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Inflammation plays a key role in many common conditions and diseases. Fatty acids can
influence inflammation through a variety of mechanisms acting from the membrane to the
nucleus. They act through cell surface and intracellular receptors that control inflammatory cell
signalling and gene expression patterns. Modifications of inflammatory cell membrane fatty
acid composition can modify membrane fluidity, lipid raft formation and cell signalling leading
to altered gene expression and can alter the pattern of lipid and peptide mediator production.
Cells involved in the inflammatory response usually contain a relatively high proportion of the
n-6 fatty acid arachidonic acid in their membrane phospholipids. Eicosanoids produced from
arachidonic acid have well-recognised roles in inflammation. Oral administration of the marine
n-3 fatty acids EPA and DHA increases the contents of EPA and DHA in the membranes of
cells involved in inflammation. This is accompanied by a decrease in the amount of arachidonic
acid present. EPA is a substrate for eicosanoid synthesis and these are often less potent than
those produced from arachidonic acid. EPA gives rise to E-series resolvins and DHA gives rise
to D-series resolvins and protectins. Resolvins and protectins are anti-inflammatory and
inflammation resolving. Thus, the exposure of inflammatory cells to different types of fatty
acids can influence their function and so has the potential to modify inflammatory processes.

Inflammation: Monocyte: Macrophage: Cytokine: Arachidonic acid

The aim of this article is to provide an update on some of
the mechanisms by which long-chain fatty acids can influ-
ence inflammatory processes. Inflammation is a key com-
ponent of normal host defence, which acts to protect the
host from infection and other insults. Inflammation initiates
the processes of pathogen killing and tissue repair. The five
cardinal signs of inflammation are redness, swelling, heat,
pain and loss of function. It involves interactions among
many cell types and the production of, and responses to,
a number of chemical mediators, including cytokines,
chemokines, eicosanoids and reactive oxygen species. Self-
regulation of the inflammatory response involves the
activation of negative feedback mechanisms such as the
secretion of anti-inflammatory cytokines, inhibition of pro-
inflammatory signalling cascades, shedding of receptors
for inflammatory mediators and activation of regulatory
cells. Pathological inflammation involves a loss of these

regulatory processes, and may cause excessive, irrepairable
damage to host tissues(1). The resulting diseases are charac-
terised by markedly increased concentrations of inflamma-
tory markers and of activated inflammatory cells at the site
of tissue damage and in the systemic circulation(1). Exam-
ples of such inflammatory diseases include rheumatoid
arthritis, inflammatory bowel diseases and asthma.

Fatty acid functions of relevance to inflammation

Fatty acids are naturally occurring constituents of the diet.
They have metabolic, structural and functional roles within
the body, where they act as important sources of energy,
major components of all cell membranes, precursors to
signalling molecules and regulators of cellular responses(2).
Although all fatty acids can be used as energy sources,
different fatty acids have different, often unique, structural
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and functional roles and biological activities. Indeed,
several fatty acids have roles and activities that oppose one
another, indicating that the overall biological outcome will
be the result of interactions among several fatty acids.
With regard to inflammation it is often considered that it
is the PUFA of the n-6 and n-3 families that are most
important, these often acting to oppose one another’s
actions(3). However, it is now recognised that other fatty
acids and fatty acid families are likely also involved
in inflammation, with fairly recent work focusing on
SFA(4–6). There are a number of general mechanisms by
which fatty acid exposures could affect inflammatory cell
function, and so inflammatory processes. This article will
deal with three of these mechanisms:

(i) Action directly via surface or intracellular ‘fatty acid
receptors’.

(ii) Incorporation into the phospholipids of inflammatory
cell membranes, where the fatty acids play important
roles assuring the correct environment for membrane
protein function, maintaining membrane order (‘fluid-
ity’), influencing lipid raft formation and modifying
membrane-generated intracellular signalling cas-
cades.

(iii) Acting as precursors of extracellular signalling
molecules such as PG.

Fatty acids and NF-kB-induced inflammatory
gene expression

NF-kB is a key transcription factor involved in up-
regulation of inflammatory cytokine, adhesion molecule
and cyclooxygenase (COX)-2 genes(7,8). Inactive NF-kB is
a trimer localised within the cytosol; it is activated via a
signalling cascade triggered by extracellular inflammatory
stimuli, and which involves phosphorylation of an inhibi-
tory subunit (inhibitory subunit of NF-kB (IkB)), which
then dissociates allowing translocation of the remaining
NF-kB dimer to the nucleus(9). Bacterial lipopolysacchar-
ide (LPS), which is also known as endotoxin, induces
inflammation by activating NF-kB, as do some inflamma-
tory cytokines and UV irradiation. Cell culture studies with
the n-3 PUFA EPA and DHA show inhibition of LPS-
induced production of COX-2, inducible NO synthase,
TNFa, IL-1, IL-6, IL-8 and IL-12 in endothelial cells(10,11),
monocytes(12,13), macrophages(4) and dendritic dells(5,14).
Animal feeding studies with fish oil, a source of EPA and
DHA, support the observations made in vitro with respect
to the effects of n-3 PUFA on inflammatory cytokine pro-
duction. For example, dietary fish oil decreased the pro-
duction of TNFa, IL-1b and IL-6 by LPS-stimulated
macrophages(15–17). Some studies in healthy human sub-
jects have demonstrated that oral fish oil supplements can
decrease production of TNFa, IL-1b, IL-6 and various
growth factors by LPS-stimulated monocytes or mono-
nuclear cells(18–23), although not all studies confirm this
effect. The effects of n-3 PUFA have been shown to
involve inhibition of LPS-induced activation of NF-kB
associated with decreased IkB phosphorylation(4,24).
In contrast, SFA, especially lauric acid, enhanced NF-kB

activation in macrophages(4) and dendritic cells(5) and so
promoted inflammatory gene expression. Lee et al.(4) found
that EPA and DHA, as well as other unsaturated fatty acids
(arachidonic, linoleic and oleic acids), were able to prevent
the pro-inflammatory effect of lauric acid in macrophages.

It has not been clear how fatty acids can influence acti-
vation of NF-kB although their effects might be as far
upstream as the plasma membrane. Consistent with this,
Lee et al.(4) showed that the activation of NF-kB and
induction of COX-2 expression by lauric acid did not occur
in macrophages expressing a dominant-negative mutant of
the cell surface LPS receptor, Toll-like receptor (TLR)-4,
suggesting that lauric acid somehow interacts with TLR-4
(Fig. 1). Myeloid differentiation primary response gene 88
is a cell membrane-associated adapter protein used by
TLR-4 to activate NF-kB. DHA inhibited COX-2 expres-
sion in macrophages bearing constitutively active TLR-4
but not in those bearing constitutively active myeloid dif-
ferentiation primary response gene 88 suggesting that the
effects of DHA are at the level of TLR-4(4). More recently,
Wong et al.(6) demonstrated that exposure of macrophages
to lauric acid induced association of TLR-4, myeloid dif-
ferentiation primary response gene 88 and other signalling
proteins into organised signalling platforms within the
plasma membrane termed membrane rafts in much the
same way as LPS acts. Furthermore they showed that DHA
inhibited the ability of both LPS and lauric acid to promote
recruitment of these signalling proteins into rafts. Thus, the
differential effects of fatty acids on inflammatory signal-
ling initiated through TLR-4 and impacting on NF-kB
appear to relate to their ability to promote or disrupt
membrane raft formation.

Actions of fatty acids on inflammation via fatty
acid receptors

Fatty acids, PPARg and inflammation

PPARg is a transcription factor that acts in an anti-
inflammatory manner(25). It is able to directly regulate

TLR-4

LPS or
lauric acid DHA

NF-κB

GPR120Cell membrane

Fig. 1. Interaction between pro-inflammatory stimuli and DHA in

regulating signalling to NF-kB. Lipopolysaccharide (LPS) and lauric

acid both initiate NF-kB signalling through Toll-like receptor (TLR)-4.

DHA inhibits responsiveness to both LPS and lauric acid acting to

reduce activation of NF-kB. GPR120 is a cell membrane receptor

that is linked to inhibition of NF-kB activation. GPR120 mediates

some of the anti-inflammatory actions of DHA. A link between

GPR120 and TLR-4 is not yet clear.
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inflammatory gene expression, but it also interferes with
the activation of the prototypical pro-inflammatory tran-
scription NF-kB(26). PUFA and their derivatives are endo-
genous ligands for PPARg . The n-3 PUFA DHA induced
PPARg in dendritic cells and this was associated with
reduced production of the pro-inflammatory cytokines
TNFa and IL-6 following endotoxin stimulation(14). In
addition, DHA induced a number of known PPARg target
genes in dendritic cells, suggesting this as an important
anti-inflammatory mechanism of action(27).

Fatty acids, GPR120 and inflammation

The cell surface G-protein coupled receptor termed
GPR120 is highly expressed on inflammatory macro-
phages, and a GPR120 agonist GW9508 inhibited respon-
siveness of macrophages to LPS(28). This involved reduced
phosphorylation of the IkB and its maintenance in the
cytosol (phosphorylated IkB is degraded) and reduced
TNFa and IL-6 production. These observations suggest
that GPR120 is anti-inflammatory. DHA and another n-3
PUFA, EPA, but not arachidonic, palmitic or myristic
acids, promoted GPR120-mediated gene activation,
although they were much less potent than GW9508. The
effects of DHA were further explored(28). Its inhibitory
effects on LPS-induced IkB phosphorylation, IkB degra-
dation and TNFa, IL-6 and also on monocyte chemotactic
protein-1 production did not occur in GPR120 knockdown
cells. These observations suggest that the inhibitory effect
of DHA (and probably also those of EPA) on responsive-
ness to LPS occur via GPR120 (Fig. 1).

Modification of inflammatory cell membrane
fatty acid composition and consequent alteration

of lipid mediator profiles

Modification of inflammatory cell membrane fatty acid
composition

PUFA are important constituents of the phospholipids of
the membranes of inflammatory cells. Typically these
contain a relatively high proportion of the n-6 PUFA, ara-
chidonic acid; this is seen in both laboratory animals(29–38)

and human subjects(18,21,39–48). Increased oral supply of the
n-3 PUFA EPA and DHA results in an increase in the
amount of those fatty acids in inflammatory cells, seen in
both laboratory animals(29,30,32–38) and human sub-
jects(18,21,39–44,46–48). The increase in content of EPA and
DHA happens over the course of days(49) to weeks(42),
occurs in a dose–response manner(48) and is accompanied
by a decrease in content of arachidonic acid.

Fatty acid modification of eicosanoid profiles

Eicosanoids, which include PG, thromboxanes and
leukotrienes, are long-recognised mediators and regulators
of inflammation. They are formed from C20 PUFA, typi-
cally arachidonic acid, by the COX and lipoxygenase
enzymes. In general, arachidonic acid-derived eicosanoids
act in a pro-inflammatory way, although this is an over-
simplification since it is now recognised that PGE2, for

example, has both pro- and anti-inflammatory effects(3),
and that another eicosanoid derived from arachidonic acid,
lipoxin A4, is anti-inflammatory(50–53).

The decrease in arachidonic acid content of inflamma-
tory cell membranes that occurs with incorporation of the
n-3 PUFA reduces the availability of the usual eicosanoid
substrate and so the production of the major 2-series PG
and 4-series leukotrienes is decreased(17–19,21,39,40,54–56).
EPA is also a substrate for the COX and lipoxygenase, but
the mediators produced have a different structure from the
arachidonic acid-derived mediators, and this often influ-
ences their potency(57). For example EPA-derived leuko-
triene B5 is ten- to 100-fold less potent as a neutrophil
chemoattractant compared with leukotriene B4

(58,59).
Furthermore, EPA-derived eicosanoids may antagonise the
action of those produced from arachidonic acid, as was
recently demonstrated for PGD3 v. PGD2

(60).

Novel anti-inflammatory and inflammation resolving
mediators produced from EPA and DHA: resolvins

and protectins

EPA and DHA are substrates for synthesis of fairly
recently discovered lipid mediators that are potent anti-
inflammatory and inflammation resolving agents. These
include resolvins and protectins, which are produced
through pathways involving COX and lipoxygenase
enzymes(61–63). Examples of the activities are these com-
pounds include the inhibition of transendothelial migration
of neutrophils by resolvin E1, resolvin D1 and protectin
D1, and inhibition of TNFa and IL-1b production by pro-
tectin D1(63).

Therapeutic benefits of the anti-inflammatory
actions of n-3 fatty acids

A number of human conditions and diseases have an
inflammatory component, and it seems that, irrespective of
the body compartment(s) involved, these conditions and

n-3 fatty acid exposure

Receptors Membrane composition

FluidityRaft assembly Substrates for
eicosanoids,

resolvins, etc.  

Signals

Cell responses Altered (patho)physiology

Fig. 2. Overview of the mechanisms by which fatty acids can

influence inflammatory cell function. Modified from Calder(64) with

permission from Elsevier.
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diseases all involve excessive or inappropriate production
of inflammatory mediators including eicosanoids and
cytokines(1). It is evident that the n-3 PUFA EPA and DHA
act through multiple interconnected mechanisms
(Fig. 2)(64) to reduce production of inflammatory eicosa-
noids and cytokines and to enhance production of anti-
inflammatory and inflammation resolving resolvins and
protectins. In these ways, n-3 PUFA act to oppose the pro-
inflammatory actions of SFA and of n-6 PUFA. The roles
of n-3 PUFA in shaping and regulating inflammatory pro-
cesses and responses suggest that the level of exposure to
these fatty acids might be important in determining the
development and severity of inflammatory diseases. The
recognition that n-3 PUFA have anti-inflammatory actions
has led to numerous studies supplementing the diet of
patients with inflammatory diseases to evaluate clinical
benefit. Studies in patients with rheumatoid arthritis have
been the most successful among those in patients with an
overt inflammatory disease, with a number of trials
reporting clinical benefits(65), these benefits being sup-
ported by meta-analyses(66,67). Studies in patients with
inflammatory bowel diseases (Crohn’s disease and ulcera-
tive colitis) provide equivocal findings with some showing
some benefits and others not(68). Similarly studies con-
ducted in patients with asthma do not provide a clear pic-
ture with most studies conducted in adults not showing a
clinical benefit, although there are indications of benefits of
n-3 PUFA in children and adolescents(69). In most other
inflammatory diseases and conditions there are too few
studies to draw a clear conclusion of the possible efficacy
of n-3 PUFA. One reason for these discrepancies may be
that the dose of n-3 PUFA required to treat different
inflammatory conditions is not known, although it is evi-
dent that the anti-inflammatory effects of these fatty acids
are dose-dependent(48).

Summary and conclusions

Fatty acids can influence inflammation through a variety of
mechanisms, including acting via cell surface and intra-
cellular receptors/sensors that control inflammatory cell
signalling and gene expression patterns. Some effects of
fatty acids on inflammatory processes involve lipid med-
iators generated from the fatty acids themselves. Often
these fatty acids will be released from cell membrane
phospholipids prior to their conversion to the bioactive
mediators. Cells involved in the inflammatory response are
typically rich in the n-6 fatty acid arachidonic acid which
is a precursor to inflammatory eicosanoids. The membrane
contents of arachidonic acid and of the n-3 fatty acids EPA
and DHA can be altered through oral administration of
EPA and DHA. EPA also gives rise to eicosanoids and
these often have differing properties from those of the
arachidonic acid-derived analogues, typically being less
potent. EPA and DHA give rise to resolvins, and DHA to
protectins which are anti-inflammatory and inflammation
resolving. These relatively recently discovered mediators
provide a novel mechanism by which n-3 PUFA can
influence inflammatory processes. As a result of their anti-
inflammatory actions n-3 PUFA may have therapeutic

efficacy in inflammatory diseases. This is well described in
rheumatoid arthritis, but less so in other inflammatory
conditions. Currently the multiple mechanisms of action of
fatty acids on inflammation are not fully integrated, but it
seems likely that alterations in membrane composition are
a key event since such alterations can influence lipid
mediator profiles, membrane receptor function and cell
signalling processes. Future work will focus on defining
the membrane structure–function interaction that is asso-
ciated with different fatty acid compositions and on
describing the biosynthesis and actions of novel lipid
mediators like resolvins and protectins and mechanisms
that underlie their effects.
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