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Abstract. Let T be a bounded linear operator on a Banach space W , assume W
and Y are in normed duality, and assume that T has adjoint T† relative to Y. In this
paper, conditions are given that imply that for all λ �= 0, λ − T and λ − T† maintain
important standard operator relationships. For example, under the conditions given,
λ − T has closed range if, and only if, λ − T† has closed range.

These general results are shown to apply to certain classes of integral operators
acting on spaces of continuous functions.
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1. Preliminaries. We use fairly standard notation from operator theory: B(X)
denotes the algebra of all bounded linear operators on a Banach space X ; for S ∈ B(X),
R(S) and N(S) are the range and null space of S, respectively; the operator S∗ is the
usual adjoint of S on X∗; for V ⊆ X , V �= φ, V⊥ = {α ∈ X∗ : α(V ) = {0}}; for � ⊆ X∗,
� �= φ, ⊥� = {x ∈ X : α(x) = 0 for all α ∈ �}. Assume that W is a subspace of X which
is a Banach space. The space W is continuously embedded in X if there exists c > 0
such that c‖w‖W ≥ ‖w‖X for all w ∈ W.

Two Banach spaces, W and Y , are in normed duality if there is a nondegenerate
bilinear form on W × Y , 〈w, y〉, and a constant c > 0 such that |〈w, y〉| ≤ c‖w‖W ·
‖y‖Y for all w ∈ W and y ∈ Y. For nonemply subsets R ⊆ W and S ⊆ Y , we set
R� = {y ∈ Y : 〈w, y〉 = 0 for all w ∈ R}, and �S = {w ∈ W : 〈w, y〉= 0 for all y ∈
S}. We let AW,Y ={T ∈ B(W ) : ∃T† ∈ B(Y ) such that 〈Tw, y〉 = 〈w, T†y〉 for all w ∈
W, y ∈ Y}.

Two good sources for the theory of linear operators on spaces in normed duality
are the books [7] and [9]. In [7] there is an extensive Fredholm theory of such operators.
This Fredholm theory is further studied in [2].

Assume that T ∈ AW,Y . In this paper we give conditions that imply that the
operators λ − T and λ − T†, for all λ �= 0, have the same important operator
properties and relationships as those of the operators λ − T ∈ B(X) and its adjoint
λ − T∗ ∈ B(X∗). There are many important relationships between λ − T and λ − T∗;
for example:

(1) R(λ − T) is closed ⇐⇒ R(λ − T∗) is closed [part of the Closed Range Theorem];

(2) R(λ − T)
X = ⊥N(λ − T∗) (here, R(λ − T)

X
is the closure of R(λ − T) in X) [8,

Theorem 8.4, p. 232];
(3) λ − T is Fredholm ⇐⇒ λ − T∗ is Fredholm; and when λ − T is Fredholm,

ind(λ − T) = −ind(λ − T∗) [7, Corollary 3, p. 91].
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The conditions we give on an operator T ∈ AW,Y imply that for all λ �= 0:
(1′) R(λ − T) is closed ⇐⇒ R(λ − T†) is closed;

(2′) R(λ − T)
W = �N(λ − T†);

(3′) λ − T is Fredholm on W ⇐⇒ λ − T† is Fredholm on Y ; and when λ − T is
Fredholm, ind(λ − T) =−ind(λ − T†).

(1′)–(3′) are samples of the kind of results that we prove under reasonable
conditions on T and T†. We prove a complete version of the important Closed Range
Theorem in Section IV.

At this point, it is convenient to describe for future reference two standard setups
that occur in this paper (setup I is the setting for the general Closed Range Theorem).

The two standard setups.
I. Assume that X is a Banach space, and let X∗ be the dual space of X. Assume that

W and Y are Banach spaces, W is a subspace of X which is continuously embedded
in X , and Y is a subspace of X∗ which is continuously embedded in X∗. Also assume
that the natural bilinear form on X × X∗ when restricted to W × Y is nondegenerate.
Then W and Y are in normed duality with respect to this form (note that this bilinear
form is bounded on W × Y by the assumptions that the embeddings are continuous).
In what follows we will consider properties of certain operators in AW,Y .

II. For the second setup, assume that X is a Hilbert space, and that W is a subspace
of X which is a Banach space continuously embedded in X. In this situation, the inner
product restricted to W is a bounded inner product on W.

As an example of setup I, assume that M is a locally compact, σ -compact, T2 space.
Fix a regular Borel measure µ defined on the Borel subsets of M, and assume that µ

is strictly positive [for U open and nonempty, µ(U) > 0]. We use BC(M) to denote
the space of all bounded continuous C-valued functions on M. Take X = L1(M, µ),
X∗ = L∞(M, µ), W = BC(M) ∩ L1(M, µ), and Y = BC(M). The condition that µ be
strictly positive implies that Y = BC(M) is a closed subspace of L∞(M, µ). The natural
complete norm on W is ‖ f ‖W = ‖ f ‖1 + ‖ f ‖u (here ‖ f ‖u is the sup-norm of f ). The
spaces W and Y are in normed duality with respect to the bilinear form inherited from
L1(M, µ) × L∞(M, µ):

〈 f, g〉 =
∫

M
f (x)g(x) dµ(x), f ∈ L1(M, µ), g ∈ L∞(M, µ).

This setup is used in paragraph 10 of [7].
For an example of setup II, let M and µ be as above. Take X to be the Hilbert

space L2(M, µ), and let W = BC(M) ∩ L2(M, µ) with complete norm ‖ f ‖W = ‖ f ‖2 +
‖ f ‖u.

These setups are used in the examples below.

2. Two examples involving integral operators. In the case of setup I, where T ∈
B(X), the conditions we make on T and T∗ have the form: for some n ≥ 1 and m ≥ 1,
Tn(X) ⊆ W and (T∗)m(X∗) ⊆ Y.

In Example 1 below, we present a large class of integral operators for which these
conditions hold (with n = 1 and m = 1).

For both examples, let M and µ be as above. For convenience we suppress reference
to the measure µ, for example writing L1(M) in place of L1(M, µ), a.e. for µ-a.e., and
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dy for dµ(y). Let J(x, y) be a kernel defined on M × M. For g(y) a C-valued function
on M, let

TJ(g)(x) = ∫
M J(x, y)g(y) dy, x ∈ M, whenever this integral is defined.

In both examples below, we assume that
(1) K(x, y) ∈ BC(M × M).

EXAMPLE 1. In setup I, let X = L1(M), X∗ = L∞(M), W = L1(M) ∩ BC(M), and
Y = BC(M). Assume that

(2) y → K(·, y) is a continuous bounded function from M into L1(M).
The condition in (2) plays an important role in [7]; see for example (12.7) (a), p. 303

and Theorem 12.5, p. 315.
Setting Kt(y, x) = K(x, y) for all x, y ∈ M, we have by property (2) that TKt ∈

B(L∞(M)) that TKt (L∞(M)) ⊆ BC(M), and that BC(M) is TKt -invariant. These
assertions are easy to verify.

CLAIM A. TK ∈ B(L1(M)).

Proof. Assume that f ∈ L1 and g ∈ L∞. Using Fubini’s Theorem, we have∣∣∣∣
∫

M

[∫
M

K(x, y)f (y) dy
]

g(x) dx
∣∣∣∣ =

∣∣∣∣
∫

M
f (y)

[∫
M

K(x, y)g(x) dx
]

dy
∣∣∣∣

≤ J‖ f ‖1‖g‖∞

where J is the operator norm of TKt on L∞. Now take the sup over all g ∈ L∞,
‖g‖∞ ≤ 1. Using the standard converse of Holder’s Inequality [F1, p. 181], we have
that ‖ ∫

M K(x, y) f (y) dy ‖1 ≤ J‖ f ‖1. �
CLAIM B. TK (L1(M)) ⊆ BC(M) ∩ L1(M).

Proof. Assume that f ∈ L1. First note that |TK ( f )(x)| ≤ ∫
M |K(x, y)| | f (y)| dy ≤

‖K‖u‖ f ‖1. Thus, ‖TK ( f )‖u < ∞. Now let {xn} ⊆ M be an arbitrary convergent
sequence, xn → x0. The sequence of functions K(xn, y) f (y) → K(x0, y)f (y) for a.a. y,
and |K(xn, y) f (y)| ≤ ‖K‖u| f (y)| for all n ≥ 1. It follows that TK ( f )(xn) → TK ( f )(x0)
by Lebesgue’s Dominated Convergence Theorem. �

Now set T = TK and T† = TKt . Then T ∈ AW,Y with 〈Tf, g〉 = 〈 f, T†g〉 for all
f ∈ W and all g ∈ Y [Fubini’s Theorem].

Concerning the kernels K(x, y) with the properties (1) and (2) in this example,
note that the kernel |K(x, y)| also satisfies (1) and (2). Also, if H(x, y) ∈ B(M × M),
then the pointwise product, H(x, y)K(x, y) satisfies (1) and (2).

EXAMPLE 2. In setup II, set X = L2(M), and let W = L2(M) ∩ BC(M). In addition
to (1), assume that

(2) TK ∈ B(L2);
(3) supx∈M [

∫
M |K(x, y)|2 dy]

1
2 ≡ P < ∞, and supy∈M [

∫
M |K(x, y)|2 dx]

1
2 ≡ Q < ∞.

The condition in (3) is a type of bi-Carleman condition.

CLAIM C. TK (L2) ⊆ BC(M) ∩ L2(M).

Proof. First note that by (3), for f ∈ L2, |TK ( f )(x)| ≤ ∫
M |K(x, y)| | f (y)| dy ≤

P‖ f ‖2 by Cauchy-Schwarz. Therefore, TK ( f ) ∈ L∞. Now assume that f ∈ L1 ∩ L2.

The argument given in Claim B shows that TK ( f ) is continuous on M. When f ∈ L2,
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choose a sequence {fn} ⊆ L1 ∩ L2 such that ‖ fn − f ‖2 → 0. Using Property (3) above
and Cauchy-Schwarz, we have for all x ∈ M, |TK ( fn)(x) − TK ( f )(x)| ≤ ∫

M |K(x, y)|
| fn(y) − f (y)| dy ≤ P‖ fn − f ‖2 → 0.

Thus, TK ( fn) → TK ( f ) uniformly on M. Therefore, since the functions TK ( fn) ∈
BC(M), it follows that TK ( f ) ∈ BC(M). �

For x, y ∈ M, let K∗(x, y) = K(y, x) .

CLAIM D. (1) TK∗ = (TK )∗; (2) (TK )(L2) ⊆ L2 ∩ BC(M) and (T∗
K )(L2) ⊆ L2 ∩

BC(M).

Proof. That TK∗ = (TK )∗ is a straightforward application of Fubini’s Theorem.
Also, TK∗ (L2) ⊆ BC(M) ∩ L2(M) as in Claim C. �

These two examples provide a large class of integral operators to which the results
of this paper apply. Another large class of examples to which the results apply are
certain convolution operators; this is shown in the last section of this paper.

3. Annihilators and the closure of the range. When T ∈ B(X) and W is a T-
invariant subspace of X, we denote the restriction of T to W by TW .

Throughout, we use two continuity properties of linear operators. Both of these
properties follow in a straightforward way from the Closed Graph Theorem.

◦ Assume that T ∈ B(X), W is a Banach space which is a subspace of X , and W
is continuously embedded in X. If W is T-invariant, then TW ∈ B(W ).

◦ Assume that T ∈ B(X), W is a Banach space which is a subspace of X , and
W is continuously embedded in X. If T(X) ⊆ W , then T ∈ B(X, W ), the space of all
bounded linear maps from X into W .

For the convenience of the reader, we state the usual relations involving annihilators
that hold for an operator S ∈ B(X); These relations can be found in [8, Theorems 8.4
and 8.5, p. 232]:

(i) R(S)
⊥ = R(S)⊥ = N(S∗); (ii) R(S) = ⊥N(S∗); (iii) ⊥R(S∗) = N(S); (iv) R(S∗) ⊆

N(S)⊥.
A version of some of these properties hold for any operator in AW,Y . We verify

these elementary relationships first.

NOTE 3. Assume that S ∈ AW,Y .

(1) �R(S†) = N(S); and
(2) R(S)� = N(S†).

(3) R(S†)
Y ⊆ N(S)�.

Proof. We verify (1), and (2) follows in the same way [since the roles of S and S† can
be interchanged]. Assume that w ∈ N(S). Then for all y ∈ Y , 〈w, S†y〉 = 〈Sw, y〉= 0.

Therefore, w ∈ �R(S†). Conversely suppose v ∈ �R(S†). Then 0 = 〈v, S†y〉 = 〈Sv, y〉
for all y ∈ Y. Therefore, by the fact that the form is nondegenerate, v ∈ N(S).

Now it follows from (1) that R(S†) ⊆ N(S)�. Then since N(S)� is Y−closed, (3)
holds. �

In what follows, we will often make the assumptions listed below in (#).
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(#) Assume that X and W are Banach spaces with W a subspace of X and such
that W is continuously embedded in X. Assume that T ∈ B(X), W is T-invariant, and
Tn(X) ⊆ W for some n ≥ 1.

In (#), note that when n = 1, W is automatically T-invariant.
Assume that (#) holds. The following construction provides a means by which a

proof for the case n = 1 (the case where T(X) ⊆ W ) can be induced to give a proof in
the situation where n > 1. This construction was introduced in [3]. First, consider the
case when n = 2, so T2(X) ⊆ W . Set V = T−1[W ], so W ⊆ V ⊆ X . Define a norm on
V by ‖v‖V = ‖v‖X + ‖Tv‖W .

(a) ‖v‖V is a complete norm on V ;
(b) W is continuously embedded in V , and V is continuously embedded in X ;
(c) V is T-invariant, T(V ) ⊆ W , and T(X) ⊆ V.

This was stated in [3, Lemma 5], and a proof of part (a) was provided there. The
proofs of (a), (b), and (c) are all straightforward.

Now suppose that Tn(X) ⊆ W for some n > 2. Just as in the case where n = 2, a
finite sequence of T-invariant Banach subspaces can be constructed which allows the
reduction of proofs to the the case n = 1. Set V0 = W and ‖w‖0 = ‖w‖W for w ∈ W.

Let Vk = {x ∈ X : Tk(X) ⊆ W}, 1 ≤ k ≤ n − 1, with norm ‖v‖k = ‖v‖X + ‖Tv‖k−1.

As in (a), (b) and (c) above, we have:
(1) (Vk, ‖v‖k) is a Banach space, 1 ≤ k ≤ n − 1;
(2) W = V0 ⊆ V1 ⊆ V2 ⊆ . . . . ⊆ Vn−1 ⊆ Vn = X , and each of the embeddings are

continuous;
(3) Each Vk is T-invariant, and T(Vk) ⊆ Vk−1 for 1 ≤ k ≤ n.

THEOREM 4. Assume (#) holds. Then for λ �= 0, R(λ − TW )
W = R(λ − T)

X ∩ W.

Proof. First we do the case where n = 1, so we make the assumption that T(X) ⊆
W. As a first step, we show that R(λ − T)

X ∩ W = (λ − T)(W )
X ∩ W. The inclusion

“⊇” between these two sets is obvious. Now assume that w0 ∈ R(λ − T)
X ∩ W. Then

there exists {xn} ⊆ X with ‖(λ − T)xn − w0‖X → 0 as n → ∞. Set wn = λ−1(Txn +
w0), and note that by hypothesis, wn ∈ W. Then ‖xn − wn‖X → 0, and this implies
that ‖(λ − T)wn − w0‖X → 0.

We have that R(λ − TW ) ⊆ R(λ − T)
X ∩ W , and note that because W is conti-

nuously embedded in X , R(λ − T)
X ∩ W is closed in W. Thus the inclusion,

R(λ − TW )
W ⊆ R(λ − T)

X ∩ W , holds. Suppose that R(λ − TW )
W �= R(λ − T)

X ∩
W. Now R(λ − TW )

W = ⊥N(λ − T∗
W ), so there exist α ∈ N(λ − T∗

W ) and z ∈
R(λ − T)

X ∩ W such that 〈z, α〉= α(z) �= 0. Now α = λ−1T∗
W (α), so 0 �= 〈z, α〉 =

〈z, λ−1T∗
W (α)〉= λ−1〈TW (z), α〉= λ−1(α ◦ T)(z). Note that since T ∈ B(X, W ), we have

α ◦ T ∈ X∗. Also, (α ◦ T)((λ − T)(W )) = {0}. It follows that (α ◦ T)((λ − T)(W )
X ∩

W ) = {0}. But z ∈ R(λ − T)
X ∩ W = (λ − T)(W )

X ∩ W (as shown in the first
paragraph). Therefore, (α ◦ T)(z) = 0, a contradiction. The contradiction implies that

R(λ − TW )
W = R(λ − T)

X ∩ W.

Now assume that Tn(X) ⊆ W for some n ≥ 2. Then as outlined just prior to the
theorem, we construct the finite sequence of spaces {Vk} with properties (1), (2), and (3).
We do the case n = 2, and from this the proof for larger n will be clear. With n = 2, we
have spaces W ⊆ V ⊆ X with properties (a), (b), and (c) above. Now since T(X) ⊆ V ,
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the result for case n = 1 implies that R(λ − TV )
V = R(λ − T)

X ∩ V. Again, T(V ) ⊆ W ,

so applying the result for case n = 1 implies that R(λ − TW )
W = R(λ − T)

V ∩ W. Thus,

R(λ − TW )
W = R(λ − T)

V ∩ W = [R(λ − T)
X ∩ V ] ∩ W = R(λ − T)

X ∩ W . �
As a corollary to Theorem 4, we recover a form of the important annihilator

relation in (ii) above for λ − TW when T ∈ AW,Y , λ ∈ C, λ �= 0, and condition (#)
holds.

COROLLARY 5. Assume that (#) holds. Also assume that Y is a subspace of X∗, Y
is a Banach space, Y is T∗-invariant, that W and Y are in normed duality, and

T ∈ AW,Y . Suppose λ �= 0 and N(λ − T∗) = N(λ − T†). Then

R(λ − TW )
W = �N(λ − T†).

Proof. From Theorem 4, we have, R(λ−TW )
W =R(λ−T)

X ∩W. Also, R(λ−T)
X =

⊥N(λ − T∗). By hypothesis, N(λ − T∗) = N(λ − T†). Therefore, R(λ − TW )
W =

R(λ − T)
X ∩ W = ⊥N(λ − T∗) ∩ W = ⊥N(λ − T†) ∩ W =� N(λ − T†). �

4. States of operators; a closed range theorem. The states of an operator (from
[8, p. 237]): Assume that S ∈ B(X). Consider the list of possible basic proerties of
S: I. R(S) = X ; II. R(S) = X , but R(S) �= X ; III. R(S) �= X . 1. R(S) is closed and
N(S) = {0}; 2. R(S) is not closed and N(S) = {0}; 3. N(S) �= {0}.

Then, for example, S is said to be in state II3 when R(S) = X , R(S) �= X , and
N(S) �= {0} (of course, some states are impossible, such as I2).

THEOREM 6. Assume that (#) holds. Let λ ∈ C, λ �= 0.

(1) N(λ − T) = N(λ − TW );
(2) R(λ − T) = X ⇐⇒ R(λ − TW ) = W ;

(3) R(λ − T)
X = X ⇐⇒ R(λ − TW )

W = W ;
(4) R(λ − T) is closed in X ⇐⇒ R(λ − TW ) is closed in W.

It follows from (1), (2), (3), and (4), that λ − T on X is in exactly the same state as
λ − TW on W.

Proof. Clearly, N(λ − TW ) ⊆ N(λ − T). If x ∈ N(λ − T), then Tx = λx, and Tnx =
λnx. Therefore, x = λ−nTnx ∈ W. This verifies (1).

(2): From [3, Propositions 2 and 3], we have R(λ − TW ) = R(λ − T) ∩ W.

Therefore, if R(λ − T) = X , then R(λ − TW ) = W. Conversely, suppose R(λ − TW ) =
W. We that R(λ − T) = X in the case n = 1; the general case where n ≥ 2 follows
from this using the finite sequence of subspaces {Vk} as before. Let y ∈ X. Since
Ty ∈ W , there exists w ∈ W such that (λ − T)w = Ty. Then (λ − T)(λ−1(y + w)) =
y + λ−1[−Ty + (λ − T)w] = y. This proves (2).

(3): From Theorem 4, we have R(λ − TW )
W = R(λ − T)

X ∩ W. If R(λ − T)
X = X ,

then R(λ − T)
W = X ∩ W = W. Again, in the proof of the converse, we assume that

n = 1. Now suppose that R(λ − TW )
W = W. Let y ∈ X. Since Ty ∈ W , there exists

{wn} ⊆ W such that ‖(λ − T)(wn) − T(y)‖W → 0. Then

‖(λ − T)(λ−1(y + wn)) − y‖X = ‖ − λ−1T(y) + λ−1(λ − T)(wn)‖X → 0.
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Therefore, y ∈ R(λ − T)
X
. This proves (3).

(4): This follows from [3, Theorem 6].
That λ − T on X is in exactly the same state as λ − TW on W follows directly from

(1), (2), (3), and (4). �
7. A Closed Range Theorem Assume the standard setup I. Assume that T ∈ B(X)

has the properties:
(i) W is T-invariant and Y is T∗-invariant;

(ii) There exist n ≥ 1 and m ≥ 1 such that Tn(X) ⊆ W and (T∗)m(X∗) ⊆ Y.

Let λ ∈ C, λ �= 0. The following are equivalent:
(1) R(λ − TW ) is closed in W ;
(2) R(λ − (TW )†) is closed in Y [note that (TW )† = (T∗)Y ];
(3) R(λ − TW ) = �N(λ − (TW )†);
(4) R(λ − (TW )†) = N(λ − TW )�;
(5) R(λ − T) is closed in X ;
(6) R(λ − T∗) is closed in X∗.

Proof. It is clear that (3) =⇒ (1) and (4) =⇒ (2). Also, (5) ⇐⇒ (6) by the usual
Closed Range Theorem [8, Theorem 10.1, p. 240]. From [3, Theorem 6], using (i) and
(ii), we have (1) ⇐⇒ (5) and (2) ⇐⇒ (6).

Now assume that (1) holds. By Corollary 5, R(λ − TW )
W = �N(λ − T†). Thus in

this case, (1) =⇒ (3). The same argument verifies that (2) =⇒ (4). This proves the
equivalence of the statements (1)–(6). �

Assume that S ∈ B(X), so S∗ ∈ B(X∗). The state of the pair (S, S∗) is the pair
(state of S, state of S∗). See [8, pp. 237–8] for basic information concerning possible
states of the pair (S, S∗). For example, (III1,I3) is a possible state of the pair (S, S∗).
In this case, S is in state III1 [meaning that R(S) is closed, R(S) �= X , and N(S) = {0}]
and S∗ is in state I3 [meaning that R(S∗) = X∗ and N(S∗) �= {0}].

COROLLARY 8. Assume the standard setup I. Assume that T ∈ B(X), and the follow-
ing conditions hold:

(i) W is T-invariant and Y is T∗-invariant;
(ii) For some n ≥ 1, m ≥ 1, Tn(X) ⊆ W and (T∗)m(X∗) ⊆ Y.

Then for all λ �= 0, the state of the pair (λ − T, λ − T∗) is the same as the state of
the pair (λ − TW , λ − T∗

Y ).

5. Fredholm properties. With the same setup and hypotheses on T and T∗ as in
the Closed Range Theorem in Section IV, in this section we prove that the Fredholm
properties of λ − TW and λ − T† are the same as those of λ − T and λ − T∗.

Notation: For S ∈ B(X), nul(S) = dim(N(S)); def(S) = dim(X/R(S)); S ∈ �+(X)
if nul(S) < ∞ and R(S) is closed; S ∈ �−(X) if def(S) < ∞; �(X) = �+(X) ∩ �−(X);
when S ∈ �(X), ind(S) = nul(S) − def(S). Note that by [1, Cor. 2.17, p. 76], when
def(S) < ∞, the R(S) is closed.

PROPOSITION 9. Assume that (#) holds. Let λ ∈ C, λ �= 0.

(1) If def(λ − T) = k < ∞, then def(λ − TW ) ≤ k.

(2) Assume in addition that W and Y are in normed duality, Y is a subspace of
X∗, T ∈ AW,Y , and N(λ − T∗) = N(λ − T†). Then def(λ − T) = k < ∞ ⇐⇒ def(λ −
TW ) = k < ∞.
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Proof. We need only do the proof in the case where n = 1. Suppose def(λ − T) =
k < ∞. Then X/R(λ − T) has dimension k. Let {w1, w2, . . . , wp} ⊆ W be linearly
independent (l.i.) modulo R(λ − TW ).

Claim: {w1, w2, . . . , wp} is l.i. modulo R(λ − T). For suppose that for some scalars,
λj, and some x ∈ X , λ1w1 + λ2w2 + · · · λpwp = (λ − T)x. Since Tx ∈ W , it follows that
x ∈ W. Thus, λ1w1 + λ2w2 + · · · λpwp ∈ R(λ − TW ), and so by assumption, λj = 0 for
1 ≤ j ≤ p. This verifies the Claim.

The Claim implies that p ≤ k, so that def(λ − TW ) ≤ k.

Now assume the hypotheses in (2). Suppose that def (λ − TW ) = k < ∞, so that
W/R(λ − TW ) is k-dimensional. For y ∈ N(λ − T†), define ŷ on W/R(λ − TW ) by
ŷ(w + R(λ − TW )) = 〈w, y〉. Since ŷ = 0 implies y = 0, we conclude that y → ŷ is a
1 − 1 linear map of N(λ − T†) into the dual of W/R(λ − TW ). It follows that dim(N(λ −
T†)) ≤ k. By hypothesis, N(λ − T∗) = N(λ − T†), so dim(N(λ − T∗)) ≤ k. Note that
R(λ − TW ) is closed, and so, R(λ − T) is closed by [B2, Theorem 6]. Then R(λ −
T) = ⊥N(λ − T∗), and it follows that def (λ − T) ≤ k. This proves: def (λ − TW ) = k <

∞ =⇒ def (λ − TW ) ≤ k. This implication together with the implication established
in (1), proves that def (λ − T) = k < ∞ ⇐⇒ def (λ − TW ) = k < ∞. �

COROLLARY 10. Assume that (#) holds. Let λ ∈ C, λ �= 0.

(1) nul(λ − T) = nul(λ − TW ); (λ − T) ∈ �+(X) ⇐⇒ (λ − TW ) ∈ �+(W );
Assume in addition to (#) that W and Y are in normed duality, Y is a subspace of

X∗, T ∈ AW,Y , and N(λ − T∗) = N(λ − T†).
(2) def (λ − T) = def (λ − TW ); (λ − T) ∈ �−(X) ⇐⇒ (λ − TW ) ∈ �−(W ).

Proof. By [3, Theorem 6], R(λ − TW ) is closed in W ⇐⇒ R(λ − T) is closed in X.

As noted in part (1) of Theorem 6, N(λ − T) = N(λ − TW ), so clearly, nul(λ − T) =
nul(λ − TW ). Also, from part (2) of Proposition 9, def (λ − T) = def (λ − TW ). These
facts imply (1) and (2) of the corollary. �

THEOREM 11. Assume that Setup I holds, and that T ∈ AW,Y . Assume that there
exist n ≥ 1 and m ≥ 1 such that Tn(X) ⊆ W and (T∗)m(X∗) ⊆ Y. Let λ ∈ C, λ �= 0.

The following are equivalent: (1) (λ − T) ∈ �(X); (2) (λ − TW ) ∈ �(W ); (3) (λ − T∗) ∈
�(X∗); (4) (λ − T†) ∈ �(Y ).

Moreover, when any one of these four conditions hold, then

ind(λ − T) = ind(λ − TW ) = −ind(λ − T†) = −ind(λ − T∗).

Proof. By the Closed Range Theorem 7, the range of any one of the four
operators in (1)–(4) is closed implies the ranges of all the four operators are closed. As
shown in Corollary 10, nul(λ − T) = nul(λ − TW ) and def (λ − T) = def (λ − TW ).
Also, since T† = (T∗)Y , Corollary 10 applies to these adjoint operators. Therefore,
nul(λ − T∗) = nul(λ − T†) and def (λ − T∗) = def (λ − T†). Finally, it is a standard
fact from Fredholm theory that ind(λ − T) = − ind(λ − T∗). Together these facts
prove the result. �

In [7], a very successful Fredholm theory is developed for operators in AW,Y .

The key hypothesis there on an operator S ∈ AW,Y is that S ∈ �(W ), S† ∈ �(Y ), and
ind(S) = − ind(S†). Therefore, this Fredholm theory applies to the operators λ − TW

and λ − T† in the setting of the last theorem; see [7, 5.8].
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6. Linear operators on spaces with a bounded inner product. Throughout this
short section, X is a Hilbert space, W is a subspace of X , and W is a Banach space
which is continuously embedded in X. For V a subset of X , we use the usual meaning
of V⊥, and when V ⊆ W , we set V� = V⊥ ∩ W. Consider the following condition:

(�) T ∈ B(X), W is both T and T∗ invariant, and there exist n ≥ 1, m ≥ 1 such
that Tn(X) ⊆ W and (T∗)m(X) ⊆ W.

It is clear that when (�) holds, then the results of the previous sections hold for T
and T∗ with the form of the result adjusted to the context. For example, there is the
following theorem.

12. A Closed Range Theorem. Assume that (�) holds.
For λ ∈ C, λ �= 0. The following are equivalent:

(1) R(λ − TW ) is closed in W ;
(2) R(λ − T∗

W ) is closed in W ;
(3) R(λ − TW ) = N(λ − T∗

W )�;
(4) R(λ − T∗

W ) = N(λ − TW )�;
(5) R(λ − T) is closed in X ;
(6) R(λ − T∗) is closed in X.

NOTE 13. It follows from a result of R. Douglas, that if S ∈ B(X) and S is normal,
then R(S) = R(S∗) [4, Theorem 1]. Now assume that T is normal and Tn(X) ⊆ W for
some n ≥ 1. Then as Tn is normal, R(Tn) = R((T∗)n). Thus the condition (T∗)n(X) ⊆
W (part of condition (�) ) will automatically hold in this case.

PROPOSITION 14. Assume T ∈ B(X) and that (�) holds. W = R(λ − TW )
W ⊕ N(λ −

T∗
W ) and R(λ − TW )

W = N(λ − T∗
W )�.

When T is normal, W = R(λ − TW )
W ⊕ N(λ − TW ).

Proof. Let λ ∈ C, λ �= 0. Since X is a Hilbert space, we have

X = R(λ − T)
X ⊕ N(λ − T∗) and R(λ − T)

X = N(λ − T∗)⊥. (1)

It suffices to consider the case n = 1. Thus we assume that T(X) ⊆ W. We prove in this

case that since (1) holds, then W = R(λ − TW )
W ⊕ N(λ − T∗

W ) and R(λ − TW )
W =

N(λ − T∗
W )�.

Assume that w ∈ W. Then by (1), w = v + z where v ∈ R(λ − T)
X

and z ∈ N(λ −
T∗). Now z ∈ N(λ − T∗) = N(λ − T∗

W ) ⊆ W. It follows that v ∈ R(λ − T)
X ∩ W. By

Theorem 4, R(λ − TW )
W = R(λ − T)

X ∩ W. Therefore, v ∈ R(λ − TW )
W

. This proves

that W ⊆ R(λ − TW )
W ⊕ N(λ − T∗

W ), so that W = R(λ − TW )
W ⊕ N(λ − T∗

W ). That

R(λ − TW )
W = N(λ − T∗

W )� follows from Corollary 5.
When T is normal, it is easy to see that N(λ − TW ) = N(λ − T∗

W ), so in this case,

W = R(λ − TW )
W ⊕ N(λ − TW ). �

7. Convolution operators acting on spaces of continuous functions. In this last
section, we look at examples involving certain convolution operators, Tf . We show
that the results of this paper apply to the operators λ − Tf and λ − Tf̃ , λ �= 0, acting
on the spaces of continuous functions L1(G) ∩ BC(G) and BC(G), respectively. Part
of this example appears in [3].
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EXAMPLE 15. Let G be a locally compact, T2, topological group, and assume that G
is unimodular. Fix a Haar measure on G. In what follows, we omit G in the notation of
the various spaces involved; eg., L1 = L1(G) and BC = BC(G). For f ∈ L1, g ∈ Lp for
some p, 1 ≤ p ≤ ∞, we set Tf (g) = f ∗ g. The operator Tf is the usual left convolution
operator on the various spaces.

First in Setup I, take X = L1, W = L1 ∩ BC, X∗ = L∞, and Y = BC. From
Folland’s book [6], Propositions (2.39) and (2.40), we have the following facts:

(1) For f ∈ L1 ∩ L2, f ∗ f ∈ L1 ∩ BC, and this implies, (Tf )2(L1) = Tf ∗f (L1) ⊆
L1 ∩ BC;

(2) For f ∈ L1, Tf (L∞) ⊆ BC.

For f ∈ L1, let f̃ (x) = f (x−1), x ∈ G. Then f̃ ∈ L1 and Tf ∈ B(L1) has adjoint
(Tf )∗ = Tf̃ ∈ B(L∞). Therefore, we have the result:

16. For f ∈ L1 ∩ L2, (Tf )2(L1) ⊆ L1 ∩ BC and (Tf )∗(L∞) ⊆ BC.

Thus, the results of the previous sections apply to the convolution operators given
the setup above.

Make the same assumptions as in the first paragraph in this example. Now we
consider Setup II with L2 = L2(G) and W = L2 ∩ BC. We use the same results from
Folland [6] to yield:

(3) For f ∈ L1 ∩ L2, we have Tf (L2) ⊆ L2 ∩ BC.

In this case, Tf ∈ B(L2) has adjoint (Tf )∗ = Tf ∗ [here f ∗(x) = f (x−1), x ∈ G] These
observations lead to a second result:

17. For f ∈ L1 ∩ L2, Tf (L2) ⊆ L2 ∩ BC and (Tf )∗(L2) ⊆ L2 ∩ BC.

It follows that condition (�) holds when X = L2, W = L2 ∩ BC, and T = Tf ,
f ∈ L1 ∩ L2.
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