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Abstract

We consider the problem of efficient simulation estimation of the density function at
the tails, and the probability of large deviations for a sum of independent, identically
distributed (i.i.d.), light-tailed, and nonlattice random vectors. The latter problem besides
being of independent interest, also forms a building block for more complex rare event
problems that arise, for instance, in queueing and financial credit risk modeling. It has
been extensively studied in the literature where state-independent, exponential-twisting-
based importance sampling has been shown to be asymptotically efficient and a more
nuanced state-dependent exponential twisting has been shown to have a stronger bounded
relative error property. We exploit the saddle-point-based representations that exist for
these rare quantities, which rely on inverting the characteristic functions of the underlying
random vectors. These representations reduce the rare event estimation problem to
evaluating certain integrals, which may via importance sampling be represented as
expectations. Furthermore, it is easy to identify and approximate the zero-variance
importance sampling distribution to estimate these integrals. We identify such importance
sampling measures and show that they possess the asymptotically vanishing relative error
property that is stronger than the bounded relative error property. To illustrate the broader
applicability of the proposed methodology, we extend it to develop an asymptotically
vanishing relative error estimator for the practically important expected overshoot of
sums of i.i.d. random variables.

Keywords: Rare event simulation; importance sampling; saddle-point approximation;
Fourier inversion; large deviations

2010 Mathematics Subject Classification: Primary 65C05; 60E10; 60F10
Secondary 65C50; 65T99

1. Introduction

Let (Xi : i ≥ 1) denote a sequence of independent, identically distributed (i.i.d.), light-tailed
(their moment generating function is finite in a neighborhood of 0), nonlattice (modulus of their
characteristic function is strictly less than 1) random vectors taking values in R

d for d ≥ 1.
In this paper (see also the preliminary version of this paper [7]) we consider the problem of
efficient simulation estimation of the probability density function of X̄n = n−1 ∑n

i=1Xi at
points away from EXi , and the tail probability P(X̄n ∈ A) for sets A that do not contain
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EXi and are essentially affine transformations of the nonnegative orthant of R
d . We develop

an efficient simulation estimation methodology for these rare quantities that exploits the well-
known saddle-point representations for the probability density function of X̄n obtained from
Fourier inversion of the characteristic function of X1 (see, e.g. [5, pp. 75–93], [6], and [14,
pp. 26–27]). Furthermore, using Parseval’s relation, similar representations for P(X̄n ∈ A) are
easily developed. To illustrate the broader applicability of the proposed methodology, we also
develop a similar representation for E(X̄n : X̄n ≥ a) (the authors thank the editor for suggesting
this application) in a single-dimension setting (d = 1) for a > EXi , and use it to develop an
efficient simulation methodology for this quantity as well.

The problem of efficient simulation estimation of the tail probability density function has not
been studied in the literature, although, from a practical viewpoint, it is clear that the shape of
such density functions provides a great deal of insight into the tail behavior of the sums of random
variables. Another potential application maybe in the maximum likelihood framework for
parameter estimation where closed-form expressions for density functions of observed outputs
are not available, but simulation-based estimators provide an accurate proxy. The problem
of efficiently estimating P(X̄n ∈ A) via importance sampling, besides being of independent
importance, may also be considered a building block for more complex problems involving
many streams of i.i.d. random variables (see, e.g. [17] for a queueing application and [12] for
applications in credit risk modeling). This problem has been extensively studied in the rare
event simulation literature (see, e.g. [2], [9], [11], [13], [18], and [19]). Essentially, the literature
exploits the fact that the zero-variance importance sampling estimator for P(X̄n ∈ A), though
unimplementable, has a Markovian representation. This representation may be exploited to
come up with provably efficient, implementable approximations (see [1, pp. 163–171] and [15]).

Sadowsky and Bucklew [19] (see also [4]) developed exponential-twisting-based importance
sampling algorithms to arrive at unbiased estimators for P(X̄n ∈ A) that they proved were
asymptotically or weakly efficient (as per the current standard terminology in the rare event
simulation literature); see, e.g. [1] and [15] for an introduction to rare event simulation.
Popular efficiency criteria for rare event estimators are also discussed later in Section 2.1.
The importance sampling algorithms proposed in [19] were state independent in that each
Xk+1 was generated from a distribution independent of the previously generated (Xi : i ≤ k).
Blanchet et al. [2] also considered the problem of estimating P(X̄n ∈ A)where they introduced
state-dependent, exponential-twisting-based importance sampling distributions (the distribution
of generated Xk+1 depended on the previously generated (Xi : i ≤ k)). They showed that,
when done correctly, such an algorithm is strongly efficient, or, equivalently, has the bounded
relative error property.

The problem of efficient estimation of the expected overshoot E((X̄n − a) : X̄n ≥ a) is of
considerable importance in finance and insurance settings. To the best of our knowledge, this
is the first paper that directly tackles this estimation problem.

As mentioned earlier, in this paper we exploit the saddle-point-based representations of the
rare event quantities considered. These representations allow us to write the quantity of interest
αn as a product cn×βn, where cn ∼ αn (that is, cn/αn → 1 as n → ∞) and is known in closed
form. So the problem of interest is the estimation ofβn, which is an integral of a known function.
Note that βn → 1 as n → ∞. In the literature, asymptotic expansions for βn exist; however,
they require computation of third- and higher-order derivatives of the log-moment generating
function of Xi . This is particularly difficult in higher dimensions. In addition, it is difficult
to control the bias in such approximations. As we note later in the numerical experiments,
these biases can be significant even when the probabilities are as small as of order 10−9. In the
insurance and financial industry, simulation, with its associated variance reduction techniques,
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is the preferred method for tail risk measurement even when asymptotic approximations are
available (since these approximations are typically poor in the range of practical interest; see,
e.g. [12]).

In our analysis we note that the integral βn can be expressed as an expectation of a random
variable using importance sampling. Furthermore, the zero-variance estimator for this
expectation is easily ascertained. We approximate this estimator by an implementable
importance sampling distribution and prove that the resulting unbiased estimator of αn has
the desirable asymptotically vanishing relative error property. More tangibly, the estimator
of the integral βn has the property that its variance converges to 0 as n → ∞. An additional
advantage of the proposed approach over existing methodologies for estimating P(X̄n ∈ A) and
related rare quantities is that while these methods requireO(n) computational effort to generate
each sample output, our approach per sample requires small and fixed effort independent of n.

The use of saddle-point methods to compute tail probabilities has a long and rich history
(see, e.g. [5], [14], and [16]). To the best of our knowledge, the proposed methodology is the
first attempt to combine the expanding literature on rare event simulation with the classical
theory of saddle-point approximations.

The rest of the paper is organized as follows. In Section 2 we briefly review the popular
performance evaluation measures used in rare event simulation, and the existing literature on
estimating P(X̄n ∈ A). Then in Section 3 we develop an importance sampling estimator for
the density of X̄n and show that it has asymptotically vanishing relative error. In Section 4 we
devise an integral representation for P(X̄n ∈ A) and develop an importance sampling estimator
for it, and again prove that it has asymptotically vanishing relative error. In this section we also
discuss how this methodology can be adapted similarly to develop an asymptotically vanishing
relative error estimator for E(X̄n : X̄n ≥ a) in a single-dimension setting. In Section 5 we
report the results of a few numerical experiments to support our analysis. We end with a
brief conclusion in Section 6. For brevity, proofs similar to relevant known results, routine
technicalities, figures, and some numerical experiments are omitted. These can be found in [8],
a more elaborate version of this paper.

2. Rare event simulation, a brief review

Letαn = EnYn = ∫
Yn dPn be a sequence of rare event expectations in the sense thatαn → 0

as n → ∞ for nonnegative random variables (Yn : n ≥ 1). Here En is the expectation operator
under Pn. For example, when αn = P(Bn), Yn corresponds to the indicator of the event Bn.

Naive simulation for estimating αn requires generating many i.i.d. samples of Yn under Pn.
Their average then provides an unbiased estimator of αn. Central limit theorem based
approximations then provide an asymptotically valid confidence interval for αn (under the
assumption that EnY

2
n < ∞). Importance sampling involves expressing αn = ∫

YnLn dP̃n =
Ẽn(YnLn), where P̃n is another probability measure such that Pn is absolutely continuous with
respect to P̃n, with Ln = dPn/dP̃n denoting the associated Radon–Nikodym derivative, or
the likelihood ratio, and Ẽn is the expectation operator under P̃n. The importance sampling
unbiased estimator α̂n of αn is obtained by taking an average of generated i.i.d. samples of YnLn
under P̃n. Note that by setting dP̃n = Yn dPn/En(Yn), the simulation output YnLn is En(Yn)

almost surely, signifying that such a P̃n provides a zero-variance estimator for αn.

2.1. Popular performance measures

Note that the relative width of the confidence interval obtained using the central limit theorem
approximation is proportional to the ratio of the standard deviation of the estimator divided by
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its mean. Therefore, the latter is a good measure of efficiency of the estimator. Note that,
under naive simulation, when Yn = 1Bn (for any set D, 1D denotes its indicator), the standard
deviation of each sample of simulation output equals

√
αn(1 − αn) so that, when divided by αn,

the ratio increases to ∞ as αn → 0. Below we list some criteria that are popular in evaluating
the efficacy of the proposed importance sampling estimator (see [1, p. 159]). Here var(α̂n)
denotes the variance of the estimator α̂n under the appropriate importance sampling measure.

A given sequence of estimators (α̂n : n ≥ 1) for quantities (αn : n ≥ 1) is said to be weakly
efficient or asymptotically efficient if lim supn→∞

√
var(α̂n)/α1−ε

n < ∞ for all ε > 0; to be
strongly efficient or have bounded relative error if lim supn→∞

√
var(α̂n)/αn < ∞; and to

have asymptotically vanishing relative error if limn→∞
√

var(α̂n)/αn = 0.

3. Efficient estimation of the probability density function of X̄n

In this section we first develop a saddle-point-based representation for the probability density
function (PDF) of X̄n in Proposition 1 (for a proof, see, e.g. [5, pp. 89–90], [6], [8], and [14,
pp. 12–14]). We then develop an approximation to the zero-variance estimator for this PDF. Our
main result is Theorem 1, where we prove that the proposed estimator has an asymptotically
vanishing relative error.

Some notation is needed in our analysis. Recall that (Xi : i ≥ 1) denotes a sequence of i.i.d.
light-tailed random vectors taking values in R

d . Let (X1
i , . . . , X

d
i ) denote the components of

Xi , each taking value in R. Let F(·) denote the distribution function ofXi . Denote the moment
generating function of F by M(·), so that

M(θ) := E(eθ ·X1) = E(eθ1X
1
1+θ2X

2
1+···+θdXd1 ),

where θ = (θ1, θ2, . . . , θd) and, for x, y ∈ R
d , the Euclidean inner product between them is

denoted by x · y := x1y1 + x2y2 + · · · + xdyd . The characteristic function (CF) of Xi is given
by

ϕ(θ) := E(eiθ ·X1) = E(ei(θ1X
1
1+θ2X

2
1+···+θdXd1 )),

where i = √−1. In this paper we assume that the distribution ofXi is nonlattice, which means
that |ϕ(θ)| < 1 for all θ ∈ R

d − {0}.
Let �(θ) := lnM(θ) denote the cumulant generating function (CGF) of Xi . We define �

to be the effective domain of �(θ), that is,

� := {θ = (θ1, θ2, . . . , θd) ∈ R
d | �(θ) < ∞}.

Throughout this paper, we assume that 0 ∈ �0, the interior of �.
Denote the Euclidean norm of x ∈ R

d by |x| := √
x · x. For a square matrix A, det(A)

denotes the determinant of A, while the norm of A is denoted by ‖A‖ := max|x|=1 |Ax|. Let
�′′(θ) denote the Hessian of �(θ) for θ ∈ �0. Whenever this is strictly positive definite, let
A(θ) be the inverse of the unique square root of �′′(θ).

Proposition 1. Suppose that�′′(θ) is strictly positive definite for some θ ∈ �0. Furthermore,
suppose that |ϕ|γ is integrable for some γ ≥ 1. Then fn, the density function of X̄n, exists for
all n ≥ γ and its value at any point x0 is given by

fn(x0) =
(
n

2π

)d/2 exp[n{�(θ)− θ · x0}]√
det(�′′(θ))

∫
v∈Rd

ψ(n−1/2A(θ)v, θ, n)× φ(v) dv, (1)
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where ψ(y, θ, n) = exp[n× η(y, θ)] and

η(y, θ) = 1
2y
t�′′(θ)y +�(θ + iy)− (θ + iy) · x0 −�(θ)+ θ · x0.

For a given x0 ∈ R
d , x0 �= EX1, suppose that the solution θ∗ to the equation �′(θ) = x0

exists and θ∗ ∈ �0. Then the expansion of the integral in (1) is available. For example, the
following result is well known (its proof can be found in, e.g. [8], [10, pp. 533–534], and [14,
pp. 17–21]).

Proposition 2. Suppose that �′′(θ∗) is strictly positive definite and that |ϕ|γ is integrable for
some γ ≥ 1. Then∫

v∈Rd

ψ(n−1/2A(θ∗)v, θ∗, n)× φ(v) dv = 1 + o

(
1√
n

)
.

3.1. Monte Carlo estimation

The integral in (1) may be estimated via Monte Carlo simulation. In particular, this integral
may be re-expressed as ∫

v∈Rd

ψ(n−1/2A(θ∗)v, θ∗, n)φ(v)
g(v)

g(v) dv,

where g is a density supported on R
d . Now if V1, V2, . . . , VN are i.i.d. with distribution given

by the density g, then

f̂n(x̄) :=
(
n

2π

)d/2 exp[n{�(θ∗)− θ∗ · x0}]√
det(�′′(θ∗))

1

N

N∑
i=1

ψ(n−1/2A(θ∗)Vi, θ∗, n)φ(Vi)
g(Vi)

is an unbiased estimator for fn(x0).

3.1.1. Approximating the zero-variance estimator. Note that to get a zero-variance estimator
for the above integral we need

g(v) ∝ ψ(n−1/2A(θ∗)v, θ∗, n)φ(v).

We now argue that
ψ(n−1/2A(θ∗)v, θ∗, n) ∼ 1 (2)

for all v = o(n1/6). We may then select an importance sampling (IS) density g that is
asymptotically similar to φ for v = o(n1/6). In the further tails, we allow g to have fatter power
law tails. This ensures that large values of V in the simulation do not contribute substantially
to the variance. Further analysis is needed to see (2). Note from the definition of η(v, θ) that

η(0, θ) = 0, η′′(0, θ) = 0, and η′′′(v, θ) = (i)3�′′′(θ + iv) (3)

for all θ , while
η′(0, θ∗) = 0 (4)

for the saddle point θ∗. Here η′, η′′, and η′′′ are the first, second, and third derivatives of η with
respect to v, with θ held fixed. Note that while η′ and η′′ are a d-dimensional vector and a d×d
matrix, respectively, η′′′(v, θ) is the array of numbers ((∂3η(v, θ)/∂vi∂vj ∂vk))1≤i,j,k≤d .

The following notation aids in dealing with such quantities. If A = (aijk)1≤i,j,k≤d is a d ×
d×d array of numbers, u = (u1, u2, . . . , ud) is a d-dimensional vector, andB is a d×d matrix,
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then we use the notation A� u = ∑
1≤i,j,k≤d aijkuiujuk and A � B = (cijk)1≤i,j,k≤d , where

cijk = ∑
m,n,p amnpbmibnj bpk. It then follows that A� (Bu) = (A � B)� u. Since it follows

from the three-term Taylor series expansion, (3), and (4) that ψ(n−1/2A(θ∗)v, θ∗, n) equals

exp[nη(n−1/2A(θ∗)v, θ∗)] = exp

[
1

6
√
n
�′′′(θ∗ + in−1/2A(θ∗)ṽ)� (iA(θ∗)v)

]
,

where ṽ is between v and the origin. Hence, continuity of �′′′ in the neighborhood of θ∗
implies (2).

3.1.2. Proposed IS density. We now define the form of the IS density g. We first show its
parametric structure and then specify the parameters that achieve asymptotically vanishing
relative error.

For a ∈ (0,∞), b ∈ (0,∞), and α ∈ (1,∞), set

g(v) =
⎧⎨
⎩
b × φ(v) when |v| < a,
C

|v|α when |v| ≥ a.
(5)

Note that if we put

p :=
∫

|v|<a
g(v) dv = b

∫
|v|<a

φ(v) dv = b × IG

(
d

2
,
a2

2

)
,

where IG(ω, x) = (1/�(ω))
∫ x

0 e−t tω−1 dt is the incomplete gamma integral (or the gamma
distribution function, see, e.g. [14, p. 38]), then C = (1 − p)/

∫
|v|≥a|v|−α dv > 0, provided

p < 1.
The following assumption is important for coming up with the parameters of the proposed

IS density.

Assumption 1. There exist α0 > 1 and γ ≥ 1 such that∫
u∈Rd

|u|α0 |ϕ(u)|γ du < ∞.

By the Riemann–Lebesgue lemma, if the probability distribution ofX1 is given by a density
function then |ϕ(u)| → 0 as |u| → ∞. Assumption 1 is easily seen to hold when |ϕ(u)| decays
as a power law as |u| → ∞. This is true, for example, for gamma-distributed random variables.
More generally, this holds when the underlying density has integrable higher derivatives (see [10,
p. 514]): if the kth-order derivative of the underlying density is integrable then, for any α0,
Assumption 1 holds with γ > (1 + α0)/k.

To specify the parameters of the IS density, we need further analysis. Define

ϕθ (u) := Eθ (e
iu·(X1−x0)) = e−iu·x0

M(θ + iu)

M(θ)
,

where Eθ denotes the expectation operator under the distribution Fθ . Let

h(x) := 1 − sup
|u|≥x

|ϕθ∗(u)|2.

Then 0 ≤ h(x) ≤ 1, h(0) = 0, h(x) is continuous and nondecreasing, and h(x) ↑ 1 as x ↓ 0.
Furthermore, since ϕ is the characteristic function of a nonlattice distribution, h(x) > 0 if
x > 0. We define

h1(y) = min{z | h(z) ≥ y} for y ∈ (0, 1).

Then, for any y ∈ (0, 1), we have h(h1(y)) ≥ y and h1(z) ↓ 0 as z ↓ 0.
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Let {sn}∞n=1 be any sequence such that, as n → ∞, sn ↓ 0; for any positive β,

(1 − sn)
nnβ → 0; and

√
nh1(sn) → ∞. Taking sn to be of order n−ε for ε ∈ (0, 1) satisfies

these three properties (see [8] for this and for further discussion on how {sn} may be selected in
practice). Set δ3(n) := h1(sn). Then it follows that if x ≥ δ3(n) then h(x) ≥ sn. Equivalently,
|ϕθ∗(u)| < √

1 − sn for all u ≥ δ3(n).
Let κmin and κmax denote the minimum and maximum eigenvalues of �′′(θ∗), respectively.

Hence, 1/κmin is the maximum eigenvalue of �′′(θ∗)−1 = A(θ∗)A(θ∗). Therefore, we have

1

κmin
= ‖A(θ∗)‖2.

Next, put δ2(n) = √
κmaxδ3(n). Then

√
nδ2(n) → ∞ and |v| ≥ δ2(n) implies that |A(θ∗)v| ≥

δ3(n). Also, let δ1(n) = δ2(n)/
√
κmin = δ3(n)

√
κmax/κmin, so that |v| < δ2(n) implies that

|A(θ∗)v| < δ1(n).
Now we are in position to specify the parameters for the proposed IS density. Set α = α0

and an = √
nδ2(n). Let pn = bn × IG(d/2, a2

n/2). For g to be a valid density function, we
need pn < 1. Since IG(d/2, a2

n/2) → 1, select bn to be a sequence of positive real numbers
that converge to 1 in such a way that bn < 1/IG(d/2, a2

n/2) and

lim
n→∞

(1 − sn)
nn(d+α)/2

1 − bn × IG(d/2, a2
n/2)

= 0. (6)

For example, bn = 1 − n−ξ for any ξ > 0 satisfies (6). For each n, let gn denote the PDF
of the form (5) with parameters α, an, and bn chosen as above. Let En and varn denote the
expectation and variance, respectively, with respect to the density gn.

Theorem 1. Suppose that Assumption 1 holds and that θ∗ ∈ �0. Then

En

(
ψ2(n−1/2A(θ∗)V , θ∗, n)φ2(V )

g2
n(V )

)
=

∫
v∈Rd

ψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v)

gn(v)
dv

= 1 + o(n−1/2).

Consequently, from Proposition 2, it follows that

varn

(
ψ(n−1/2A(θ∗)Vi, θ∗, n)φ(Vi)

gn(Vi)

)
→ 0 as n → ∞,

so that the proposed estimators for (fn(x0) : n ≥ 1) have an asymptotically vanishing relative
error.

We will use the following result from Equation (2.8) of [10, pp. 534].

Lemma 1. For any λ, β ∈ C,

| exp(λ)− 1 − β| ≤
(

|λ− β| + |β|2
2

)
exp(ω) for all ω ≥ max{|λ|, |β|}.

Also, note that, from the definitions of ψ and η, it follows that, for any θ ∈ �,

exp

[
−v · v

2

]
ψ(n−1/2A(θ)v, θ, n)
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is a characteristic function. To see this, observe that exp[− 1
2v · v]ψ(n−1/2A(θ)v, θ, n) equals

(
exp

[
−v · v

2n
+ η(n−1/2A(θ)v, θ)

])n
= [Eθ (ein−1/2A(θ)v·(X1−x0))]n

= [ϕθ (n−1/2A(θ)v)]n.
Some more observations are useful for proving Theorem 1. Since η′′′ is continuous, it

follows, from the three-term Taylor series expansion,

η(v, θ) = η(0, θ)+ η′(0, θ)v + 1
2 (v)

�η′′(0, θ)v + 1
6η

′′′(ṽ, θ)� v

(where ṽ is between v and the origin), (3), and (4), that there exists a sequence {εn} of positive
numbers converging to 0 so that

∣∣∣∣η(v, θ∗)− 1

3!η
′′′(0, θ∗)� v

∣∣∣∣ ≤ εn(κmin)
3/2|v|3 for |v| < δ1(n),

or, equivalently,
∣∣∣∣η(v, θ∗)− 1

3!�
′′′(θ∗)� (iv)

∣∣∣∣ ≤ εn(κmin)
3/2|v|3 for |v| < δ1(n). (7)

Furthermore, for sufficiently large n,
∣∣∣∣ 1

3!�
′′′(θ∗)� (iv)

∣∣∣∣ < 1

8
κmin|v|2 (8)

and
|η(v, θ∗)| < 1

8κmin|v|2 (9)

for all |v| < δ1(n). We will assume that n is sufficiently large so that (8) and (9) hold in the
remaining analysis.

Proof of Theorem 1. We write

∫
v∈Rd

ψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v)

gn(v)
dv = I3 + I4,

where

I3 =
∫

|v|<√
nδ2(n)

ψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v)

gn(v)
dv

and I4 =
∫

|v|≥√
nδ2(n)

ψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v)

gn(v)
dv.

From (5) we see that

I3 = 1

bn

∫
|v|<√

nδ2(n)

ψ2(n−1/2A(θ∗)v, θ∗, n)φ(v) dv

and I4 = 1

Cn

∫
|v|≥√

nδ2(n)

|v|αψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v) dv.
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For any c > 0, put �d(c) := ∫
|v|<c φ(v) dv (= IG(d/2, c2/2)). By the triangle inequality,

|I3 − 1| ≤
∣∣∣∣I3 − �d(

√
nδ2(n))

bn

∣∣∣∣ +
∣∣∣∣�d(

√
nδ2(n))

bn
− 1

∣∣∣∣.
Since, as n → ∞, we have�d(

√
nδ2(n)) → 1 and bn → 1, the second term on the right-hand

side converges to 0. Writing ζ3(θ
∗) = �′′′(θ∗) � A(θ∗), for the first term, we have

∣∣∣∣I3 − �d(
√
nδ2(n))

bn

∣∣∣∣
= 1

bn

∣∣∣∣
∫

|v|<√
nδ2(n)

[ψ2(n−1/2A(θ∗)v, θ∗, n)− 1]φ(v) dv

∣∣∣∣
= 1

bn

∣∣∣∣
∫

|v|<√
nδ2(n)

[
ψ2(n−1/2A(θ∗)v, θ∗, n)− 1 − ζ3(θ

∗)
3
√
n

� (iv)

]
φ(v) dv

∣∣∣∣
≤ 1

bn

1

(2π)d/2

∫
|v|<√

nδ2(n)

∣∣∣∣ψ2(n−1/2A(θ∗)v, θ∗, n)− 1 − ζ3(θ
∗)

3
√
n

� (iv)

∣∣∣∣e−v2/2 dv.

We apply Lemma 1 with λ = 2n×η(n−1/2A(θ∗)v, θ∗) andβ = 1
3n�

′′′(θ∗)� (in−1/2A(θ∗)v).
Since |β|2/2 = n−1P(v), where P is a homogeneous polynomial whose coefficients do not
depend on n, and |v| < √

nδ2(n) implies that |n−1/2A(θ∗)v| < δ1(n), we obtain, from (9), (8),
and (7), respectively,

|λ| = 2n|η(n−1/2A(θ∗)v, θ∗)|
< 2n 1

8κmin|n−1/2A(θ∗)v|2
≤ 1

8κmin‖A(θ∗)‖2|v|2

= |v|2
4
,

|β| = 2n

∣∣∣∣ 1

3!�
′′′(θ∗)� (in−1/2A(θ∗)v)

∣∣∣∣
< 2n 1

8κmin|n−1/2A(θ∗)v|2
≤ 1

8κmin‖A(θ∗)‖2|v|2

= |v|2
4
,

and |λ− β| satisfies

2n

∣∣∣∣η(n−1/2A(θ∗)v, θ∗)− 1

3!�
′′′(θ∗)� (in−1/2A(θ∗)v)

∣∣∣∣ < 2nεn(κmin)
3/2|n−1/2A(θ∗)v|3

≤ 2εn|v|3√
n

.

From Lemma 1, it now follows that the integrand in the last integral is dominated by

exp

[ |v|2
4

](
2εn|v|3√

n
+ 1

n
P (v)

)
exp

[
−|v|2

2

]
= exp

[
−|v|2

4

](
2εn|v|3√

n
+ 1

n
P (v)

)
.
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Therefore, we have I3 = 1 + o(n−1/2). Also,

|I4| ≤ 1

(2π)dCn

∫
|v|>√

nδ2(n)

|v|α| exp[−|v|2]ψ2(n−1/2A(θ∗)v, θ∗, n)| dv

= 1

(2π)dCn

∫
|v|>√

nδ2(n)

|v|α|ϕθ∗(n−1/2A(θ∗)v)|2n dv

≤ (1 − sn)
n−γ /2

(2π)dCn

∫
v∈R

|v|α|ϕθ∗(n−1/2A(θ∗)v)|γ dv

= (1 − sn)
n−γ /2n(d+α)/2

√|�′′(θ∗)|
(2π)dCn

∫
u∈R

|A(θ∗)−1u|α|ϕθ∗(u)|γ du

≤ D1
(1 − sn)

n−γ /2n(d+α)/2

Cn

∫
u∈R

|u|α|ϕθ∗(u)|γ du

≤ D1

(1 − sn)
n−γ /2n(d+α)/2

∫
|v|≥√

nδ2(n)
|v|−α dv

1 − pn

∫
u∈R

|u|α|ϕθ∗(u)|γ du,

where D1 is a constant independent of n. By Assumption 1, the above integral over u is finite.
For large n, we also have

∫
|v|≥√

nδ2(n)
|v|−α dv ≤ ∫

|v|≥1|v|−α dv. By our choice of bn we can
conclude that I4 → 0 as n → ∞, completing the proof.

4. Efficient estimation of tail probability

In this section we consider the problem of efficient estimation of P(X̄n ∈ A) for sets A that
are affine transformations of the nonnegative orthants R

d+ along with some minor variations.
As in [3, pp. 83–89], the dominating point of the set A plays a crucial role in our analysis. As is
well known, a point x0 is called a dominating point of A if x0 uniquely satisfies the following
properties: (i) x0 is in the boundary of A; (ii) there exists a unique θ∗ ∈ R

d with�′(θ∗) = x0;
and (iii) A ⊆ {x | θ∗ · (x − x0) ≥ 0}. In the remainder of the paper we assume the existence
of a dominating point x0 for A.

Our estimation relies on a saddle-point representation of P(X̄n ∈ A) obtained using
Parseval’s relation. Let Yn := √

n(X̄n − x0) and An,x0 := √
n(A − x0), where x0 =

(x1
0 , x

2
0 , . . . , x

d
0 ) is an arbitrarily chosen point in R

d . Let hn,θ,x0(y) be the density function of
Yn when each Xi has distribution function Fθ obtained by exponentially twisting F by θ . That
is,

dFθ(x) = eθ ·xM(θ)−1 dF(x) = eθ ·x−�(θ) dF(x).

An exact expression for the tail probability is given by

P(X̄n ∈ A) = P(Yn ∈ An,x0) = e−n{θ∗·x0−�(θ∗)}
∫
y∈An,x0

e−√
n(θ∗·y)hn,θ∗,x0(y) dy, (10)

where recall that θ∗ ∈ �0 is a solution to �′(θ) = x0, and x0 is the dominating point of A.
Define

c(n, θ∗, x0) =
∫
y∈An,x0

e−√
n(θ∗·y) dy = nd/2

∫
w∈(A−x0)

e−n(θ∗·w) dw.

We need the following assumption.

Assumption 2. For all n, c(n, θ∗, x0) < ∞.
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Since x0 is a dominating point of A, for any y ∈ An,x0 , we have θ∗ · y ≥ 0. Hence, if A
is a set with finite Lebesgue measure then c(n, θ∗, x0) is finite. Assumption 2 may hold even
when A has infinite Lebesgue measure, as Example 1 below illustrates.

When Assumption 2 holds, we can rewrite the right-hand side of (10) as

c(n, θ∗, x0)e
−n{θ∗·x0−�(θ∗)}

∫
y∈An,x0

rn,θ∗,x0(y)hn,θ∗,x0(y) dy, (11)

where rn,θ∗,x0(y) is a density function that equals e−√
n(θ∗·y)/c(n, θ∗, x0) for y ∈ An,x0 and 0

otherwise.
Let ρn,θ∗,x0(t) denote the complex conjugate of the characteristic function of rn,θ∗,x0(y).

Since the characteristic function of h(n, θ∗, x0) equals e−it
√
nx0 [M(θ∗ + it/

√
n)/M(θ∗)]n, by

Parseval’s relation, (11) is equal to

c(n, θ∗, x0)e
−n{θ∗·x0−�(θ∗)}

(
1

2π

)d ∫
t∈Rd

ρn,θ∗,x0(t)e
−it

√
nx0

[
M(θ∗ + it/

√
n)

M(θ∗)

]n
dt.

This in turn, by the change of variable t = A(θ∗)v and rearrangement of terms, equals

c(n, θ∗, x0)e−n{θ∗·x0−�(θ∗)}
√

det(�′′(θ∗))

(
1

2π

)d/2

×
∫
v∈Rd

ρn,θ∗,x0(A(θ
∗)v)ψ(n−1/2A(θ∗)v, θ∗, n)φ(v) dv. (12)

We need another assumption to facilitate the analysis.

Assumption 3. For all t ∈ R
d , limn→∞ ρn,θ∗,x0(t) = 1.

Proposition 3. Suppose that A has a dominating point x0, that the associated θ∗ ∈ �o, and
that �′′(θ∗) is strictly positive definite. Furthermore, suppose that Assumptions 2 and 3 hold.
Then

P(X̄n ∈ A) ∼
(

1

2π

)d/2
c(n, θ∗, x0)e−n{θ∗·x0−�(θ∗)}

√
det(�′′(θ∗))

,

or, equivalently, by (12),

lim
n→∞

∫
v∈Rd

ρn,θ∗,x0(A(θ
∗)v)ψ(n−1/2A(θ∗)v, θ∗, n)φ(v) dv = 1.

The proof of Proposition 3 is similar to that of Proposition 2 and is thus omitted (see [8]).
Let g be any density supported on R

d . If V1, V2, . . . , VN are i.i.d. with distribution given
by density g, then an unbiased estimator for P(X̄n ∈ A) is given by

P̂(X̄n ∈ A) =
(

1

2π

)d/2
c(n, θ∗, x0)e−n{θ∗·x0−�(θ∗)}

√
det(�′′(θ∗))

× 1

N

N∑
j=1

ρn,θ∗,x0(A(θ
∗)Vj )ψ(n−1/2A(θ∗)Vj , θ∗, n)φ(Vj )

g(Vj )
. (13)

Note that, for the above estimator to be useful, we must be able to find closed-form expressions
for c(n, θ∗, x0) and ρn,θ∗,x0(t) or these should be cheaply computable. In Section 4.1 we
consider some examples where we explicitly compute c(n, θ∗, x0) and ρn,θ∗,x0 and verify
Assumptions 2 and 3.
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Theorem 2. Under Assumptions 1, 2, and 3,

En

(
ρ2
n,θ∗,x0

(A(θ∗)V )ψ2(n−1/2A(θ∗)V , θ∗, n)φ2(V )

g2
n(V )

)
= 1 + o(n−1/2) as n → ∞,

where gn is same as Theorem 1. Consequently, by Proposition 3, it follows that, as n → ∞
varn(P̂(X̄n ∈ A)) → 0 and the proposed estimator has asymptotically vanishing relative error.

Proof. The proof follows along the same lines as the proof of Theorem 1. We write

∫
v∈Rd

ρ2
n,θ∗,x0

(A(θ∗)v)ψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v)

gn(v)
dv = I5 + I6,

where

I5 =
∫

|v|<δ2(n)
√
n

ρ2
n,θ∗,x0

(A(θ∗)v)ψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v)

gn(v)
dv

= 1

bn

∫
|v|<δ2(n)

√
n

ρ2
n,θ∗,x0

(A(θ∗)v)ψ2(n−1/2A(θ∗)v, θ∗, n)φ(v) dv,

I6 =
∫

|v|≥δ2(n)
√
n

ρ2
n,θ∗,x0

(A(θ∗)v)ψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v)

gn(v)
dv

= 1

Cn

∫
|v|≥δ2(n)

√
n

ρ2
n,θ∗,x0

(A(θ∗)v)|v|αψ2(n−1/2A(θ∗)v, θ∗, n)φ2(v) dv.

Now

|I5 − 1| =
∣∣∣∣ 1

bn

∫
|v|<δ2(n)

√
n

ρ2
n,θ∗,x0

(A(θ∗)v)ψ2(n−1/2A(θ∗)v, θ∗, n)φ(v) dv − 1

∣∣∣∣
≤ 1

bn

∣∣∣∣
∫

|v|<δ2(n)
√
n

ρ2
n,θ∗,x0

(A(θ∗)v){ψ2(n−1/2A(θ∗)v, θ∗, n)− 1}φ(v) dv

∣∣∣∣ + o(1)

≤ 1

bn

∣∣∣∣
∫

|v|<δ2(n)
√
n

ρ2
n,θ∗,x0

(A(θ∗)v)
{
ψ2(n−1/2A(θ∗)v, θ∗, n)− 1 − ζ3(θ

∗)
3
√
n

� (iv)

}

× φ(v) dv

∣∣∣∣ + o(1)

≤ 1

bn

∫
|v|<δ2(n)

√
n

|ρn,θ∗,x0(A(θ
∗)v)|2

∣∣∣∣ψ2(n−1/2A(θ∗)v, θ∗, n)− 1 − ζ3(θ
∗)

3
√
n

� (iv)

∣∣∣∣
× φ(v) dv + o(1)

≤ 1

bn

∫
|v|<δ2(n)

√
n

∣∣∣∣ψ2(n−1/2A(θ∗)v, θ∗, n)− 1 − ζ3(θ
∗)

3
√
n

� (iv)

∣∣∣∣φ(v) dv + o(1).

Now, as in the case of Theorem 1, we conclude that I5 = 1 + o(n−1/2). Also, since

|I6| ≤ 1

Cn

∫
|A(θ∗)v|≥δ2(n)

√
n

|v|α|ρn,θ∗,x0(A(θ
∗)v)|2|ψ2(n−1/2A(θ∗)v, θ∗, n)|φ2(v) dv

≤ 1

(2π)dCn

∫
|A(θ∗)v|≥δ2(n)

√
n

|v|α| exp[−v2]ψ2(n−1/2A(θ∗)v, θ∗, n)| dv,

we conclude that I6 → 0 as n → ∞, completing the proof.
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4.1. Examples

Example 1. Let A = x0 + R
d+, where x0 = (x1

0 , x
2
0 , . . . , x

d
0 ) is a given point in R

d . Further-
more, suppose that, for all i = 1, 2, . . . , d, θ∗

i > 0. It is easy to see that existence of such a
θ∗ implies that x0 is a dominating point for A. It also follows that Assumption 2 holds and
c(n, θ∗, x0) = 1/nd/2θ∗

1 θ
∗
2 · · · θ∗

d . It can easily be verified that

ρn,θ∗,x0(t1, t2, . . . , td ) =
d∏
i=1

(
1

1 + iti/
√
nθ∗
i

)
.

Therefore, Assumption 3 also holds in this case. By Proposition 3, we then have

P(X̄n − x0 ∈ R
d+) ∼ en{�(θ∗)−θ∗·x0}

(2π)d/2nd/2
√

det(�′′(θ∗))θ∗
1 θ

∗
2 · · · θ∗

d

.

By Theorem 2, (13) is an unbiased estimator for P(X̄n − x0 ∈ R
d+) and has an asymptotically

vanishing relative error.

Example 2. When A = x0 + BR
d+ and B is a nonsingular matrix, the problem can also be

reduced to that considered in Example 1 by a simple change of variable. Set y = B−1z. Then
it follows that, for any θ ,

c(n, θ, x0) = det(B)
∫
z∈R

d+
exp[−√

n(B�θ · z)] dz.

Now if we assume that all the d components of B�θ∗ are positive then, as in Example 1, both
Assumptions 2 and 3 hold.

For 0 ≤ d ′ < d , let

Q+
d ′ := {(x1, x2, . . . , xd) ∈ R

d | xi ≥ 0 for all 0 ≤ i ≤ d ′}.
Similar analysis holds when A = x0 + BQ+

d ′ and B is a nonsingular matrix. Then, a simple
change of variable y = B−1z reduces the problem to a lower dimension problem as in Example 1
with d replaced by d ′.

Example 3. In Examples 1 and 2 we considered sets A which are unbounded. In this
example we show that a similar analysis holds when the set A is bounded. Consider the
three increasing regions (Ai : i = 1, 2, 3), where A3 corresponds to region A considered in
Example 1, A(1) is the d-dimensional rectangle given by

∏d
i [xi0, xi0 +Di], and A(2) is such that

A(1) ⊂ A(2) ⊂ A(3). Then x0 is the common dominating point for all the three sets. Again,
suppose that, for all i = 1, 2, . . . , d, θ∗

i > 0. Suppressing the dependence on x0 and θ∗, for
i = 1, 2, let

c(i)n :=
∫
y∈√

n(A(i)−x0)

e−√
n(θ∗·y) dy

and

ρ(i)n (t) := 1

c
(i)
n

∫
y∈√

n(A(i)−x0)

e−it ·y−√
n(θ∗·y) dy.

Then

c(1)n = (1 − e−nθ∗
1D1)(1 − e−nθ∗

2D2) · · · (1 − e−nθ∗
d Dd )

nd/2θ∗
1 θ

∗
2 · · · θ∗

d
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and

ρ(1)n (t1, t2, . . . td ) =
d∏
i=1

(
1

1 + iti/
√
nθ∗
i

1 − e−nθ∗
i Di(1+iti /

√
nθ∗
i )

1 − e−nθ∗
i Di

)
.

Therefore, it follows that Assumption 3 holds for A(1). Also, note that

|ρ(2)n (t)− 1| ≤ 1

c
(2)
n

∫
y∈√

n(A(2)−x0)

e−√
n(θ∗·y)|e−it ·y − 1| dy

≤ 1

nd/2c
(1)
n

∫
z∈n(A(2)−x0)

e−θ∗·z|e−it ·z/√n − 1| dz

≤ 1

nd/2c
(1)
n

∫
z∈R

d+
e−θ∗·z|e−it ·z/√n − 1| dz.

Since the last integral converges to 0, it follows that Assumption 3 holds for A(2). A similar
analysis carries over if these sets are transformed using a nonsingular matrix B under the
conditions in Example 2.

In Example 1 we assumed that, for all i = 1, 2, . . . , d, θ∗
i > 0. In many settings, this

may not be true, but the problem can be easily transformed to be amenable to the proposed
algorithms. This is discussed further in [8].

4.2. Estimating the expected overshoot

The methodology developed previously to estimate the tail probability P(X̄n ∈ A) can be
extended to estimate E(X̄αn | X̄n ∈ A) for α ∈ (Z+ − {0})d . We illustrate this in a single-
dimension setting (d = 1) for α = 1, and A = (x0,∞) for x0 > EXi .

Let Sn = ∑n
i=1Xi . In finance and in insurance one is often interested in estimating

E((Sn−nx0) | Sn > nx0), which is known as the expected overshoot or the peak over threshold.
As we have an efficient estimator for P(X̄n > x0), the problem of efficiently estimating
E(Sn | Sn > nx0) is equivalent to that of efficiently estimating E((Sn − nx0) 1{Sn>nx0}). Note
that E((Sn − nx0) 1{Sn>nx0}) = √

nE(Yn 1{Yn>0}), where Yn = √
n(X̄n − x0). Using (10), we

get

E(Yn 1{Yn>0}) = e−n{θ∗·x0−�(θ∗)}
∫ ∞

0
ye−√

n(θ∗·y)hn,θ∗,x0(y) dy, (14)

where recall that θ∗ ∈ � is a solution to �′(θ) = x0 and hn,θ∗,x0(y) is the density of Yn when
each Xi has distribution Fθ∗ . Define

c̃(n, θ∗) =
∫ ∞

0
ye−√

n(θ∗·y) dy = (nθ∗2
)−1.

Hence, for all n, c̃(n, θ∗) < ∞. The right-hand side of (14) may be re-expressed as

c̃(n, θ∗)e−n{θ∗·x0−�(θ∗)}
∫ ∞

0
r̃n,θ∗(y)hn,θ∗,x0(y) dy, (15)

where the density function r̃n,θ∗(y) = ye−√
n(θ∗·y)/c̃(n, θ∗) for y > 0, and 0 otherwise. Let

ρ̃n,θ∗(t) denote the complex conjugate of the characteristic function of r̃n,θ∗(y). By simple
calculations, it follows that ρ̃n,θ∗(t) = 1/(1− t2/nθ∗2 −2it/

√
nθ∗) and limn→∞ ρ̃n,θ∗(t) = 1.
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Then, repeating the analysis for the tail probability, analogously to (12), we see that (15) equals

c̃(n, θ∗)e−n{θ∗·x0−�(θ∗)}
√

2π�′′(θ∗)

∫ ∞

0
ρ̃n,θ∗(A(θ∗)v)ψ(n−1/2A(θ∗)v, θ∗, n)φ(v) dv.

As in Proposition 3, we can see that

E((Sn − nx0) 1{Sn>nx0}) ∼
(
n

2π

)1/2
c̃(n, θ∗)e−n{θ∗·x0−�(θ∗)}

√
det(�′′(θ∗))

=
(

1

2πn

)1/2 e−n{θ∗·x0−�(θ∗)}

θ∗2√det(�′′(θ∗))
,

so that E((Sn − nx0) 1{Sn>nx0})/P(Sn > nx0) ∼ 1/θ∗.
Using analysis identical to that in Theorem 2, it follows that the resulting unbiased estimator

of E((Sn − nx0) 1{Sn>nx0}) (when density gn is used) has an asymptotically vanishing relative
error.

5. Numerical experiments

5.1. Estimation of the probability density function of X̄n

We first use the proposed method to estimate the PDF of X̄n for the case where the sequence
of random variables (Xi : i ≥ 1) is independent and identically exponentially distributed with
mean 1. Then the sum has a known gamma density function facilitating comparison of the
estimated value to the true value. The density function estimates using the proposed method
(referred to as the SP-IS method) are evaluated for n = 30, an = 2, α = 2, and pn = 0.9 (the
algorithm performance was observed to be relatively insensitive to small perturbations in these
values; see [8] for a discussion on how these parameters may be selected) based onN generated
samples. In Table 1 we present a comparison of our method with the conditional Monte Carlo
(CMC) method proposed inAsmussen and Glynn (2008, pp. 145–146) for estimating the density
function of X̄n at a few values. As discussed inAsmussen and Glynn (2008), the CMC estimates
are given by an average of N independent samples of nf (x − Sn−1), where Sn−1 is generated
by sampling (X1, . . . , Xn−1) using their original density function f . In Figure 1 we present
a graphical comparison over a wider range of density function values. As may be expected,
the proposed method provides an estimator with much smaller variance compared to the CMC
method.

Table 1: The true density function and its estimates using the proposed (SP-IS) method and the CMC
method for an average of 30 independent, exponentially distributed (with mean equal to 1) random
variables. For x = 1.0 and 1.5, the number of generated samples N = 1000 in both the methods, and,

for x = 2.0, N = 10 000.

SP-IS method CMC method
x True value

Estimate Sample variance Estimate Sample variance

1.0 2.179 2.185 0.431 2.360 31.387
1.5 0.085 0.087 4.946 ×10−4 0.067 0.478
2.0 1.094 ×10−4 1.105 × 10−4 1.066 × 10−9 7.342 × 10−7 3.341 × 10−1
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Figure 1: The true density function and its estimates using the proposed (SP-IS) method and the CMC
method for an average of 30 independent, exponentially distributed (with mean equal to 1) random
variables. The plot illustrates the performance of the two methods over a wide range of x values. In both

simulations N = 1000 at each point.

5.2. Comparison with state-dependent exponential twisting

We compare the efficiency of the SP-IS method for estimating the tail probability P(X̄n ∈ A)
with the optimal state-dependent exponential twisting method proposed by Blanchet et al. [2]
(referred to as the BGL method). They restricted their analysis to convex sets A with twice
continuously differentiable boundary, whereas the SP-IS method is applicable to sets that are
affine transformations of the nonnegative orthants R

d+. The two methods agree in the single
dimension, and so we compare them in a single-dimension example (see [8] for a numerical
comparison of the SP-IS method with the one proposed by Sadowsky and Bucklew [19] in the
multidimension setting).

For a sequence of random variables (Xi : i ≥ 1) that are independent and identically
exponentially distributed with mean 1, P(X̄n ≥ 1.5) is estimated for different values of n.
In Table 2 we present the estimates based on differentN generated samples. In this experiment,
an = 2, α = 2, and pn = 0.9 for the SP-IS method. The BGL method is implemented as
per [2] as follows. First X1 is generated using an exponentially twisted distribution with mean
x0 = 1.5. At each next step, the exponential twisting coefficient in the distribution used to
generateXk+1 is recomputed such that the mean of the distribution is (nx0 −∑k

i=1Xi)/(n−k).
The exponential twisting is dynamically updated until the generated

∑k
i=1Xi ≥ nx0 at which

point we stop the importance sampling and sample the remaining n − k values with the
original distribution. In the other case, if the distance to the boundary nx0 − ∑k

i=1Xi is
sufficiently large relative to the remaining time horizon n−k ((nx0 −∑k

i=1Xi)/(n−k) ≥ 2x0),
then we generate the next n − k samples with exponentially twisted distribution with mean
(nx0 − ∑k

i=1Xi)/(n − k). In this example, the true value of the tail probability for different
values of n is calculated using an approximation of the gamma density function available
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Table 2: The SP-IS method has a decreasing coefficient of variation (CoV) and it provides an increasing
variance reduction (VR) over the BGL method. The computation time per sample (CT), reported in micro

seconds, increases with n for the BGL method, whereas it remains constant for the SP-IS method.

True value
CT

n N (exact asymptotic, cn) BGL CoV SP-IS CoV VR BGL SP-IS

50 103 9.276×10−4 1.41 9.055×10−4 0.32 20.38 7.5 0.9
104 9.039×10−4 9.127×10−4 1.41 9.036×10−4 0.32 19.77
105 (9.992×10−4) 9.036×10−4 1.41 9.038×10−4 0.32 19.13

100 103 5.936×10−6 1.44 5.932×10−6 0.28 25.84 15.4 0.9
104 5.924×10−6 5.913×10−6 1.45 5.923×10−6 0.29 24.54
105 (6.261×10−6) 5.928×10−6 1.44 5.921×10−6 0.29 24.20

200 103 3.355×10−10 1.48 3.378×10−10 0.28 25.83 32.0 0.9
104 3.371×10−10 3.381×10−10 1.46 3.368×10−10 0.28 26.17
105 (3.473×10−10) 3.370×10−10 1.46 3.374×10−10 0.28 26.92

in MATLAB®. Variance reduction achieved by the SP-IS method over the BGL method is
reported. This increases with increasing n. In addition, we note that the computation time
per sample for the BGL method increases with n, whereas it remains constant for the SP-IS
method. The results in Table 2 show that the exact asymptotic cn can differ significantly from the
estimated value of the probability. As shown in [8], this difference can be far more significant
in multi-dimension settings, thus emphasizing the need for simulation, despite the existence of
asymptotics for the rare quantities considered.

6. Conclusions and direction for further research

In this paper we considered the rare event problem of efficient estimation of the density
function of the average of i.i.d. light-tailed random vectors evaluated away from their mean,
and the tail probability that this average takes a large deviation. In a single-dimension setting we
also considered the estimation problem of the expected overshoot associated with a sum of i.i.d.
random variables taking large deviations. We used the well-known saddle-point representations
for these performance measures and applied importance sampling to develop provably efficient
unbiased estimation algorithms that significantly improve upon the performance of the existing
algorithms in the literature and are simple to implement.

Our key contribution was combining rare event simulation with the classical theory of
saddle-point-based approximations for tail events. We hope that this approach spurs research
towards efficient estimation of a much richer class of rare event problems where saddle-point
approximations are well known or are easily developed.

Another direction that is important for further research involves relaxing Assumption 2 or 3
in our analysis. Then our important sampling estimators may not have asymptotically vanishing
relative error, but may have bounded relative error. This is illustrated through an example in [8].
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