�)
⊆ γ (σ� y�)

furthermore for unknowns z ∈ domι and z� ∈ dom� with zRρ z�,

(Fz σ ι)3 y ⊆ γ (ρ y�)
⊆ γ (σρ y�)
⊆ γ (σ� y�)

Altogether therefore,

σ ι′ y⊆ γ (σ� y�)

which we wanted to prove. It remains to prove that also domι′ Rρ dom� holds. By induction
hypothesis for ι, domι Rρ dom� holds. Since E Rρ E�, also (Fy σ ι)2 Rρ (F�

y� σ �)2 holds. Moreover,
(Fz σ ι)3 y �=Ø implies that ρ y� �= ⊥whenever yRρ y� holds. But then there must be some z� with
(F�

z� σ �)3 y� �= ⊥. Accordingly, y� ∈ dom�. This completes the proof.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1120 H. Seidl and R. Vogler

In light of Proposition 4, it therefore suffices to design algorithms for computing improved par-
tial post-solutions of the abstract system starting from a given set of abstract unknowns. For that,
we assume that the abstract system E� provides us for each abstract unknown x� ∈X �, with a right-
hand side function f �x� of type (X →M(D))→ (X →D→M(•))→M(D) for every monad
M. As before, the solver state is maintained in mutable data structures. Therefore, the algorithm
assumes right-hand side functions to have the OCAML type (X →D)→ (X →D→ •)→D. As
an extension of TDterm, we introduce the solver TDside. In order to decide whether or not the
different side effects to a leaf unknown y should be combined by the join operator � or widening,
the solver now maintains an additional data structure to record for each unknown y the set of
unknowns from which it has received a side effect.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1121

The functions destabilize and eval have not been changed. New, however, is the function side.
A call side x y d realizes the side effect from the unknown x onto the unknown y by combining the
old value for y in σ with the new contribution d. If y is marked as a widening point, the value is
combined using the widening operator, otherwise using the join operator. Generally, y is marked
as stable. If the result is different from the old value for y, then the value of y in σ is updated, and
all influenced unknowns are destabilized by means of the call destabilize y.

In order to decide whether y should be included into the set point, the algorithm maintains
for each (leaf) unknown y′ the set sides y′ of all unknowns whose evaluations so far have led to
an increase of the value of y′. Thus, if the current contribution d is not subsumed by σ y and x is
already contained in sides y, then y is added to the set point.

We remark that the call side x y d may update the value of the leaf unknown y, but does not
itself call the procedure solve. Accordingly, it removes those unknowns from stable whose latest
values have been computed based on the out-dated assumption on y.

Finally, the main function solve is adapted to take side effects into account. This means that the
evaluation of the right-hand side for an unknown x must now take the partial application side x
as second argument. In presence of side effects, we may no longer assume that, after evaluation
of f �x (eval x) (side x), the left-hand side x is necessarily contained in stable. Destabilization of x
could only have been caused due to some side effect during solving of subsequent unknowns. In
this case, we call solve ∇ x – no matter whether we had already reached the narrowing iteration
for x or not.

Example 17. Consider, for example, the abstract equation system from Example 16 for the
program from Example 14.

Starting TDside for the unknownmain in an initial solver state s0 where all data structures are
empty, will first produce side effects to g, h and record that increasing side effects have occurred
frommain. Then the evaluation of the unknown f is triggered.

Evaluating the computation tree tf will query g (which is already found stable) and result in
another side effect to h. None of these unknowns so far is put into the set point.

Continuing with the evaluation of the computation tree tmain will produce another side effect
onto g. Since the value of g in σ is again modified, g is now put into the set point. Furthermore,
destabilize g is called – which will remove f as well as main from the set stable. At that point,
main is still contained in called. This implies that solve ∇ main is called again.

The second round of solving with∇ , though, will only update the values of h (recording at h an
increasing contribution from f) and main in σ to [0, 1] and [0, 0], respectively, while leaving all
unknowns in stable. Also, the subsequent call destabilize main will not removemain from stable,
and the iteration terminates with

σ = {g → [0, 1], h → [0, 1], f → [0, 0],main → [0, 0]}

We remark that in the preliminary version of the solver TDside in Seidl and Vogler (2018), the
fresh values for globals are always combinedwith the corresponding old values bymeans of widen-
ing. This has been improved in the present version of the solver where widening for globals is
restricted only to those globals which have been put into point.

In order to reason about termination and soundness of TDside, we extend the notion
of consistency as introduced in Section 5 appropriately. We now call a solver state s=
(σ , infl, sides, stable, called, point) consistent if

1. for all x ∈ (stable \ called),
(a) for all y ∈ (F�xσ)2, y ∈ (stable ∪ called) and x ∈ infl y holds;
(b) for all y with (F�xσ)3 y �= ⊥, (F�xσ)3 y� σ y;

2. for each x �∈ (stable ∪ called), infl x=Ø.
https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1122 H. Seidl and R. Vogler

With this modified definition, the invariant for destabilize from Section 5 essentially
remains the same, while the invariants for solve and eval must be refined. Each
call solve p x encountered during the evaluation of the initial call, starts in a consistent
solver state s= (σ , infl, sides, stable, called, point). Upon its termination, a solver state s′ =
(σ ′, infl′, sides′, stable′, called′, point′) is attained such that s= s′ when x ∈ stable∪ called. If x �∈
called∪ stable, the following holds:

1. s′ is again consistent;
2. called′ = called where σ ′ y= σ y for all y ∈ called;
3. sides y⊆ sides′ y for all y, and point⊆ point′;
4. x ∈ stable′.

In particular, the set of stable unknowns is not necessarily monotonically increasing.
Each call eval x y encountered during the evaluation, starts in a consistent state s=

(σ , infl, sides, stable, called, point) where x ∈ called (no longer necessarily also in stable). Upon its
termination, a solver state s′ = (σ ′, infl′, sides′, stable′, called′, point′) is attained such that

1. s′ is again consistent;
2. called′ = called where σ ′ y′ = σ y′ for all y′ ∈ called;
3. sides y′ ⊆ sides′ y′ for all y′, and point⊆ point′;
4. If y ∈ stable∪ called, then

• σ ′ = σ , sides′ = sides, stable′ = stable, and point′ = point if y �∈ called whereas point′ =
point∪ {y} if y ∈ called;

• infl′ y′ = infl y′ for all y′ �= y, and
• infl′ y= infl y ∪ {x};

5. y ∈ stable′, x ∈ infl′ y, and the value σ ′ y is returned.

In particular upon termination of eval x y, we are also no longer guaranteed that x ∈ stable′.
Each call side x y d encountered during the evaluation, starts in a consistent state s=

(σ , infl, sides, stable, called, point) where x ∈ called. Upon its termination, a solver state s′ =
(σ ′, infl′, sides′, stable′, called′, point′) is attained such that s= s′ whenever d � σ y. Otherwise,

1. s′ is again consistent where called′ = called;
2. sides′ y= sides y ∪ {x}, and sides y′ = sides′ y′ for all y′ �= y;
3. If x ∈ sides y then point′ = point∪ {y}, and point′ = point otherwise;
4. σ ′ y
 σ y � d, and σ y′ = σ ′ y′ for all y′ �= y;
5. y ∈ stable′ where infl′ and stable′ are obtained from infl and stable by destabilizing y, that

is, for all y′, infl′ y′ either equals Ø or infl y′ where infl′ and stable′ are maximal so that s′ is
consistent while infl′ y=Ø and infl y ∩ stable′ =Ø.

Given that the number of unknowns encountered during the evaluation of the right-hand side
is finite, let us first assume that only finitely many calls side x y d ever will result in a modification
of σ . Once within the iteration on some x, σ is no longer modified due to side effects; however,
the same invariants as for the non-side-effecting solver TDterm apply – allowing us thus to deduce
that each encountered call to solve will necessarily terminate. Now assume for a contradiction,
that for some consistent solver state, the evaluation of solve p x results in an infinite number of
updates to leaf unknowns, say from set G. From some point on then all leaf unknowns y which
have been added to pointwill not change anymore. In particular, none of the unknowns fromG has
been added to point. Then, there must exist some unknown x′ and some unknown g ∈G so that
an infinite sequence of calls solve pi x′ is encountered for consistent solver states si immediately

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1123

before these calls where during the evaluation of the right-hand side of x′ in each of these calls,
a side effect to g occurs which results in a change to the value of g. After the first call, however,
x′ necessarily will be contained in the set sides y, that is, is contained in sides y at states si for all
i≥ 2. This means that g is contained in the set point after the second call – in contradiction to our
assumption. We therefore obtain:

Theorem 5. Let E� denote an arbitrary system of abstract equations, and x0 ∈X � is the unknown
of interest. Assume that initially the sets called and stable are empty, and likewise, infl maps each
unknown to the empty set. Then, the call solve x0 of solver TDside will always terminate, as long as
only finitely many unknowns are encountered.

Likewise, we can adapt the proof of Theorem 2 for the case of no side effects to obtain:

Theorem 6. Each call solve ∇ x encountered during the evaluation of the call solve x0 starting in
a saturated solver state s= (σ , infl, stable, called, point), results upon termination, in a solver state
s′ = (σ ′, infl′, stable′, called′, point′) which is again saturated where additionally x ∈ stable′.
The proof is based on a variant of the proof of Theorem 2. Taking into account that from
some point in evaluation on, only calls solve p x occur where σ y does no longer change for any
encountered unknown y ∈ leaf via side effects, we obtain as a corollary:

Corollary 5. Assume that E� is a system of abstract equations with side effects and x0 is an unknown
of E�. Assume that the sets stable and called are empty, and infl maps each unknown to Ø. Assume
that the top-level call solve x0 is evaluated by TDside for E�. Let σ and stable denote the values
of these data structures after termination. Then x0 ∈ stable, and (σ , stable) is an improved partial
post-solution of E�.

10. Experimental Evaluation
We implemented the presented solvers within the analysis framework GOBLINT.1 In particu-
lar, we also realized a solver TDspaceτ +side which combines the optimization for space with side
effects (see Appendix C for this solver). The solvers were evaluated on the SPECint benchmark
suite2 consisting of not too small real-world C programs (1600–34,000 LOC after preprocess-
ing). The programs 433.milc, 470.lbm, and 482.sphinx are part of the CFP2006 benchmark suite.3
Furthermore, the following C programs were analyzed: duff-0.5,4 ent-2008-01-28,5 figlet-2.2.5,6
maradns-1.4.06,7 wget-1.12,8 and some programs from the coreutils9 package. The analyzed pro-
gram wget-1.12 is the largest one with around 77,000 LOC. However, lines of code is not a good
metric for complexity since there might be a lot of unused definitions from header files, and on
the other hand many revisited lines due to loops and function calls. The most complex program
by number of unknowns is 458.sjeng with 322,321 unknowns but only 17,336 LOC.

On top of a basic analysis of pointers and strings, we put an interval analysis of integer vari-
ables. By this, we chose the simplest meaningful setup where widening and narrowing is required.
Clearly, at the expense of worse scalability, more complicated abstract domains could be tried
within the same analysis framework. The benchmark programs were analyzed with full context-
sensitivity of local data while globals were treated flow-insensitively. For programs with recursive
function calls, the functions will be analyzed for more andmore contexts which may lead to exces-
sively long analysis times, stack overflows, or exhaustion of memory. We added an extra option
that keeps the contexts for currently called functions for each unknown and widens the context
for recursive calls. This can be seen as an abstraction of the call stack with a partial map from
function names to abstract calling contexts. This partial map itself is not included into the con-
text, but propagated via side effect to the entry points of the called functions. The analysis of the
following programs only terminated with this widening on contexts enabled (these are suffixed

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1124 H. Seidl and R. Vogler

Figure 3. Performance of TDspaceτ +side vs. TDside.

with * below in figures and text): 458.sjeng, 482.sphinx, duff-0.5, maradns-1.4.06, coreutils-8.13-ls,
coreutils-8.13-sort. The analysis of the following programs did not terminate within the given
timeout of eight hours: 400.perlbench, 445.gobmk, wget-1.12. Our hypothesis is that widening on
contexts for these programs still results in too many intermediate contexts. All benchmarks ran
with an increased stack space of 48 MB (ulimit -Ss 49152).

Figure 3 compares the solvers TDspaceτ +side and TDside in terms of space and time. As a met-
ric for space, we choose the total number of unknowns (i.e., occurring pairs of program points
and contexts), and for time the total number of evaluations of right-hand sides of correspond-
ing unknowns. Solver TDside requires more than four times as many unknowns as the solver
TDspaceτ +side. As expected, the price to be paid by solver TDspaceτ +side for the fewer unknowns
is an increase in the number of evaluations of right-hand sides. In practice, the CPU times and
memory usage are of interest. For our experiments, we used an Intel Xeon E3–1270 v3 (3.50GHz)
with 32GB of RAM.

Table 1 shows the number of unknowns, evaluations, the CPU time, and peak memory usage
for TDside (left columns) and TDspaceτ +side (right columns). The maximum values for each col-
umn are bold. In the benchmark column, coreutils has been shortened to cu, as well as zoneserver
to zs. The run times roughly correlate with the number of required evaluations of right-hand
sides. Concerning memory usage, TDspaceτ +side was 69% of TDside on average with widening of
contexts enabled, and 92% for benchmarks that ran without widening of contexts. The minimum
memory usage was around 29MB which can be seen as the overhead of the rest of the analyzer
and the garbage collector. The memory saving gets more noticeable with an increasing number
of unknowns. The biggest benchmarks 458.sjeng* and maradns-1.4.06* only consumed 43% and
69% of memory compared to TDside. We have not profiled how efficiently intermediate values

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

M
athem

aticalStructuresin
Com

puterScience
1125

Table 1. Performance of TDside and TDspaceτ +side

Benchmark Unknowns Evaluations CPU time Max. memory (kB)

401.bzip2 7862 1616 38,688 161,058 18s 54s 112,212 80,472
429.mcf 1170 237 4806 7832 1s 1s 35,076 31,880
433.milc 27,701 5482 168,806 347,940 48s 1m23s 250,736 219,508
456.hmmer 59,244 8085 169,152 2,929,793 1m05s 12m41s 304,312 286,580
458.sjeng* 322,321 15,760 3,875,316 45,040,785 1h04m50s 5h52m07s 4,187,152 1,807,292
470.lbm 760 221 4702 11,745 2s 4s 35,340 31,812
482.sphinx* 34,508 6910 285,221 1,027,653 2m49s 5m52s 389,660 174,352
duff-0.5* 5459 698 36,617 127,181 14s 42s 82,584 56,244
ent-2008-01-28 402 83 1581 4916 0s 1s 30,808 30,024
figlet-2.2.5 9826 1745 120,985 408,616 55s 2m53s 181,564 161,036
maradns-1.4.06* 112,183 14,176 2,903,539 11,338,976 38m56s 2h14m34s 1,820,228 1,257,744
maradns-1.4.06-zs 77,952 12,828 237,864 10,845,779 2m09s 52m04s 337,788 550,736
cu-8.13-cksum 4166 1200 15,215 63,015 9s 23s 124,292 122,900
cu-8.13-cp 43,701 9694 131,799 868,455 1m23s 5m25s 338,472 252,744
cu-8.13-cut 4786 1234 19,170 82,416 10s 29s 139,472 122,944
cu-8.13-dd 10,310 2757 30,999 229,873 16s 1m10s 154,840 154,320
cu-8.13-df 20,065 4540 129,465 513,894 1m32s 4m59s 272,676 196,580

https://doi.org/10.1017/S0960129521000499 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0960129521000499

1126
H
.Seidland

R.V
ogler

Table 1. Continued

Benchmark Unknowns Evaluations CPU time Max. memory (kB)

cu-8.13-du 30,526 8229 133,769 1,037,280 1m04s 5m56s 293,188 267,896
cu-8.13-ls* 60,075 16,792 824,927 4,013,155 13m31s 38m25s 927,208 958,180
cu-8.13-mv 32,992 7094 117,967 558,431 1m10s 3m29s 304,276 251,536
cu-8.13-nohup 10,316 3301 34,889 153,365 18s 50s 139,700 137,732
cu-8.13-ptx 22,214 6667 115,046 522,881 58s 3m10s 250,500 196,868
cu-8.13-sort* 90,273 25,972 2,037,968 19,274,196 30m19s 2h46m02s 1,237,384 1,079,776
cu-8.13-tail 15,957 4211 49,279 270,897 23s 1m28s 173,916 155,124

https://doi.org/10.1017/S0960129521000499 Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1127

Figure 4. Absolute run times of TD� vs. TDside.

can be freed by the garbage collector. The results without widening of contexts give an indica-
tion how TDspaceτ +side could be useful for bigger benchmarks: for maradns-1.4.06* it calculated
25,755 widening points, whereas TDside only managed to calculate 4797 widening points before
both failed with a stack overflow with 3.15GB and 6.23GB peak memory usage, respectively.

Another important question is how the TD� solver, that is the version of the TD solver
equipped with the warrowing operator as in Apinis et al. (2016) and enhanced with our novel
treatment of side effects, compares with the solver TDside in terms of run time and precision.
Interestingly, we found that TDside on average runs 25% longer and gives the same results, that is,
no differences in precision. The run times of the two variants are shown in Figure 4 in absolute
numbers as well as in Figure 5 in relation.

Finally, we also compared the impact of reluctantly widening for globals (as in the algorithm
from the present paper) with default widening (as considered in Seidl and Vogler 2018). The run
times of the two variants are the same on average. The detection of widening points for side effects
leads to higher precision for globals compared to always widening (which was nevermore precise).
The advantage in precision depends on the configuration of the analyzer as well as the analyzed
program. 21 out of the 24 benchmarks had higher precision. Of those, the average increase of
precision was 2.94%. The highest precision benefit was 25% for the benchmark 429.mcf.

All in all, we find that the optimization for space consumption had a significant beneficial
impact on the practical behavior of the resulting solver – a factor of five in the number of
unknowns may be a game changer for the overall space consumption, even at the expense of
longer running times. On the given benchmarks, though, it did not result in different (practical)
termination behavior.

11. Conclusion
The generic local solver TD from Hermenegildo and Muthukumar (1992), Charlier and
Van Hentenryck (1992) is not suited to deal with complicated abstract domains with infinite

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1128 H. Seidl and R. Vogler

Figure 5. Relative run times of TDside over TD�.

strictly ascending and/or descending chains. Equipping the original TD with warrowing as
in Apinis et al. (2016) on the other hand results in a solver which is only guaranteed to termi-
nate for monotonic systems of abstract equations, and as is, provides no support for side-effecting.
Therefore, we have provided three enhancements or additions. First, we considered extra program
logic to conceptually guarantee termination for arbitrary systems of abstract equations – whenever
only finitely many unknowns are encountered. We then showed how the self-monitoring capa-
bility of the solver can be used to reduce space consumption by only storing values at unknowns
where also widening and narrowing should be applied. We finally indicated how these solvers can
be extended to local generic solvers that operate on side-effecting systems of abstract equations. All
three solvers could be proven to conceptually terminate (whenever only finitely many unknowns
are encountered). The terminating variant could be proven sound by referring to the lower mono-
tonization of the system of abstract equations. In the space-efficient version, that concept had to
be complemented with an argument about consistent closures of mappings. In presence of side
effects, we additionally had to collect all occurring side effects before-hand and apply the lower
monotonization only then.

Compared to the preceding conference version of this paper (Seidl and Vogler 2018), we have
elaborated the proofs considerably. In particular, we have provided detailed invariants for the
solvers to hold, which can be formally verified by local reasoning over the code. We have also
generalized the concept of description relations between concrete and abstract unknowns and
illustrated the approach by meaningful examples. Finally, we have re-done the experimental eval-
uation in order to take the latest evolution of the analyzer GOBLINT into account, which has
introduced a variety of improvements, for example, at the treatment of integer domains and con-
ditions, and removed a series of subtle soundness bugs. The goal thereby was to pin-point the
impact of design decisions such as using TD� vs. the new one, the TDside vs. TDspaceτ +side or to
what extent the novel technique of auto-detection of widening points at side-effected unknowns
is preferable to default widening. Practically, the terminating solver with side effects as well as
its space-efficient version turned out to be promising fixpoint engines for static analyzers based

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1129

on side-effecting systems of equations. Further experimentation is required to evaluate how well
these solvers behave for advanced static analyses, for example, for complicated relational domains
or more sophisticated analyses of dynamic data structures. It also remains for future research to
explore in how far information gathered during the fixpoint iteration itself can systematically be
used for further increasing either precision or efficiency of TD solvers.

Conflicts of interest
The authors declare none.

Notes
1 http://goblint.in.tum.de/
2 https://www.spec.org/cpu2006/CINT2006/
3 https://www.spec.org/cpu2006/CFP2006/
4 http://duff.dreda.org/
5 http://www.fourmilab.ch/random/ (version 28.01.2008).
6 http://www.figlet.org/
7 http://www.maradns.org/
8 https://www.gnu.org/s/wget/
9 https://www.gnu.org/s/coreutils/

References
Amato, G., Scozzari, F., Seidl, H., Apinis, K. and Vojdani, V. (2016). Efficiently intertwining widening and narrowing. Science

of Computer Programming 120 1–24.
Apinis, K., Seidl, H. and Vojdani, V. (2012). Side-effecting constraint systems: A swiss army knife for program analysis. In:

Jhala, R. and Igarashi, A. (eds.) Programming Languages and Systems - 10th Asian Symposium, APLAS 2012, Kyoto, Japan,
December 11–13, 2012. Proceedings, Lecture Notes in Computer Science, vol. 7705, Springer, 157–172.

Apinis, K., Seidl, H. and Vojdani, V. (2016). Enhancing top-down solving with widening and narrowing. In: Probst, C. W.,
Hankin, C. and Hansen, R. R. (eds.) Semantics, Logics, and Calculi - Essays Dedicated to Hanne Riis Nielson and Flemming
Nielson on the Occasion of Their 60th Birthdays, Lecture Notes in Computer Science, vol. 9560, Springer, 272–288.

Bourdoncle, F. (1993). Efficient chaotic iteration strategies with widenings. In: Bjørner, D., Broy, M. and Pottosin, I. V. (eds.)
Formal Methods in Programming and Their Applications, International Conference, Akademgorodok, Novosibirsk, Russia,
June 28–July 2, 1993, Proceedings, Lecture Notes in Computer Science, vol. 735, Springer, 128–141.

Bruynooghe, M., Janssens, G., Callebaut, A. and Demoen, B. (1987). Abstract interpretation: Towards the global optimization
of prolog programs. In: Proceedings of the 1987 Symposium on Logic Programming, San Francisco, California, USA, August
31–September 4, 1987, IEEE-CS, 192–204.

Charlier, B. L. and Van Hentenryck, P. (1992). A universal top-down fixpoint algorithm. Technical report, Providence, RI,
USA.

Cousot, P. (2015). Abstracting induction by extrapolation and interpolation. In: D’Souza, D., Lal, A. and Larsen, K. G. (eds.)
Verification, Model Checking, and Abstract Interpretation - 16th International Conference, VMCAI 2015, Mumbai, India,
January 12–14, 2015. Proceedings, Lecture Notes in Computer Science, vol. 8931, Springer, 19–42.

Cousot, P. and Cousot, R. (1977). Abstract interpretation: A unified lattice model for static analysis of programs by construc-
tion or approximation of fixpoints. In: Graham, R. M., Harrison, M. A. and Sethi, R. (eds.) Conference Record of the Fourth
ACM Symposium on Principles of Programming Languages, Los Angeles, California, USA, January 1977, ACM, 238–252.

Cousot, P. and Cousot, R. (1992). Abstract interpretation frameworks. Journal of Logic and Computation 2 (4) 511–547.
Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A. and Rival, X. (2009). Why does Astrée scale up? Formal Methods in

System Design 35 (3) 229–264.
Fecht, C. and Seidl, H. (1999). A faster solver for general systems of equations. Science of Computer Programming 35 (2)

137–161.
Frielinghaus, S. S., Seidl, H. and Vogler, R. (2016). Enforcing termination of interprocedural analysis. In: Rival, X. (ed.) Static

Analysis - 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8–10, 2016, Proceedings, Lecture Notes in
Computer Science, vol. 9837, Springer, 447–468.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

http://goblint.in.tum.de/
https://www.spec.org/cpu2006/CINT2006/
https://www.spec.org/cpu2006/CFP2006/
http://duff.dreda.org/
http://www.fourmilab.ch/random/
http://www.figlet.org/
http://www.maradns.org/
https://www.gnu.org/s/wget/
https://www.gnu.org/s/coreutils/
https://doi.org/10.1017/S0960129521000499

1130 H. Seidl and R. Vogler

Gallagher, J. P. and Henriksen, K. S. (2006). Abstract interpretation of PIC programs through logic programming. In: SCAM,
IEEE Computer Society, 184–196.

Hermenegildo, M. (2000). Parallelizing irregular and pointer-based computations automatically: Perspectives from logic and
constraint programming. Parallel Computing 26 (13–14) 1685–1708.

Hermenegildo, M. V., Bueno, F., Carro, M., López-García, P., Mera, E., Morales, J. F. and Puebla, G. (2012). An overview of
Ciao and its design philosophy. Theory and Practice of Logic Programming 12 (1–2) 219–252.

Hermenegildo, M. V., Puebla, G., Bueno, F. and López-García, P. (2005). Integrated program debugging, verification, and
optimization using abstract interpretation (and the Ciao system preprocessor). Science of Computer Programming 58 (1–2)
115–140.

Hermenegildo, M., Mendez-Lojo, M. and Navas, J. (2007). A flexible (C)LP-based approach to the analysis of object-oriented
programs. In: LOPSTR, LNCS, vol. 4915, Springer, 154–168.

Hermenegildo, M. andMuthukumar, K. (1989). Determination of variable dependence information at compile-time through
abstract interpretation. In: North American Conference on Logic Programming, MIT Press, 166–189.

Hermenegildo, M. and Muthukumar, K. (1992). Compile-time derivation of variable dependency using abstract interpreta-
tion. Journal of Logic Programming 13 (2/3) 315–347.

Karbyshev, A. (2013). Monadic Parametricity of Second-Order Functionals. Phd thesis, Technical University Munich.
Lemieux, J. (2001). Programming in the OSEK/VDX Environment, CMP Media, Inc., USA.
Miné, A. (2001). The octagon abstract domain. In: Burd, E., Aiken, P. and Koschke, R. (eds.) Proceedings of the Eighth

Working Conference on Reverse Engineering, WCRE’01, Stuttgart, Germany, October 2–5, 2001, IEEE Computer Society,
310.

Miné, A. (2012). Static analysis of run-time errors in embedded real-time parallel C programs. Logical Methods in Computer
Science 8 (1) 1–63.

Miné, A. (2014). Relational thread-modular static value analysis by abstract interpretation. In: VMCAI’14, LNCS, vol. 8318,
Springer, 39–58.

Muthukumar, K. and Hermenegildo, M. (1990). Deriving a fixpoint computation algorithm for top-down abstract interpre-
tation of logic programs. Technical Report ACT-DC-153-90, Microelectronics and Computer Technology Corporation
(MCC), Austin, TX 78759, April 1990.

Seidl, H. and Vogler, R. (2017). Proving absence of starvation by means of abstract interpretation and model checking.
In: D’Souza, D. and Narayan Kumar, K. (eds.) Automated Technology for Verification and Analysis - 15th International
Symposium, ATVA 2017, Pune, India, October 3–6, 2017, Proceedings, Lecture Notes in Computer Science, vol. 10482,
Springer, 3–22.

Seidl, H. and Vogler, R. (2018). Three improvements to the top-down solver. In: Sabel, D. and Thiemann, P. (eds.) Proceedings
of the 20th International Symposium on Principles and Practice of Declarative Programming, PPDP 2018, Frankfurt am
Main, Germany, September 03–05, 2018, ACM, 21:1–21:14.

Vojdani, V., Apinis, K., Rõtov, V., Seidl, H., Vene, V. and Vogler, R. (2016). Static race detection for device drivers: The
GOBLINT approach. In: Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering,
ASE 2016, ACM, 391–402.

Vojdani, V. and Vene, V. (2009). GOBLINT: Path-sensitive data race analysis. Annales Universitatis Scientiarum Budape-
stinensis de Rolando Eotvos Nominatae, Sectio Geologica 30 141–155.

Walli, S. R. (1995). The posix family of standards. StandardView 3 (1) 11–17.

Appendix A. The Original Solver TD
For a better comparison, we recall the original solver TD in the formulation of Fecht and Seidl
(1999). This version is slightly more generic than the versions presented in Hermenegildo and
Muthukumar (1992), Charlier and Van Hentenryck (1992) as it does not refer explicitly to partial
tabulation of procedure summaries. In order to deal with non-monotonicity, the presented
version performs an accumulating iteration, that is, updates maintained values of unknowns with
the least upper bound of the respective old value and the new contribution. Side-effecting is not
supported.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1131

Similar to the solvers TDterm, TDspace or TDspaceτ +side, the algorithm starts with calling solve
for a particular unknown x0. By means of the two functions solve and eval, it descends into
unknowns accessed during the evaluation of right-hand sides for recursive evaluation. Similar to
what we still do, dependencies between unknowns are detected and recorded on-the-fly. Thereby,
the function destabilize for removing unknowns, possibly affected by an update to the value of σ
for an unknown, is identical in our algorithms.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1132 H. Seidl and R. Vogler

It is mentioned in Charlier and Van Hentenryck (1992) that an extension of the algorithm with
widening is possible. No mechanism, though, is provided for detecting widening points on-the-
fly. Also, no intertwined narrowing iteration is introduced. Since no widening/narrowing points
are at hand, it seems inevitable to use accumulating updates for all unknowns. Instead, our solvers
apply such merging at widening/narrowing points only (and there then together with ∇ or �) –
while at all other points, the old value in σ is replaced (or just recomputed).

Appendix B. The Solver TDspace with Caching
The generic local solver TDspaceτ enhances solver TDspace by additionally caching the values for
all unknowns y �∈ point which intermediately have been computed during the evaluation of a
right-hand side f �x for some unknown x ∈ point.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

Mathematical Structures in Computer Science 1133

The central modification of solver TDspace is that a fresh mutable map τ is created before eval-
uation of the right-hand side f �x inside a call solve p x. That map then is passed to the function
eval as an additional argument. In a call eval x τ y, x is an unknown in point whose right-hand
side is currently under evaluation; τ is the mutable map created in the surrounding call solve p x,
and y is the unknown whose value is currently queried. The value of τ y is only queried when
y �∈ called∪ point. When τ y is found to be different from⊥, this value will be returned. Otherwise,
evaluation of f �y (eval x τ) proceeds as in TDspace. If after evaluation, y still is not contained in
point, the new value for y is recorded in τ and then returned.

Appendix C. The Combined Solver TDspaceτ +side
In this appendix, we finally put all ingredients into one generic solver.

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499

1134 H. Seidl and R. Vogler

This solver now proceeds essentially as the solver TDspaceτ – but additionally takes side effects
into account. This means in particular that unknowns from the set leaf, that is, those which may
receive contributions via side effects, must now be treated by the function eval like unknowns
from point.

Cite this article: Seidl H and Vogler R (2021). Three improvements to the top-down solver. Mathematical Structures in
Computer Science 31, 1090–1134. https://doi.org/10.1017/S0960129521000499

https://doi.org/10.1017/S0960129521000499 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129521000499
https://doi.org/10.1017/S0960129521000499

	Three improvements to the top-down solver
	Introduction
	Concrete Systems of Equations
	Abstract Systems of Equations
	The Terminating Solver TDterm
	Termination of TDterm
	Correctness of TDterm
	The Space-efficient Solver TDspace
	Termination and Correctness of TDspace
	Side-Effecting Systems of Equations
	Experimental Evaluation
	Conclusion
	The Original Solver TD
	The Solver TDspace with Caching
	The Combined Solver TDspace-tau+side

