FRACTIONAL INTEGRATION AND THE HYPERBOLIC DERIVATIVE

E.G. KWON

We improve S. Yamashita's hyperbolic version of the well-known Hardy-Littlewood theorem. Let f be holomorphic and bounded by one in the unit disc D. If $(f^{\#})^{p}$ has a harmonic majorant in D for some p, p > 0, then so does $\sigma(f)^{q}$ for all $q, 0 < q < \infty$. Here

$$f^{\#} = \left| f' \right| / \left(1 - |f|^2 \right)$$
 and $\sigma(f) = \tanh^{-1} |f|$.

1. INTRODUCTION

The disc $D = \{|z| < 1\}$ is endowed with the non-Euclidean hyperbolic distance (Poincaré metric)

$$\sigma(z,\,w)=rac{1}{2}\lograc{ert1-\overline{z}wert+ertz-wert}{ert1-\overline{z}wert-ertz-wert},\,(z,\,w\in D).$$

Let B be the family of all functions f holomorphic and bounded, |f| < 1, in D. For $f \in B$, we let, following Yamashita [6],

$$\sigma(f) = \sigma(f, 0) = 2^{-1} \log\{(1 + |f|)/(1 - |f|)\},\$$

and

$$f^{\#} = |f'| / (1 - |f|^2).$$

These are hyperbolic counterparts of |f| and |f'|, and $\sigma(f)^p$, $(f^{\#})^p$ (0 are subharmonic in <math>D if $f \in B$. Set

$$M_p(r, h) = \int_0^{2\pi} \left| h(re^{i\theta}) \right|^p d\theta/2\pi, \quad (0$$

for h subharmonic in D. Then h has a harmonic majorant in D if and only if $\sup_{0 \le r < 1} M_1(r, h) < \infty.$

Received 5 February 1988. Partially supported by K.M.E.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/88 \$A2.00+0.00.

The Hardy class $H^p(0 consists of those <math>f$ holomorphic in D for which the subharmonic functions $|f|^p$ have harmonic majorants in D: the class H^∞ consists of all bounded holomorphic functions in D. Analogously, Yamashita [6] defined the hyperbolic Hardy class $H^p_{\sigma}(0 as the class of those <math>f \in B$ for which $\sigma(f)^p$ have harmonic majorants in D, and H^∞_{σ} as that of those $f \in H^\infty$ bounded by a constant strictly less than one. He observed the following (II) [5, Theorem 2] in connection with (I) [3, Theorem 33] or see [1, Theorem 5.12]

- (I) If $f' \in H^p$ for some $p, 0 , then <math>f \in H^q$ with q = p/(1-p).
- (II) If $f \in B$ and if $(f^{\#})^p$ for some p, 0 , has a harmonic majorant in <math>D, then $f \in H^q_{\sigma}$ with q = p/(1-p).

The index q in (I) cannot be replaced by a larger one [1, p. 90]. The question as to whether q in (II) is sharp is our starting point. One of the main differences between $f^{\#}$ and f' may be that $f^{\#}(z) \leq (1 - |z|)^{-1}$ (by Pick's invariant form of Schwarz lemma), while f'(z) is of $O(1 - |z|)^{-1/p}$ [1, Theorem 5.9]. This fact leads us to introduce the concept of fractional integration [3 or 2]: If f(z) is holomorphic in D, the fractional integral of f of order β , $\beta > 0$, is defined by Flett [2] as

(1.1)
$$I^{\beta}f(z) = \Gamma(\beta)^{-1} \int_0^1 (-\log t)^{\beta-1} f(tz) dt, \quad (z \in D).$$

The following (III), that extends (I), and (IV), which is a consequence of (III), are observed in [4, Theorem 2.1 and Remark 2.7].

- (III) If $f \in H^p(0 and <math>f(z) = O(1 |z|)^{-\gamma}$ with $0 < \gamma \le 1/p$, then $I^{\beta}f \in H^q$ with $q = p\gamma/(\gamma \beta)$, where $0 < \beta < \gamma$.
- (IV) If f is a Bloch function (that is to say $f'(z) = O(1 |z|)^{-1}$) and $f' \in H^p(0 , then <math>f \in H^q$ for all $q, 0 < q < \infty$: $q = \infty$ cannot be allowed in the conclusion.

To show the hyperbolic counterparts of (III) and (IV) is our goal. We adopt, for calculational simplicity, a definition "equivalent to (1.1)":

$$I^{\beta}h(z) = \Gamma(\beta)^{-1} \int_0^1 (1-t)^{\beta-1}h(tz)dt, \quad (z \in D, \, \beta > 0),$$

for subharmonic $h = (f^{\#})^{p}$ (0 in D. Since

$$\sigma(z, w) = \inf \int_c |dz| / (1 - |z|^2), \quad (z, w \in D),$$

where c runs through any arc in D joining z and w, it follows that

$$\sigma(f(z), f(0)) \leqslant \int_0^{|z|} f^{\#}(re^{i\theta}) dr, \quad (z = |z|e^{i\theta}),$$

so that

$$\begin{aligned} \sigma(f(z)) &\leq \sigma(f(z), f(0)) + \sigma(f(0)) \\ &\leq |z| \int_0^1 f^{\#}(tz) dt + \sigma(f(0)) \\ &= |z| I^1 f^{\#}(z) + \sigma(f(0)). \end{aligned}$$

We shall show the following:

THEOREM 1. Let $f \in B$. If $(f^{\#})^p$ (0 has a harmonic majorant in <math>D and $f^{\#}(z) = 0(1 - |z|)^{-\gamma}$ with $0 < \gamma \leq 1$, then $\sup_{0 \leq r < 1} M_q(r, I^{\beta}f^{\#}) < \infty$ with $q = p\gamma/(\gamma - \beta)$, where $0 < \beta < \gamma$.

THEOREM 2. If $f \in B$ and $(f^{\#})^{p}$ admits a harmonic majorant in D for some $p, 0 , then <math>f \in H^{q}_{\sigma}$ for all $q, 0 < q < \infty$.

Theorem 2 improves (II) significantly and shows that q in (II) is not sharp. The bound on q in Theorem 2 is sharp in the sense that there is a function $f \in B$ such that $(f^{\#})^{p}$ admits harmonic majorants in D for arbitrary p, $0 , but <math>f \notin H^{\infty}_{\sigma}$ even more f need not be a function which is hyperbolically Dirichlet finite, that is,

$$\iint_D (f^{\#})^2(z) dx dy = \infty.$$

2. PROOF OF THEOREM 1

Our results depend on the following two lemmata.

LEMMA 1. [5, Lemma 2]. Let $f \in B$. Let u be one of $f^{\#}$ or $\sigma(f)$. Set $M(\theta) = M(u, \theta) = \sup\{u(re^{i\theta}): 0 \leq r < 1\}$. If $u^p(0 admits harmonic majorants in <math>D$, then

$$\int_0^{2\pi} M(\theta)^p d\theta \leqslant C_p \int_0^{2\pi} u^*(\theta)^p d\theta,$$

where $u^*(\theta) = \lim_{r \to 1} u(re^{i\theta})$ (which exists a.e.) and C_p is a positive constant depending only on p.

LEMMA 2. Let $f \in B$, $0 < \beta$, $\gamma < \infty$, and $0 < \alpha = \beta/\gamma < p < \infty$. Then

(2.1)
$$I^{\beta}\left(\left(f^{\#}\right)^{p}\right)(z) \leq CM(z)^{p-\alpha}M(z,\gamma)^{\alpha}, \quad (z \in D),$$

where $M(z) = M(f^{\#}, z) = \sup\{f^{\#}(tz): 0 \leq t < 1\}, M(z, \gamma) = M(f^{\#}, z, \gamma) = \sup\{(1-t)^{\gamma}f^{\#}(tz): 0 \leq t < 1\}, C = C_{p,\beta,\gamma}$ is a positive constant depending only on p, β and γ .

PROOF: Fix $z \in D$. We may assume that $0 < M(z, \gamma)$ and $M(z) < \infty$. If we set $s = 1 - \{M(z, \gamma)/M(z)\}^{1/\gamma} \in [0, 1)$ then we have

(2.2)
$$I^{\beta}\left(\left(f^{\#}\right)^{p}\right)(z) \leqslant \Gamma(\beta)^{-1} \int_{0}^{s} + \int_{s}^{1} (1-t)^{\beta-1} (f^{\#})^{p} (tz) dt$$
$$\leqslant \Gamma(\beta)^{-1} \left\{ M(z,\gamma)^{p} \int_{0}^{s} (1-t)^{\beta-1-p\gamma} dt + M(z)^{p} \int_{s}^{1} (1-t)^{\beta-1} dt \right\}$$
$$\leqslant C_{p,\beta,\gamma} M(z)^{p-\alpha} M(z,\gamma)^{\alpha},$$

whence (2.1) follows.

We prove Theorem 1: Set p = 1 in (2.1) and integrate the q-th power of both sides with respect to $d\theta/2\pi$, then

$$M_q(r, I^{\beta} f^{\#}) \leqslant C \int_0^{2\pi} M(z)^p M(z, \gamma)^{q-\alpha} d\theta, \quad (z = re^{i\theta}),$$

because $q(1-\alpha) = p$. It then follows from the condition

$$K:=\sup_{z\in D}\left(1-|z|\right)^{\gamma}f^{\#}(z)<\infty$$

that

$$M_q(r, I^{\beta} f^{\#}) \leqslant C K^{q-\alpha} \int_0^{2\pi} M(\theta)^p d\theta,$$

where $M(\theta) = \sup\{f^{\#}(\mathrm{re}^{i\theta}): 0 \leq r < 1\}$. Now, Lemma 1 with $u = f^{\#}$ gives that

$$\int_0^{2\pi} M(\theta)^p d\theta \leqslant C_p \int_0^{2\pi} u^*(\theta)^p d\theta$$

But then this last integral is dominated by $\lim_{r\to 1} M_p(r, f^{\#})$, by Fatou's Lemma. Gathering up, we have

(2.3)
$$M_q(r, I^{\beta}f^{\#}) \leq CK^{q-\alpha} \lim_{r \to 1} M_p(r, f^{\#}),$$

where $C = C_{p,q,\beta,\gamma}$. Note that $\lim_{r \to 1} M_p(r, f^{\#}) = \sup_r M_p(r, f^{\#})$ by the subharmonicity of $(f^{\#})^p$. Therefore, we get the desired conclusion if we take the supremum for $r, 0 \leq r < 1$, on the left hand side of (2.3).

[4]

3. PROOF OF THEOREM 2

We may assume q > p. Fix such a q. It was observed in Section 1 that

$$\sigma(f(z)) \leq |z| I^1 f^{\#}(z) + \sigma(f(0)):$$

and it is obvious from the definition that

$$I^1 f^{\#}(z) \leq \Gamma(\beta) I^{\beta} f^{\#}(z), \quad (z \in D),$$

for $0 < \beta < 1$. Therefore

(3.1)
$$\{\sigma(f(z))\}^q \leq \{I^1 f^{\#}(z) + \sigma(f(0))\}^q$$
$$\leq 2^q \{\Gamma(\beta)^q (I^\beta f^{\#}(z))^q + \sigma(f(0))^q\}, \quad (0 < \beta < 1).$$

Now, take $\beta < 1$ so that $q = p/(1-\beta)$. It then follows from Theorem 1 with $\gamma = 1$ that $\sup_{0 \le r < 1} M_q(r, I^{\beta} f^{\#}) < \infty$, so that $\{\sigma(f(z))\}^q$ has a harmonic majorant by (3.1). Since this is true for any q > p, the conclusion follows.

4. AN EXAMPLE

There is a function $f \in B$ such that $(f^{\#})^{p}$ admits harmonic majorants in D for arbitrary p, 0 , but <math>f is not hyperbolically Dirichlet finite.

Let

$$f(z)=e^{-g(z)}, \quad (z\in D),$$

where

$$g(z) = \exp\{\frac{1}{2}\log\left(\frac{1-z}{2}\right)\}, g(0) = \sqrt{1/2}, \quad (z \in D).$$

Set

$$\phi(z) = \cos\{\frac{1}{2} \operatorname{Arg}\left(\frac{1-z}{2}\right)\}, \quad (z \in D),$$

for simplicity. Then after a simple calculation, we have $\sqrt{1/2}\leqslant\phi(z)\leqslant1$, so that

$$|f(z)| = \exp(-\operatorname{Re} g(z))$$
$$= \exp(-|g(z)|\phi(z))$$
$$< 1.$$

Therefore $f \in B$. If we note that for $0 \leq \theta < 2\pi$,

$$|g^*(\theta)| = \sqrt{\sin{(\theta/2)}},$$

and

(4.1)
$$|f^*(\theta)| = \exp\{-\sqrt{\sin(\theta/2)}\cos\left(\frac{\pi-\theta}{4}\right)\} \leq 1$$

with equality in (4.1) only at $\theta = 0$, we can conclude by a routine calculation that

$$|g^*(\theta)|^{-1} \cdot \left(1 - |f^*(\theta)|^2\right)^{-1} \sim \begin{cases} heta & ext{near } heta = 0 \\ 2\pi - heta & ext{near } heta = 2\pi \end{cases}$$

and the left hand side of (4.2) is bounded away from zero elsewhere on $[0, 2\pi)$. (As usual, $F^*(\theta) = \lim_{r \to 1^-} F(re^{i\theta})$, and " $F(\theta) \sim G(\theta)$ near $\theta = a$ " means that there exist positive constants C_1 and C_2 satisfying $C_1 < F(\theta)/G(\theta) < C_2$ in a neighbourhood of $\theta = a$). Therefore

$$\int_0^{2\pi} \{ \left| g^*(\theta) \right| \left(1 - \left| f^*(\theta) \right|^2 \right) \}^{-p} d\theta < \infty$$

for all p, 0 . It now follows from Lemma 1 and the fact

 $|f'^{*}(\theta)| = |g^{*}(\theta)|^{-1} \exp\{-|g^{*}(\theta)|\phi^{*}(\theta)\} \leq |g^{*}(\theta)|^{-1}$

that

$$\begin{split} \sup_{r} M_{p}(r, f^{\#}) &\leq C_{p} \int_{0}^{2\pi} u^{*}(\theta)^{p} d\theta \\ &\leq C_{p} \int_{0}^{2\pi} \{ |g^{*}(\theta)| \left(1 - |f^{*}(\theta)|^{2}\right) \}^{-p} d\theta \\ &< \infty, \qquad (0 < p < 1), \end{split}$$

where $u = f^{\#}$.

Next, we show that $f^{\#}$ is not hyperbolically Dirichlet finite. Let

$$h(z) = rac{|f(z)g(z)|}{1-|f(z)|^2}, \quad (z \in D).$$

Then

$$\begin{split} h(z) &= |g(z)| \{ \exp \left(\operatorname{Re} g(z) \right) - \exp \left(-\operatorname{Re} g(z) \right) \}^{-1} \\ &\geq 2^{-1} \operatorname{Re} g(z) \operatorname{cosech}(\operatorname{Re} g(z)) \\ &\geq 2^{-1} \operatorname{cosech}(1) \\ &> 0, \end{split}$$

362

because 0 < Re g(z) < 1 and the function $x \operatorname{cosech}(x)$ is decreasing for $x \ge 0$. If we note that $f^{\#}(z) = |2/(1-z)| h(z)$, it is now apparent that

$$\iint_{D} (f^{\#})^{2}(z) dx dy = \infty.$$
5. A REMARK

We can say that the result of Theorem 2 is sharp in the other sense, that is, our example in Section 4 illustrates the sharpness of the following

(5.1) "If $f^{\#}$ has a harmonic majorant in D, then $f \in H^{\infty}_{\sigma}$ "

The result (5.1) follows from the inequality [7, Theorem 3]

$$\lim_{r \to 1^{-}} \sigma\left(f\left(re^{i\theta}\right), f(0)\right) \leqslant \int_{0}^{1} f^{\#}\left(xe^{i\theta}\right) dx \leqslant (2)^{-1} \int_{0}^{2\pi} \left(f^{\#}\right)^{*}(t) dt.$$

6. One more theorem

Let f, p, β and γ be as in Lemma 2. If

$$K: = \sup_{z \in D} (1 - |x|)^{\gamma} |f^{\#}(z)| < \infty,$$

then by (2.2)

$$\int_0^1 (1-t)^{\beta-1} (f^{\#})^p (tre^{i\theta}) dt \leq CK^{\alpha} M(z)^{\delta},$$

so that

$$\begin{split} \int_0^1 \int_0^{2\pi} (1-t)^{\beta-1} (f^{\#})^p (tre^{i\theta}) d\theta dt \\ &\leqslant CK^{\alpha} \int_0^{2\pi} \sup\{ \left| f^{\#} (tre^{i\theta}) \right|^{\delta} : 0 \leqslant r \leqslant 1 \} d\theta \\ &\leqslant CK^{\alpha} \int_0^{2\pi} M(\theta)^{\delta} d\theta, \end{split}$$

where $\alpha = \beta/\gamma$, $\delta = p - \alpha$, $C = C_{p,\gamma,\beta}$ and $M(\theta) = \sup\{\left|f^{\#}(re^{i\theta})\right| : 0 < r < 1\}$. Thus

(6.1)
$$\int_0^1 \int_0^{2\pi} (1-r)^{\beta-1} (f^{\#})^p (re^{i\theta}) d\theta dr \leq C K^{\alpha} \int_0^{2\pi} M(\theta)^{\delta} d\theta$$

by the monotone convergence theorem. Now, Lemma 1 followed by Fatou's lemma and the subharmonicity of $(f^{\#})^{\delta}$ makes the right hand side of (6.1) dominated by

$$C_{oldsymbol{p},oldsymbol{\gamma},oldsymbol{\beta}}K^{oldsymbol{lpha}}\sup\{M_{oldsymbol{\delta}}ig(r,\,f^{oldsymbol{\#}}ig):0\leqslant r<1\}.$$

We state this:

THEOREM 3. Suppose that $f \in B$ and $f^{\#}(z) = 0(1 - |z|)^{-\gamma}$, and let $0 < \gamma \leq 1$, $0 . If <math>(f^{\#})^{p}$ admits a harmonic majorant in D then

$$\int_0^1 \int_0^{2\pi} (1-r)^{\gamma(q-p)-1} (f^{\#})^q (re^{i\theta}) dr d\theta < \infty.$$

References

- [1] P.L. Duren, Theory of H^p spaces (Academic Press, New York, NY, 1970).
- [2] T.M. Flett, 'The dual of an inequality of Hardy and Littlewood and some related inequalities', J. Math. Anal. Appl. 38 (1972), 746-765.
- [3] G.H. Hardy and J. Littlewood, 'Some properties of fractional integrals II,', Math. Z. 34 (1931), 403-439.
- [4] H.O. Kim, 'Derivatives of Blaschke products', Pacific J. Math. 114 (1984), 175-191.
- [5] S. Yamashita, 'Functions with H^p hyperbolic derivative', Math. Scand. 53 (1983), 238-244.
- [6] S. Yamashita, 'On hyperbolic Hardy classes,', Comment. Math. Univ. San. Paul. 30 (1981), 65-69.
- [7] S. Yamaskita, 'The hyperbolic M. Riesz Theorem', Acta Sci. Math. 43 (1981), 141-146.

Department of Mathematics Education Andong National University Andong, 660 South Korea