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In this work we study the Cauchy problem in Gevrey spaces for a generalized class
of equations that contains the case b = 0 of the b-equation. For the generalized
equation, we prove that it is locally well-posed for initial data in Gevrey spaces.
Moreover, as we move to global well-posedness, we show that for a particular choice
of the parameter in the equation the local solution is global analytic in both time
and spatial variables.
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1. Introduction

The 4-parameter equation

ut − utxx + aukux − buk−1uxuxx − cukuxxx = 0, a, b, c ∈ R\{0}, k ∈ N, (1.1)

studied in [1, 15, 16], is a generalization of the Camassa–Holm equation [6]

ut − utxx + 3uux − 2uxuxx − uuxxx = 0, (1.2)

and the Novikov equation [20, 25]

ut − utxx + 4u2ux − 3uuxuxx − u2uxxx = 0, (1.3)

that admits certain scaling transformations as symmetries. The equation (1.1) has
proven to be an interesting mathematical equation once it is possible to choose a =
k + 2, b = k + 1 and c = 1 in order to transform it into a one-parameter family of
equations that still unifies (1.2) and (1.3), and also admits the peaked wave solutions
u(t, x) = c1/ke−|x−ct|, called peakon solutions [6], where c denotes the wave speed.
Despite admitting an infinite number of conservation laws only when the equation
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is reduced to (1.2) or (1.3), it was not long before the interesting properties of
(1.1) attracted attention from researchers. In terms of applied analysis, Himonas
and Holliman, in the same paper [16] showed that for any positive integer k � 1,
b = a+ 1 and c = 1, the equation is Hadamard well-posed inHs(R) for s > 3/2 and,
more recently, Barostichi, Himonas and Petronilho [5] considered the choices a =
k + 2, b = k + 1 and c = 1 in (1.1) to extend local well-posedness to global for the
resulting equation and also understand the behaviours of global analytic solutions
provided that the McKean quantitym0 = m0(x) := (1 − ∂2

x)u(0, x) does not change
sign. For a geometric interpretation of the sign persistance of the McKean quantity
and its consequences, see [7] and discussions in [8, 23].

It is important to observe that the restriction k � 1 in (1.1) is due to two main
reasons: firstly, the Camassa–Holm and Novikov equations are accomplished when
we have two particular positive choices of k and, secondly, problems with singularity
obviously arise whenever considering k < 1. Moreover, the former also explains why
the constants a, b, c are taken as different than zero. However, by allowing b = 0
and a = c = 1 in (1.1), one arrives at the equation

mt + ukmx = 0, (1.4)

where k will be taken as a positive integer and m = u− uxx. In the particular case
where k = 1, (1.4) is a very particular case of the b-equation mt + bmux + umx = 0
considered in [10] and later shown in [11, 19] to have hydrodynamic applications
when b �= −1. Moreover, it can also be obtained from Kodama transformation to
describe shallow water elevation [12]. In terms of well-posedness, we observe that in
[16, 26] the authors showed that (1.4) is well-posed for an initial value u0 ∈ Hs(R),
where s > 3/2.

It is crucial to observe, however, that although local well-posedness of (1.4) in
Sobolev [16], Besov [26] and Gevrey [3] spaces has been successfully established,
not much else has been considered for k > 1. In fact, the reasons for this fact are
rather simple: the case k = 1 in (1.4) is only known to conserve the momentum∫

R
m(t, x)dx for rapidly decreasing solutions, which is equivalent to saying that

H(u) =
∫

R

u(t, x)dx (1.5)

is independent of time for the same sort of solution. For the generalized equation
(1.4) with k > 1, the situation becomes even more drastic as no conservation laws
seem to exist [1], which poses a difficulty that perhaps may be impossible to
overcome in the attempt to study solutions and their properties.

One of the pioneering works is [9], where in the particular case of k = 1 in (1.4)
the authors considered global well-posedness and deduced that, also making the
assumption that the McKean quantity does not change sign, in H3(R), it is possible
to extend the local solutions and then the maximal time of existence is infinite. This
is indeed a remarkable result once the equation (1.4) lacks the conservation of the
H1(R) norm and the construction of a highly non-trivial functional was required
to show that the solution could not blow up at a finite time. Following a similar
direction, in [13] the authors determined global well-posedness for the periodic case
and also studied continuation of periodic solutions. For the general case k > 1 the
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authors in [9] also answered some of the questions raised by Himonas and Thompson
[18], giving a characterization of asymptotic behaviour or solutions based on the
initial data, and a blow-up criteria has been established in [26]. The determination
of global well-posedness for k > 1, however, is still an open problem.

In this paper, we are interested in the initial value problem

ut = F (u), u(0, x) = u0(x), (1.6)

where

F (u) = −∂x

[
uk+1

k + 1
+

3
2
(1 − ∂2

x)−1(kuk−1u2
x)

]
+ (1 − ∂2

x)−1

[
k(k − 1)

2
uk−2u3

x

]
,

(1.7)
and complementing the results found in [9, 13]. We observe that (1.6)–(1.7) is
nothing but the evolution formulation of the Cauchy problem of (1.4) after the
inversion of the Helmholtz operator 1 − ∂2

x.
Consider the L2

x(R) space of square integrable functions endowed with the norm

‖f‖L2
x

=
(∫

R

|f(x)|2dx
)1/2

.

The main function space of our interest in the present paper is the Gevrey space
Gσ,s(R), where σ > 0 and s ∈ R, of functions in L2(R) such that the norm

‖f‖Gσ,s := ‖(1 + |ξ|2)s/2eσ|ξ|f̂(ξ)‖L2
ξ

=
(∫

R

(1 + |ξ|2)se2σ|ξ||f̂(ξ)|2dξ
)1/2

is finite, where f̂ denotes the Fourier transform

f̂(ξ) =
1√
2π

∫
R

e−ixξf(x)dx.

In the particular case where σ → 0, the space G0,s(R) becomes the usual Sobolev
space Hs(R). In a result known as Paley–Wiener theorem (see [22]), the Gevrey
space Gσ,s(R) is characterized as the restriction to the real line of functions that
are analytic on a strip of width 2σ.

Our main intention is to show that well-posedness of (1.6)–(1.7) goes beyond
Sobolev spaces in the sense of a proof for global well-posedness in Gevrey spaces by
making use of the Kato–Masuda [21] machinery and certain embeddings between
spaces.

Before proceeding with our main result, we state a generalization of global well-
posedness in Sobolev spaces for equation (1.6)–(1.7) with k = 1. We observe that
the result proven in [9] covers an initial data u0 ∈ H3(R), while here we establish
the result to u0 ∈ Hs(R), s � 3, which is enough for our purposes.

Proposition 1.1. Given u0 ∈ Hs(R), s � 3, if m0 ∈ L1(R) does not change sign,
then the unique local solution u for (1.6)–(1.7) with k = 1 exists globally in
C([0, ∞);Hs(R)) ∩ C1([0, ∞);Hs−1(R)).

With proposition 1.1 in hand, we enunciate our main result.
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Theorem 1.2. Given u0 ∈ G1,s(R), with s > 5/2, if m0(x) does not change sign,
then the Cauchy problem of (1.6)–(1.7) with k = 1 has a unique global analytic
solution u ∈ Cω([0, ∞) × R).

In the context of hydrodynamic applications, analyticity is a crucial ingredient
to prove an intrinsic characterization of symmetric waves, see [14] for more details.
Here, we observe that our unique space-time analytic solutions provided by theorem
1.2 are not necessarily travelling waves, which then provides an interesting and
general result.

The proof of theorem 1.2 relies on the powerful machinery of Kato and Masuda
[21] and embedding properties of certain spaces, see [5, 21]. Another useful space
is an adaptation of the Banach spaces proposed by Himonas and Misiolek in [17]:
for σ > 0 and m is a positive integer, the set Eσ,m(R) of infinitely differentiable
functions such that

|||f |||Eσ,m
= sup

j∈Z+

σj(j + 1)2

j!
‖∂j

xf‖H2m <∞

is a Banach space by its own turn. In order to prove that the lifespan is infinite and
the solution is analytic in both variables t and x, we will make use of the auxiliary
local well-posedness result.

Proposition 1.3. Given u0(x) ∈ Eσ0,m(R), with m � 3 and for some σ0 ∈ (0, 1]
fixed, for

T = κm
1

|||u0|||kEσ0,m

, (1.8)

where

κm =
1[

1
k+1 + 3k

2 + k(k−1)
2

]
(22(k+2) + 8)ckm

,

with cm > 0 depending only on m, and for every σ ∈ (0, σ0), the Cauchy problem
for (1.6)–(1.7) has a unique solution u that is analytic in the disc D(0, T (σ0 − σ))
with values in Eσ,m(R). Moreover, the bound

sup
|t|<T (1−σ)

|||u(t) − u0|||Eσ,m
< |||u0|||Eσ0,m

holds.

The paper is organized as follows. In § 2 we establish the basic function spaces
and auxiliary propositions required for the understanding and proofs of our results.
In § 3, we present the proof of proposition 1.3 for any k ∈ Z+, which follows from
the technical estimates of § 2. After that, in § 4 we present a proof of proposition
1.1, which can also be found in [9] for s = 3. Finally, in § 5 we provide a proof for
global well-posedness in H∞(R) and finalize with the extensive and complex proof
of theorem 1.2 by making use of proposition 1.3.
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2. Function spaces and auxiliary results

In this section we will enunciate the theory behind the function spaces presented
in the introduction.

We start recalling that, similarly to Sobolev spaces, one interesting property
of Gevrey spaces is that it is possible to continuously embed them based on the
parameters σ and s, see [4]:

(i) If 0 < σ′ < σ and s � 0, then ‖ · ‖Gσ′,s � ‖ · ‖Gσ,s and Gσ,s(R) ↪→ Gσ′,s(R);

(ii) If 0 < s′ < s and σ > 0, then ‖ · ‖Gσ,s′ � ‖ · ‖Gσ,s and Gσ,s(R) ↪→ Gσ,s′
(R).

Although our main result involves the use of Gevrey spaces, we will need to
consider some auxiliary spaces and their embeddings. Following the work of Kato
and Masuda [21] about the Korteweg–de Vries equation, for r > 0 fixed we define
the spaces A(r) of functions that can be analytically extended to a function on a
strip of width r, endowed with the norm

‖f‖2
σ,s =

∞∑
j=0

1
j!2

e2σj‖∂j
xf‖Hs , (2.1)

for s � 0 and every σ ∈ R such that eσ < r. Observe that if r � r′ then f ∈ A(r)
implies that f ∈ A(r′) and, therefore, A(r) ⊂ A(r′).

For H∞(R) :=
⋂

s�0

Hs(R), we have the following sequence of embeddings (see

lemma 2.3 and lemma 2.5 in [4] and lemma 2.2 in [21]):

Gσ,s(R) ↪→ A(σ) ↪→ H∞(R), (2.2)

for σ > 0 and s � 0.
Similarly to Gevrey spaces, we have Eσ,m(R) ↪→ Eσ′,m(R) for 0 < σ′ < σ and,

more importantly, Eσ,m(R) is also continuously embedded intoH∞(R) for allm � 1
and σ > 0, see page 750 of [5]. Moreover, it is important to emphasize that if
1 � m � m′, then |||f |||Eσ,m

� |||f |||Eσ,m′ .
To be able to extend regularity of global solutions, we will need to first con-

sider local well-posedness in Eσ0,m(R) for some σ0 ∈ (0, 1] and m � 3, and for that
purpose some estimates will be required. The first one we enunciate is the algebra
property, which allows us to relate the norm of multiplication to the multiplication
of norms.

Lemma 2.1 Algebra property. For any positive integer m, 0 < σ � 1 and
ϕ, ψ ∈ Eσ,m(R), there is a positive constant cm depending only on m such that

|||ϕψ|||Eσ,m
� cs|||ϕ|||Eσ,m

|||ψ|||Eσ,m
.

Proof. The proof follows closely the lines of [17]. �

Consider an equation of the formmt = F (u, ux, uxx, uxxx) and let g(x) = e−|x|/2
be the Green function of the equation (1 − ∂2

x)u = δ(x), where δ denotes de Dirac
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delta distribution. Then we can write the inverse of the Helmholtz operator 1 − ∂2
x

as

(1 − ∂2
x)−1f(x) = g ∗ f(x) =

1
2

∫
R

e−|x−y|f(y)dy.

With respect to the spaces Eσ,m(R), the Helmholtz operator and its inverse have
some important and useful properties that will be necessary to prove local well-
posedness.

Lemma 2.2. For 0 < σ′ < σ � 1, m � 1 and ϕ ∈ Eσ,m(R), then

|||∂xϕ|||Eσ′,m
� 1
σ − σ′ |||ϕ|||Eσ,m

, (2.3)

|||∂xϕ|||Eσ,m
� |||ϕ|||Eσ,m+1 , (2.4)

|||(1 − ∂2
x)−1ϕ|||Eσ,m+2 = |||ϕ|||Eσ,m

. (2.5)

Proof. The proofs of (2.4) and (2.5) follow immediately from the analogous esti-
mates for Sobolev spaces and will be omitted, while the the proof of (2.3) requires
an immediate adaptation of the proof of lemma 2.4 (page 580) of [17]. �

In what follows, a function u belongs to the space Cω(I;X) if it is analytic in
the interval I as a function of t and u(t, ·) belongs to X. We will be interested in
Cω(I;Gσ,s(R)), Cω(I;Eσ,m(R)) and Cω(I;A(r)). In the case where u ∈ Cω(I × R),
then u(t, x) is analytic for (t, x) ∈ I × R.

The final result of this section, called Autonomous Ovsyannikov Theorem, will
be used in the next section to prove proposition 1.3. Its proof uses a very classical
fixed point argument and follows closely the ideas in [4, 24], see also [2].

Proposition 2.3 Autonomous Ovsyannikov Theorem. Let Xδ be a scale of
decreasing Banach spaces for 0 < δ � 1, that is, Xδ ⊂ Xδ′ , ‖ · ‖δ′ � ‖ · ‖δ, 0 < δ′ <
δ � 1, and consider the Cauchy problem⎧⎨

⎩
du

dt
= G(u(t)),

u(0) = u0.
(2.6)

Given δ0 ∈ (0, 1] and u0 ∈ Xδ0 , assume that G satisfies the following conditions:

(i) For 0 < δ′ < δ < δ0, R > 0 and a > 0, if the function t �→ u(t) is holomorphic
on {t ∈ C; 0 < |t| < a(δ0 − δ) with values in Xδ and sup

t<a(δ0−δ)

‖u− u0‖δ < R,

then the function t �→ G(t, u(t)) is holomorphic on the same set with values
in Xδ′ .

(ii) G : Xδ → Xδ′ is well defined for any 0 < δ′ < δ < δ0 and for any R > 0 and
u, v ∈ B(u0, R) ⊂ Xδ, there exist positive constants L and M depending only
on u0 and R such that

‖G(u) −G(v)‖δ′ � L

δ − δ′
‖u− v‖δ, ‖G(u0)‖δ � M

δ0 − δ
,
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0 < δ < δ0. Then for

T =
R

16LR+ 8M
(2.7)

the initial value problem (2.6) has a unique solution u ∈ Cω([0, T (δ0 − δ)), Xδ), for
every δ ∈ (0, δ0), satisfying

sup
|t|<T (δ0−δ)

‖u(t) − u0‖δ < R, 0 < δ < δ0. (2.8)

3. Local well-posedness in the Himonas–Misiolek space

In this section we want to prove proposition 1.3 by making use of Autonomous
Ovsyannikov Theorem. Before doing so in the next subsections, observe that the
embeddings Eσ,m(R) ↪→ Eσ′,m(R), for 0 < σ′ < σ, guarantee that the function

H(u) = −∂x

[
uk+1

k + 1
+

3
2
(1 − ∂2

x)−1(kuk−1u2
x)

]
+ (1 − ∂2

x)−1

[
k(k − 1)

2
uk−2u3

x

]
,

taken as the right-hand side of (1.6), is a well-defined function from Eσ,m(R) to
Eσ′,m(R) for every choice of k. Moreover, condition 1 for the Autonomous Ovsyan-
nikov Theorem is trivially satisfied. Therefore, it remains to prove condition 2.

The proof of proposition 1.3 will be given in two parts. First we will separately
prove the case where k = 1, and then proceed to the case k > 1. We would like
to point out that proposition 1.3 holds for any positive choice of the parameter k,
which then recovers the case b = 0 for the b-equation.

3.1. Proof for k = 1

Consider the function F (u) given by (1.7) with k = 1.

Proposition 3.1. Given σ0 ∈ (0, 1], u0 ∈ Eσ0,m(R), with m � 3, and σ ∈ (0, σ0),
there exists a positive constant M that depends only on m and u0 such that

|||F (u0)|||Eσ,m
� M

σ0 − σ
.

Proof. For u0 ∈ Eσ0,m(R), write

F (u0) = −1
2
∂x

[
u2

0 + 3(1 − ∂2
x)−1(∂xu0)2

]
.

Using the triangle inequality, lemma 2.2 and lemma 2.1, we obtain

|||F (u0)|||Eσ,m
� 1

2
|||∂xu

2
0|||Eσ,m

+
3
2
|||(1 − ∂2

x)−1∂x(∂xu0)2|||Eσ,m

� 1
2

cm
σ0 − σ

|||u0|||2Eσ0,m
+

3
2

cm
σ0 − σ

|||∂xu0|||2Eσ0,m−2

� 2cm
σ0 − σ

|||u0|||2Eσ0,m
=

M

σ0 − σ
,

where M = 2cm|||u0|||2Eσ0,m
, finishing the proof. �
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Proposition 3.2. Let R > 0 and σ0 ∈ (0, 1]. Given u0 ∈ Eσ0,m(R), with m � 3,
and 0 < σ′ < σ < σ0, if u, v ∈ Eσ,m(R) are such that

|||u− u0|||Eσ,m
< R, |||v − u0|||Eσ,m

< R,

then there exists a positive constant L that depends only on m, u0 and R such that

|||F (u) − F (v)|||Eσ′,m
� L

σ − σ′ |||u− v|||Eσ,m
.

Proof. From the triangle inequality, we have

|||F (u) − F (v)|||Eσ′,m
� 1

2
|||∂x(u2 − v2)|||Eσ′,m

+
3
2
|||∂x(1 − ∂2

x)−1(u2
x − v2

x)|||Eσ′,m
.

By observing that

u2 − v2 = (u− v)(u+ v), u2
x − v2

x = [∂x(u− v)][∂x(u+ v)],

lemma 2.2 and lemma 2.1 yield

|||F (u) − F (v)|||Eσ′,m
� 1

2
cm

σ − σ′ |||u− v|||Eσ,m
|||u+ v|||Eσ,m

+
3
2

cm
σ − σ′ |||∂x(u− v)|||Eσ,m−2 |||∂x(u+ v)|||Eσ,m−2

� 2
cm

σ − σ′ |||u− v|||Eσ,m
|||u+ v|||Eσ,m

,

where in the last inequality we used the fact that |||∂x(u− v)|||Eσ,m−2 �
|||u− v|||Eσ,m

and an analogous estimate for ∂x(u+ v).
Since

|||u+ v|||Eσ,m
� |||u− u0|||Eσ,m

+|||v − u0|||Eσ,m
+2|||u0|||Eσ,m

<2(R+|||u0|||Eσ0,m
),

we conclude that for L = 4cm(R+ |||u0|||Eσ0,m
) the bound

|||F (u) − F (v)|||Eσ′,m
� L

σ − σ′ |||u− v|||Eσ,m

holds for m � 3 and 0 < σ′ < σ < σ0, completing the proof. �

We are now in conditions to finalize the proof of proposition 1.3 for k = 1. For
this purpose, observe that in proposition 3.1 we have M = 2cm|||u0|||2Eσ0,m

, while in
proposition 3.2 we have L = 4cm(R+ |||u0|||Eσ0,m

) for any R > 0. Letting C = 4cm,
then we can write L = C(R+ |||u0|||Eσ0,m

) and M = C
2 |||u0|||2Eσ0,m

.

From propositions 3.1 and 3.2, the conditions for the Autonomous Ovsyannikov
Theorem are satisfied and, therefore, for m � 3 and T given by (2.7) there exists
a unique solution u to the Cauchy problem (1.6) which for every σ ∈ (0, σ0) is
a holomorphic function in D(0, T (σ0 − σ)) to Eσ,m(R) and satisfies (2.8). Taking
R = |||u0|||Eσ0,m

yields

T =
1

144cm
× 1

|||u0|||Eσ0,m

and the proof of existence and uniqueness of proposition 1.3 is finished for k = 1.
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3.2. Proof for k > 1

For the case k > 1, we will make use of the simple algebraic inequality

3 + 2k−3 < 2k. (3.1)

Consider the function F (u) given by (1.7). Similarly to proposition 3.1
and proposition 3.2 for the case k = 1, we will estimate |||F (u0)|||Eσ,m

and
|||F (u) − F (v)|||Eσ′,m

for m � 3 and 0 < σ′ < σ < σ0 � 1.

Proposition 3.3. Given σ0 ∈ (0, 1], u0 ∈ Eσ0,m(R), with m � 3, and σ ∈ (0, σ0),
there exists a positive constant M that depends only on m and u0 such that

|||F (u0)|||Eσ,m
� M

σ0 − σ
.

Proof. Given u0 ∈ Eσ0,m(R), using (1.7) we have

|||F (u0)|||Eσ,m
� 1
k + 1

|||∂xu
k+1
0 |||Eσ,m

+
3k
2
|||∂x(1 − ∂2

x)−1uk−1
0 (∂xu0)2|||Eσ,m

+
k(k − 1)

2
|||(1 − ∂2

x)−1uk−2
0 (∂xu0)3|||Eσ,m

.

From lemma 2.2 and the algebra property, we can write

|||∂xu
k+1
0 |||Eσ,m

� 1
σ0 − σ

|||uk+1
0 |||Eσ0,m

� ckm
σ0 − σ

|||u0|||k+1
Eσ0,m

,

|||∂x(1 − ∂2
x)−1uk−1

0 (∂xu0)2|||Eσ,m
� 1
σ0 − σ

|||uk−1
0 (∂xu0)2|||Eσ0,m−2

� ckm
σ0 − σ

|||u0|||k+1
Eσ0,m

,

|||(1 − ∂2
x)−1uk−2

0 (∂xu0)3|||Eσ,m
� |||uk−2

0 (∂xu0)3|||Eσ,m−2 � ckm
σ0 − σ

|||u0|||k+1
Eσ0,m

.

Thus,

|||F (u0)|||Eσ,m
�

[
1

k + 1
+

3k
2

+
k(k − 1)

2

]
ckm

σ0 − σ
|||u0|||k+1

Eσ0,m
.

By letting

M =
[

1
k + 1

+
3k
2

+
k(k − 1)

2

]
ckm|||u0|||k+1

Eσ0,m
,

we finally conclude that

|||F (u0)|||Eσ,m
� M

σ0 − σ
,

for 0 < σ < σ0, and the result is proven. �

Before proceeding with the next estimate, it is necessary to state a result that only
requires the triangle inequality and successive applications of the algebra property.
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Lemma 3.4. For u, v ∈ Eσ,m(R), with σ > 0 and m � 1, let

fk(u, v) =
k∑

j=0

ujvk−j .

Then there exists a positive constant cm depending only on m such that

|||fk(u, v)|||Eσ,m
� ck−1

m (|||u|||Eσ,m
+ |||v|||Eσ,m

)k.

We shall now proceed with the last crucial estimate required to make use of the
Autonomous Ovsyannikov Theorem and finish the proof of proposition 1.3.

Proposition 3.5. Let R > 0 and σ0 ∈ (0, 1]. Given u0 ∈ Eσ0,m(R), with m � 3
and 0 < σ′ < σ < σ0, if u, v ∈ Eσ,m(R) are such that

|||u− u0|||Eσ,m
< R, |||v − u0|||Eσ,m

< R,

then there exists a positive constant L that depends only on m, u0 and R such that

|||F (u) − F (v)|||Eσ′,m
� L

σ − σ′ |||u− v|||Eσ,m
.

Proof. Given R > 0, σ0 ∈ (0, 1] and u0 ∈ Eσ0,m(R), with m � 3, let 0 < σ′ < σ <
σ0. In terms (1.7), we write

|||F (u) − F (v)|||Eσ′,m
� 1
k + 1

|||∂x(uk+1 − vk+1)|||Eσ′,m

+
3k
2
|||∂x(1 − ∂2

x)−1(uk−1u2
x − vk−1v2

x)|||Eσ′,m

+
k(k − 1)

2
|||(1 − ∂2

x)−1(uk−2u3
x − vk−2v3

x)|||Eσ′,m
.

(3.2)

Since uk+1 − vk+1 = (u− v)fk(u, v), from lemma 2.2 and lemma 3.4 we obtain

|||∂x(uk+1 − vk+1)|||Eσ′,m
� 1
σ − σ′ |||(u− v)fk(u, v)|||Eσ,m

� ckm
σ − σ′

(|||u|||Eσ,m
+ |||v|||Eσ,m

)k |||u− v|||Eσ,m
.

For the second term, write

uk−1u2
x − vk−1v2

x = uk−1[ux − vx][ux + vx] + (u− v)v2
xfk−2,

which, together with the triangle inequality, the algebra property and proposition
3.2, yield

|||∂x(1 − ∂2
x)−1(uk−1u2

x − vk−1v2
x)|||Eσ′,m

� 1
σ − σ′

(|||uk−1(ux − vx)(ux + vx)|||Eσ,m−2 + |||(u− v)v2
xfk−2(u, v)|||Eσ,m−2

)
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� cm
σ − σ′

(|||uk−1ux + vx|||Eσ,m−2 + |||v2
xfk−2(u, v)|||Eσ,m−2

) |||u− v|||Eσ,m

� ckm
σ − σ′

(
|||u|||k−1

Eσ,m
|||u+ v|||Eσ,m

+ (|||u|||Eσ,m
+ |||v|||Eσ,m

)k−2|||v|||2Eσ,m

)
× |||u− v|||Eσ,m

.

From the proof of proposition 3.2 we know that |||u+ v|||Eσ,m
< 2

(R+ |||u0|||Eσ0,m
). Moreover, we also have

|||u|||Eσ,m
� |||u− u0|||Eσ,m

+ |||u0|||Eσ,m
< R+ |||u0|||Eσ0,m

, (3.3)

which tells that

|||∂x(1 − ∂2
x)−1(uk−1u2

x − vk−1v2
x)|||Eσ′,m

� (2 + 2k−2)
ckm

σ − σ′ (R+ |||u0|||Eσ0,m
)k|||u− v|||Eσ,m

and

|||∂x(uk+1 − vk+1)|||Eσ′,m
� 2k ckm

σ − σ′
(
R+ |||u0|||Eσ0,m

)k |||u− v|||Eσ,m
.

To deal with the third and last term on the right-hand side of (3.2), observe that

uk−2u3
x − vk−2v3

x = uk−2(u3
x − v3

x) + (uk−2 − vk−2)v3
x

= uk−2[ux − vx][u2
x + uxvx + v2

x] + (u− v)v3
xfk−3(u, v).

Thus, we can write

|||(1 − ∂2
x)−1(uk−2u3

x − vk−2v3
x)|||Eσ′,m

� |||uk−2(ux − vx)(u2
x + uxvx + v2

x)|||Eσ′,m−2
+ |||(u− v)v3

xfk−3(u, v)|||Eσ′,m−2

� cm(|||uk−2(u2
x + uxvx + v2

x)|||Eσ′,m−2
|||∂x(u− v)|||Eσ′,m−2

+ |||v3
xfk−3(u, v)|||Eσ′,m−2

|||u− v|||Eσ′,m−2
)

� − ckm
σ − σ′

[
|||u|||kEσ,m

+ |||u|||k−1
Eσ,m

|||v|||Eσ,m
+ |||u|||k−2

Eσ,m
|||v|||2Eσ,m

+(|||u|||Eσ,m
+ |||v|||Eσ,m

)k−3|||v|||3Eσ,m

]
|||u− v|||Eσ,m

.

From the estimate (3.3) it is then obtained

|||(1 − ∂2
x)−1(uk−2u3

x − vk−2v3
x)|||Eσ′,m

� (3 + 2k−3)
ckm

σ − σ′ (R+ |||u0|||Eσ0,m
)k|||u− v|||Eσ,m

.
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Now under substitution of the respective terms in (3.2), we arrive at

|||F (u) − F (v)|||Eσ,m
� ckm
σ − σ′

[
2k

k + 1
+ (2 + 2k−2)

3k
2

+ (3 + 2k−3)
k(k − 1)

2

]

× (R+ |||u0|||Eσ0,m
)k|||u− v|||Eσ,m

.

Observe now that for k > 1 we have 2k−2 < 2k−1, 2 � 2k−1 and, from (3.1), 3 +
2k−3 < 2k. It means that the last inequality can be written as

|||F (u) − F (v)|||Eσ′,m
� L

σ − σ′ |||u− v|||Eσ,m
,

where L = C(R+ |||u0|||Eσ0,m
)k, with C = 2k[ 1

k+1 + 3k
2 + k(k−1)

2 ]ckm, and the proof
is finished. �

We will now proceed with the final part of the proof of proposition 1.3. For M =
C
2k |||u0|||k+1

Eσ0,m
and R = |||u0|||Eσ0,m

, from the Autonomous Ovsyannikov Theorem,
for

T =
R

16LR+ 8M
=

1[
1

k+1 + 3k
2 + k(k−1)

2

]
(22(k+2) + 8)ckm

1
|||u0|||kEσ0,m

,

there exists a unique solution u to the Cauchy problem of (1.6) which, for every
σ ∈ (0, σ0), is a holomorphic function in D(0, T (σ0 − σ)) into Eσ0,m(R). Therefore,
the proof of proposition 1.3 is complete for any positive integer k. Observe that
taking k = 1 will result in the same T obtained last section, which shows that it
indeed unifies both cases.

Since lemma 2.1 and a similar lemma 2.2 are still valid for Gevrey spaces Gσ,s(R),
where 0 < σ < σ′ � σ0 � 1 and s > 1/2, see [4, 24], a repetition of the same calcu-
lations for σ0 = 1 provides an analogous result for these spaces, which will be useful
and is therefore stated in the next result. For an alternative proof, see theorem 1
in [3].

Corollary 3.6. Given u0(x) := u(0, x) ∈ G1,s(R), with s � 5/2, there exists T >
0 such that for every σ ∈ (0, 1) the Cauchy problem for (1.6) has a unique solution
u ∈ Cω([0, T (1 − σ));Gσ,s(R)).

4. Global well-posedness in Sobolev spaces

In this section we will prove proposition 1.1 and the proof will be based on the
local well-posedness in Sobolev spaces, a certain estimate for the H3(R) norm of
the local solution and the Sobolev embedding theorem. It is worth mentioning that
the proof for the case s = 3 is already proven in [9] and, therefore, presented here
just for the sake of completeness. Firstly we enuntiate a result due to Yan [26], see
also Himonas and Holliman [16].

Lemma 4.1. Suppose that u0 ∈ Hs(R), s > 3/2. There exist a maximal time of
existence T > 0 and a unique solution u ∈ C([0, T );Hs(R)) ∩ C1([0, T );Hs−1(R))
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of (1.6)–(1.7) with k = 1. Moreover, the solution u satisfies the following energy
estimate:

d

dt
‖u‖Hs � cs‖u‖C1‖u‖Hs , (4.1)

for some positive constant cs. Finally, the data-to-solution map u(0) �→ u(t) is
continuous.

Proof. For the proof of existence and uniqueness of solution, see corollary 2.1 of
[26], while the estimate (4.1) is given by (2.29) of [16]. �

After having the energy estimate (4.1) guaranteed, we enunciate a result stated
as part of lemma 5.1 and theorem 3.1 of da Silva and Freire [9].

Lemma 4.2. Given u0 ∈ H3(R), let u be the corresponding unique solution of
(1.6)–(1.7) with k = 1.

(a) If there exists κ > 0 such that ux > −κ, then ‖u‖H3 � eκt/2‖u0‖H3 ;

(b) If m0 does not change sign, then −ux � ‖m0‖L1 for each (t, x) ∈ [0.T ) × R.

As a consequence, we can extend the last lemma to and initial data in Hs(R) for
s � 3 as the following corollary states:

Corollary 4.3. Let u0 ∈ Hs(R), s � 3, be an initial data with corresponding local
solution u. If m0 does not change sign, then

‖u‖H3 � eκt/2‖u0‖H3 , for some 0 < κ <∞.

Proof. Since s � 3, we have Hs(R) ⊂ H3(R) and Hs−1(R) ⊂ H2(R). Therefore,
u0 ∈ H3(R) and, from lemma 4.2(b), there exists κ = ‖m0‖L1 such that −ux < κ.
The result now follows from lemma 4.2(a). �

We are now ready to prove theorem 1.1.

Proof of proposition 1.1. For u0 ∈ Hs(R), s � 3, let u ∈ C([0, T );Hs(R)) ∩ C1

([0, T );Hs−1(R)) be the unique local solution. From lemma 4.1, the solution is
such that (4.1) holds for 0 � t < T . From Grönwall’s inequality, we have

‖u‖Hs � ‖u0‖Hsecs

∫ t
0 ‖u(τ)‖C1dτ . (4.2)

Since m0 does not change sign, from the Sobolev embedding theorem we have

‖u‖C1 = ‖u‖L∞ + ‖ux‖L∞ � ‖u‖Hs + ‖u‖Hs+1 ,

for s > 1/2. Taking s = 2 and using corollary 4.3, we obtain

‖u‖C1 � 2‖u‖H3 � 2eκt/2‖u0‖H3 .
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Note that u0 ∈ Hs(R) for s � 3 tells that u0 ∈ H3(R) and then, under substitution
in (4.2), the condition becomes

‖u‖Hs � ‖u0‖Hsecs‖u0‖H3
∫ t
0 eκτ/2dτ (4.3)

= ‖u0‖Hse
cs‖u0‖H3

(
eKt−1

K

)
(4.4)

< ‖u0‖Hsecs‖u0‖H3eKt

, (4.5)

where K = κ/2. This means that u does not blow-up at a finite time and the
solution u can be extended globally in time. �

5. Global well-posedness and radius of spatial analyticity

In this section we prove theorem 1.2. In what follows, we will consider the initial
value problem{

ut = − 1
2∂x[u2 + 3(1 − ∂2

x)−1u2
x] =: F (u), t � 0, x ∈ R,

u(0, x) = u0(x),
(5.1)

and make use of local and global well-posedness in Sobolev spaces to extend regular-
ity. The machinery here presented follows closely the ideas of Kato and Masuda [21]
and later Barostichi, Himonas and Petronilho [5]. Since the proof of theorem 1.2 is
extremely technical and extensive, we opt to divide the result in several propositions
that together will give our desired result. The propositions that will be presented
next will be proven in the next subsections. We start with a very important result
regarding global well-posedness in H∞(R).

Proposition 5.1. If u0 ∈ G1,s(R), s > 3/2, and m0 does not change sign, then
(5.1) has a unique solution u ∈ C([0, ∞);H∞(R)).

Once we have the global solution established, we will extend regularity to the
Kato–Masuda space. We are able to find r1 > 0 such that for each fixed arbitrary
time T > 0 the solution will belong to A(r1(t)) as a space function for t ∈ [0, T ].
From the definition of the spaces A(r), this r1 will be the radius of spatial analyticity
of the solution.

Proposition 5.2. Given u0 ∈ G1,s(R), with s > 5/2, suppose that m0 does not
change sign and let u ∈ C([0, ∞);H∞(R)) be the unique solution to the initial value
problem of (5.1). Then there exists r1 > 0 such that u ∈ C([0, ∞);A(r1)). Moreover,
for every T > 0 an explicit lower bound for the radius of spatial analyticity is given
by

r1(t) � L3e
−L1eL2t

, t ∈ [0, T ],

where L1 = 52
√

2
7 ‖u0‖σ0,2 for σ0 < 0 fixed, L2 = 112μ, L3 = r(0)eL1 and μ = 1 +

max{‖u‖H2 ; t ∈ [0, T ]}.
Proposition 5.2 says that the global solution is analytic in x and gives a lower

bound for the radius of spatial analyticity. The next step is to extend regularity to
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t. Our first step towards this goal is to prove that the solution u is locally analytic
in time, as enunciated by the next result.

Proposition 5.3. Given u0 ∈ G1,s(R), with s > 5/2, let u ∈ C([0, ∞);A(r1)) be
the unique solution of (5.1). Then there exist T > 0 and δ(T ) > 0 such that the
unique solution u belongs to Cω([0, T ];A(δ(T ))).

Once local analyticity is established, we show that the analytic lifespan is infinite.

Proposition 5.4. For the unique solution u ∈ Cω([0, T ];A(δ(T ))), we have

T ∗ = sup{T > 0, u ∈ Cω([0, T ];A(δ(T ))), for some δ(T ) > 0} = ∞.

Finally, to conclude our result, we use a result proved by Barostichi, Himonas
and Petronilho in [5] (see page 752).

Lemma 5.5. If u ∈ Cω([0, T ];A(r(T ))) for all T > 0 and some r(T ) > 0, then u ∈
Cω([0, ∞) × R).

Proof of theorem 1.2. The proof is now reduced to a recollection of the previous
propositions. Given u0 ∈ G1,s(R), if m0 does not change sign, from proposition 5.1
we have a unique solution u ∈ C([0, ∞), H∞(R)). From proposition 5.2, we guar-
antee the existence of r1 > 0 such that u ∈ C([0, ∞), A(r1)), which by proposition
5.3 belongs to Cω([0, T ], A(δ(T ))) for certain T > 0 and δ(T ) > 0. Proposition 5.4
then guarantees that u ∈ Cω([0, T ], A(δ(T ))) for every T > 0 and then lemma 5.5
concludes that the solution u is global analytic for both variables.

Moreover, we observe from proposition 5.2 that given T > 0, we have u(t) ∈ A(r1)
for t ∈ [0, T ] and r1(t) � L3e

−L1eL2t

. By means of the forthcoming expression (5.3)
obtained in the proof of proposition 5.1 we can determine the radius of spatial
analyticity as

r1(t) = Ce−AeBt

,

where

A =
26
√

2
7μ

(1 + μ)‖u0‖σ0,2, B = 112μ, C = eσ0+A

and μ, σ0 are given as in proposition 5.2. �

5.1. Proof of proposition 5.1

For the proof of proposition 5.1, the only ingredients required are proposition
1.1, the embeddings G1,s(R) ⊂ H∞(R) and Hs(R) ⊂ Hs′

(R) for s > s′, as shown
next.

Since u0 ∈ G1,s(R), from the embedding G1,s(R) ⊂ H∞(R) the initial data
belongs, in particular, to Hs(R) for any s � 3. From theorem 1.1, there exists
a unique global solution u in C([0, ∞);Hs(R)) ∩ C1([0, ∞);Hs−1(R)) for s � 3,
which means that u(t, ·) ∈ ⋂

s�3

Hs(R). Now, the embedding H3(R) ⊂ Hs′
(R) for

s′ ∈ [0, 3] shows that u(t, ·) ∈ Hs′
(R) and u(t, ·) ∈ H∞(R), concluding the proof

of proposition 5.1
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5.2. Proof of proposition 5.2

This is by far the most technical and complicated result. The proof consists of
bounding a certain inner product and using properties of dense spaces to find such
r1. For m � 0, it will be more convenient to consider an auxiliary norm

‖u‖2
σ,2,m =

m∑
j=0

1
(j!)2

e2σj‖∂j
xu‖2

H2

in A(r) and recover the usual norm (2.1) as we make m→ ∞. Moreover, we observe
that ‖u‖σ,2,m � ‖u‖σ,2.

For our initial value problem (5.1), we note that, given m � 0, the function F :
Hm+5(R) → Hm+2(R) is well-defined and continuous. Therefore, for Z = Hm+5(R)
and X = Hm+2(R) the following result, which will be called Kato–Masuda
Theorem, is valid, see theorem 1 in [21] or theorem 4.1 in [5] for more general
formulations.

Lemma 5.6 Kato–Masuda. Let {Φσ : −∞ < σ < σ̄} be a family of real func-
tions defined on an open set O ⊂ Z for some σ̄ ∈ R. Suppose that F : O → X is
continuous, where F is the function given by (5.1) and

(a) DΦ·(·) : R × Z → L(R ×X; R) given by

DΦσ(v)F (v) := 〈F (v), DΦσ(v)〉
is continuous, where D denotes the Fréchet derivative;

(b) there exists r̄ > 0 such that

DΦσ(v)F (v) � β(Φσ(v)) + α(Φσ(v))∂σΦσ(v),

for all v ∈ O and some nonnegative continuous real functions α(r) and β(r)
well-defined for −∞ < r < r̄.

For T > 0, let u ∈ C([0, T ];O) ∩ C1([0, T ];X) be a solution of the initial value
problem (5.1) such that there exists b < σ̄ with Φb(u0) < r̄. Finally, let ρ(v) be the
unique solution of ⎧⎨

⎩
dρ(t)
dt

= β(ρ),

ρ(0) = Φb(u0), t � 0.

Then for

σ(t) = b−
∫ t

0

α(ρ(τ))dτ, t ∈ [0, T1],

where T1 > 0 is the lifespan of ρ, we have

Φσ(t)(u) � ρ(t), t ∈ [0, T ] ∩ [0, T1]. (5.2)

We observe the complexity of the Kato–Masuda Theorem and the amount of
hypothesis required for the final result. It is important to mention as well that the
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procedure to prove our desired proposition 5.2 goes through Kato–Masuda Theorem
and (5.2), see also proposition 4.1 of [5].

However, one of the main issues is to establish the bound of item (b). Before doing
so, we shall define convenient parameters and functions that will be used from now
on.

For u ∈ Hm+5(R) and m � 0, let

Φσ,m(u) =
1
2
‖u‖2

σ,2,m =
1
2

m∑
j=0

1
(j!)2

e2σj‖∂j
xu‖2

H2 .

Given u0 ∈ G1,s(R), s > 5/2, such that m0 does not change sign, let u ∈
C([0, ∞), H∞(R)) be the unique global solution of (5.1). From the embedding
G1,s(R) ⊂ A(1), we have that u0 ∈ A(1). Let σ0 < 0 =: σ̄, which means that eσ0 < 1
and, from the definition of A(1), we have ‖u‖σ0,2 <∞.

For the global solution u, fix T > 0 and define μ = 1 + max{‖u‖H2 ; t ∈ [0, T ]}
and O = {v ∈ Hm+5(R); ‖v‖H2 < μ}. Observe that the family {Ψσ,m;−∞ < σ < σ̄,
m � 0} is well-defined on O and F : O → X is continuous. Moreover, for this same
family item (a) is satisfied, see Kato and Masuda [21], page 460. For item (b), we
will need the following result.

Proposition 5.7. Given u ∈ Hm+5(R), m � 0, for σ ∈ R we have the bound

|DΦσ,mF (u)| � K̄(‖u‖H2)Φσ,m(u) + ᾱ(‖u‖H2 ,Φσ,m(u))∂σΦσ,m(u),

where K̄(p) = 224p and ᾱ(p, q) = 832(1 + p)q1/2.

Proof. Since F (u)=−1
2
∂x[u2+3(1−∂2

x)−1u2
x] and

1
2
D‖∂j

xu‖2
H2w = 〈∂j

xw , ∂
j
xu〉H2 ,

see [4, 21], by making w = F (u) and summing over j according to Φσ,m we have

|DΦσ,m(u)F (u)| =

∣∣∣∣∣∣
m∑

j=0

e2σj

(j!)2
〈∂j

xu, ∂j
xF (u)〉H2

∣∣∣∣∣∣
�

∣∣∣∣∣∣
m∑

j=0

e2σj

(j!)2
〈∂j

xu, ∂j
x(uux)〉H2

∣∣∣∣∣∣
+

3
2

∣∣∣∣∣∣
m∑

j=0

e2σj

(j!)2
〈∂j

xu, ∂j+1
x (1 − ∂2

x)−1u2
x〉H2

∣∣∣∣∣∣ .
From the proof of lemma 4.1 in [5] (equations (6.14) and (6.16) with k = 1), we
know that ∣∣∣∣∣∣

m∑
j=0

e2σj

(j!)2
〈∂j

xu, ∂j
x(uux)〉H2

∣∣∣∣∣∣ � K̄1(‖u‖H2)Φσ,m(u)

+ α1(‖u‖H2 ,Φσ,m(u))∂σΦσ,m(u),
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where K̄1(p) = 32p and α1(p, q) = 64(1 + p)q1/2, and

1
2

∣∣∣∣∣∣
m∑

j=0

e2σj

(j!)2
〈∂j

xu , ∂
j+1
x (1 − ∂2

x)−1u2
x〉H2

∣∣∣∣∣∣ � K̄2(‖u‖H2)Φσ,m(u)

+ α2(‖u‖H2 ,Φσ,m(u))∂σΦσ,m(u),

where K̄2(p) = 64p and α1(p, q) = 256(1 + p)q1/2. Under substitution of the respec-
tive terms in the inequality for DΦσ,m(u)F (u) we obtain

|DΦσ,m(u)F (u)| � K̄(‖u‖H2)Φσ,m(u) + ᾱ(‖u‖H2 ,Φσ,m(u))∂σΦσ,m(u),

where K̄(p) = 224p and ᾱ(p, q) = 832(1 + p)q1/2. �

Proof of proposition 5.2. To prove the proposition, we basically need to complete
the details for item (b) of the Kato–Masuda Theorem. Therefore, we need to find
r̄ > 0 and continuous functions α(r) and β(r) for −∞ < r < r̄.

For K̄ and ᾱ given in proposition 5.7, let

K = K̄(μ), β(r) = Kr, r � 0,

ρ(t) =
1
2
‖u0‖2

σ0,2e
Kt, ρm(t) =

1
2
‖u0‖2

σ0,2,me
Kt,

r̄ = 1 + max{ρ(t); t ∈ [0, T ]}, α(r) = ᾱ(μ, r),

Observe that

(i) α(r) and β(r) are continuous for r < r̄;

(ii) ρm(t) � ρ(t), for t ∈ [0, T ] and ρm(t) → ρ(t) uniformly.

(iii) K̄(p) = 224p and ᾱ(p̄, q) = 832(1 + p̄)q1/2, for fixed p̄, are nondecreasing.

From the definition of μ, μ > ‖u‖H2 and then from observation (iii) above, for
all v ∈ O, we have

K̄(‖u‖H2) � K̄(μ) = K,

ᾱ(‖v‖H2 ,Φσ,m) � ᾱ(μ,Φσ,m) = α(Φσ,m(v)).

The inequality of proposition 5.7 then yields

|DΦσ,m(v)| � KΦσ,m(v) + α(Φσ,m(v))∂σΦσ,m(v)

= β(Φσ,m(v)) + α(Φσ,m(v))∂σΦσ,m(v)

and item (b) is finally satisfied.

https://doi.org/10.1017/prm.2022.64 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2022.64


1648 P. L. da Silva

For the same T > 0, let b := σ0 < σ̄ and observe that ρm(t) is a solution for the
Cauchy problem

d

dt
ρm(t) = β(ρm(t)), ρm(0) = Φσ0,m(u0), t � 0.

Since

Φσ0,m(u0) =
1
2
‖u0‖2

σ0,2,m � 1
2
‖u0‖2

σ0,2,

Kato–Masuda Theorem says that for

σm(t) = σ0 −
∫ t

0

α(ρm(τ))dτ, t ∈ [0, T ],

we have

Φσm(t),m(u) =
1
2
‖u‖2

σm(t),2,m � ρm(t) � ρ(t) =
1
2
‖u0‖2

σ0,2e
Kt,

for t ∈ [0, T ]. By letting m→ ∞, we obtain

‖u‖2
σ(t),2 � ‖u0‖2

σ0,2e
Kt � ‖u0‖2

σ0,2e
KT <∞

and u(t) ∈ A(r1) for r1 = eσ(t) � eσ(T ) for t ∈ [0, T ]. Once we have the expressions
for α and ρ, we can estimate the radius of spatial analyticity σ(t). In fact, we have

σ(t) = σ0 −
∫ t

0

α(ρ(τ))dτ = σ0 −A(eBt − 1), (5.3)

where A = 26
√

2
7μ (1 + μ)‖u0‖σ0,2 and B = 112μ. Observe that since μ � 1, we have

A � 52
√

2
7 ‖u0‖σ0,2 =: L1. By letting L2 := B, we have

r(t) = eσ(t) � eσ0+L1e−L1eL2t

= L3e
−L1eL2t

,

where L3 = r(0)eL1 . �

5.3. Proof of proposition 5.3

Given u0 ∈ G1,s(R), with s > 5/2, let u ∈ C([0, ∞);A(r1)) be the unique solu-
tion whose existence is guaranteed by proposition 5.2. For the same initial
data, from corollary 3.6 there are T̃ > 0 and a unique solution ũ ∈ Cω([0, T̃

(1 − δ);Gδ,s(R)) for δ ∈ (0, 1). Let T = T̃
2 (1 − δ), that is, δ = 1 − 2

T

T̃
=: δ(T ), and

ũ ∈ Cω([0, T ];Gδ,s(R)) ⊂ Cω([0, T ];A(δ(T ))) once Gδ,s(R) ⊂ A(δ).
SinceA(r) ↪→ H∞(R) for r > 0, then ũ ∈ Cω([0, T ];H∞(R)) ⊂ C([0, T ];H∞(R)).

From the uniqueness of the solution, we know that u = ũ for t ∈ [0, T ], which means
that u ∈ Cω([0, T ];A(δ(T ))), for T = T̃

2 (1 − δ) and δ(T ) > 0.
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5.4. Proof of proposition 5.4

We will make use of the following result from [5] (lemma 5.1).

Lemma 5.8. Let δ > 0 and m � 1. Then Eδ,m(R) is continuously embedded in A(δ).
Conversely, if f ∈ A(r) for some r > 0 then f ∈ Eδ,m(R) for all δ < r/e.

Proof of proposition 5.4. We will prove the result by contradiction as we assume
that T ∗ <∞. For the solution u ∈ Cω([0, T ];A(δ(T ))) ⊂ C([0, T ];H∞(R)), from
the uniqueness of the global solution and the definition of T ∗ it is immediate that
if T ∗ <∞, then u(T ∗) is well-defined. Moreover, from proposition (5.2), we have
u(T ∗) ∈ A(r1).

Let δ0 < min{1, r1/e} and then the converse of lemma 5.8 tells that

u(T ∗) ∈ A(r1) ⊂ Eδ0,m(R), m � 3,

for all δ0 > 0. From proposition 1.3, there exist ε > 0 and a unique solution ũ ∈
Cω([0, ε];Eδ,m(R)) for 0 < δ < δ0 such that ũ(0) = u(T ∗). On the other hand, since
Eδ,m(R) ↪→ A(δ) ⊂ H∞(R), we have

ũ ∈ Cω([0, ε];H∞(R)) ⊂ C([0, ε];H∞(R))

and the uniqueness of the global solution tells that ũ(0) = u(T ∗), which means that

ũ(t) = u(T ∗ + t), t ∈ [0, ε].

Let s = T ∗ + t. Then u(s) = ũ(s− T ∗), for s ∈ [T ∗, T ∗ + ε], that is,

u ∈ Cω([T ∗, T ∗ + ε];Eδ,m(R)) ⊂ Cω([T ∗, T ∗ + ε];A(δ)).

Based on the definition of T ∗, let T > 0 be such that T ∗ − ε < T < T ∗ and the
solution u then belongs to Cω([0, T ];A(δ(T ))) for some δ(T ) > 0.

Observe now that if σ′ � σ, then A(σ′) ⊂ A(σ). By defining δ̃ = min{δ, δ(T )},
which means in particular that δ � δ̃ and δ(T ) � δ̃, then

u ∈ Cω([0, T ∗];A(δ̃)), and u ∈ Cω([T ∗, T ∗ + ε];A(δ̃)),

which says that T ∗ cannot be the supremum. As a result of the contradic-
tion, T ∗ must be infinite and, for every T > 0, there exists r(T ) > 0 such that
u ∈ Cω([0, T ];A(r(T ))). �
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