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1. Introduction
This paper is a sequel to a previous paper (1) on axisymmetric potential

problems for one or more circular disks situated inside a coaxial cylinder
and applies the method used for these problems to the electrostatic potential
problem for a perfectly conducting thin spherical cap situated inside an earthed
coaxial infinitely long circular cylinder.

We first derive in § 2 integral representations for the potentials of rings
of point charges and dipoles and use these to construct representations for
the potentials of distributions of charges and dipoles on a spherical cap, these
results corresponding to those already given for a circular disk (1), (2). These
representations have been used to reduce potential problems for a spherical
cap to single applications of the known solution of Abel's integral equation
(3), (4) and problems for two or more spherical caps to the solution of Abel
and Fredholm integral equations (5), (6). We make further use of one of these
representations in the electrostatic potential problem for a cap inside an
earthed coaxial cylinder to show in § 3 that this problem is governed by a
Fredholm equation of the second kind. In § 4 we obtain an approximate
solution of this equation by iteration when the cap is maintained at a constant
potential, the radius of the cap being much less than the radius of the cylinder,
and give an expression for the capacity of the cap.

2. Representations of Potential Functions for a Spherical Cap
We first derive integral representations for the potentials of charge and

dipole distributions on a spherical cap. It has been shown (1), (2) that the
potential v^m, z; p,Q at any point (ro, <j>, z) due to a ring of charges of radius p
in the plane z = £ has the representation

z; p, 0
1 fp

= -
71 J-p

the total charge on the ring being unity. The origin O for cylindrical polar
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14 W. D. COLLINS

coordinates (w, <f>, z) is a point on the axis of the ring, this line being taken
as the z-axis. If (r, 9, <j>) are the spherical polar coordinates of the point
(in, 4>, z) and (a, ifr, (j>') those of a point (p, <j>', Q on the ring of charges, we
have

vt(r sin 9, r cos 9; a sin ij/, a cos i/0 = v[(r, 9; a,\j/)

1 f"sin^ dt
= - — (2 2)

n J - a sin * (a 2 s i n 2 "A - f 2)*(r2 sin2 0+, r cos 0 - a cos î  +JY)2)*

We now suitably deform the contour of integration away from the real axis
into an arc of a circle of radius a and make the change of variable

ae~'n = a c?os i// — it, — i / r i s j j ^^ ,

to obtain as an alternative expression for the potential of a ring of charges

v\(r, 9; a, *) = A
7iJ_^(2cos>/-2cosiA)*(rV + a 2 c- i ' ' -2arcos0) i " ' '

To obtain a representation for a ring of dipoles we consider a ring of
charges of total strength —q and radius a sin \ji in the plane z = a cos \j/ and
a ring of total strength q and radius (a + da) sin x// in the plane z = (a + 8a) cos i/f,
the potentials of these rings being found from (2.3). On letting q-*co and
8a->0 in such a way that q5a->\ we obtain the potential v'2(r, 9; a, \j/) for a
ring of dipoles of radius a sin i// in the plane z = a cos i/r as

, , „ ,-. i f * (rcos 9 — ae~"l)dn
v2(r, 9; a, i/0 = - — . -̂ —4 - ,

i J -4, (2 cos »7 — 2 cos \ji)\r el" + a e "l—2ar cos 0)*

valid at all points other than those on the surface r = a(0^9^{j/), the total
strength of the ring being unity and the axes of the dipoles being directed
radially outwards from O. This expression we can write as

v'2(r, 9; a,$)

1_ f* secj>? dV

ina J _^ (2 cos r\-2 cos i/>)* dr\ \_(r2e"'+ a2e~"'-2ar cos 9)*

+ —log [rcos 9-ae-i« + (r2 + a2e-2in-2are-i'> cos 0)*] Lfy, (2.4)
2a J

where the logarithm has its principal value. The representations (2.3) and
(2.4) are the bricks from which we now construct representations for potentials
for a spherical cap.

We take the centre O and axis of the cap as origin and polar axis for spherical
polar coordinates (r, 9, (j>), so that the cap, radius a and semi-angle a, is given by
r = a(0^9^x). The potential at a point (r, 9, <j>) of a distribution of rings of
charges on the cap, the density of the distribution being a{\j/) per unit area at
the point (a, \j/, <f>'), is

V(r, 9) = f" 2na2 sin M^>'i(r, 9; a, </0#,
Jo
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from which, by using (2.3) and interchanging the order of integration, we
obtain

, 9) = f£(V,, ^r: .. (2-5)
where g{rf) is a real even function given by

1 ff(i/0 sin i

, , (2 cos tj — 2 cos i/0* v ' ~

Similarly, the potential at the point (r, 0, <j>) of a distribution of rings of
dipoles on the cap, the density of the distribution being T(I^) per unit area at
the point (a, \j/, <j>') and the axes of the dipoles being directed radially outwards
from the centre of the cap, is

V(r, 0) = 27ra2 sin \pz(ij/)v'2(r, 0; a, \J/)d\jj.r, 9) = \2na2 si
Jo

Using (2.4), interchanging the order of integration and carrying out an integra-
tion by parts, we obtain

V ' 2 j l(r2e">i"t+a2e~i"-2arcosd)i

' + (r2 + a2e~2"1 — 2are~'n cos 0)*] dr\, (2.6)

where j(r\) is a real odd function given by

•i \ i ^ f , f' T(I^) sin \l/d\l/ "I , ..
Ail) = 2aj- seci^ Cos - 2 cos M* (jl>G)-

This expression for V(r, 8) is valid at all points including those on the cap (3).
The stream-function corresponding to the potential (2.6) is

reiincos9-ae~iin

j2e~'"-2arcos0)*

r(ae-iin cos 0 - re*'") 1 , „ _.
—: ——— at] (2,. /)

a(r e'^-ha e ltl — 2ar cos 0) J
The square roots in these various expressions have positive real parts, so

that

= pe~*x for r<a, (2.8)

withp^O, 0^T^7i for

:<0 for - a < i
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16 W. D. COLLINS

When r = a, we have

(r2ei"+a2e~"'-2ar cos 0)± = a(2 cos ^ - 2 cos 0)± (0;> | ^ |),

= ±ia(2cos0-2cosf7)* (0<|f/ |)

if r->a through values greater than a,

= + ia(2 cos 0 - 2 cos »/)* (0< 11] |)

if r->a through values less than a, (2.9)

the upper signs holding for 0 ̂  r\ g a and the lower for — a ̂  >7 < 0. The integral
(2.5) is interpreted as a Cauchy integral at the point (r = a, 0 = 0).

The potential at any point when the cap is maintained at a given axi-
symmetric potential is due to a distribution of charges induced on the cap,
and hence as is shown in a previous paper (3) we represent this potential by
(2.5), determining g(ri) by one application of the known solution of Abel's
integral equation. Similarly, for a flow of perfect fluid past the cap the potential
at any point is due to a distribution of doublets or dipoles induced on the
cap, the axes of the doublets being normal to the cap, and we represent this
potential (4) by (2.6) and the corresponding stream-function (3) by (2.7).

These representations can also be used to investigate potential problems
for a spherical cap situated inside a coaxial circular cylinder, and we now
illustrate this by considering the electrostatic problem for this configuration.

3. The Electrostatic Potential due to a Spherical Cap inside a Circular Cylinder
We consider a spherical cap maintained at a constant potential in an

external electrostatic field and situated inside an earthed coaxial infinitely
long hollow cylinder. We use spherical polar coordinates {r, 0, <£) and
cylindrical polar coordinates (w, <j), z) with the centre and axis of the cap as
origin and polar axis, so that the cap, radius a and semi-angle a, is given by
r = a(O^0^a) and the cylinder, radius c, by w = c(— oo<z<oo). Since
the cap lies wholly within the cylinder, we have c>max(asin 0) for 0 ^ 0 ^ a .
If V^w, z) is the potential due to the external electrostatic field in infinite space,
the singularities of the field lying in the region 0^m<c(— co<z<oo) but
not on the surface r = a(O^0^a), the total potential V(m, z) due to the cap,
maintained at a constant potential Vo in this field and situated inside the
earthed cylinder, is

V{w, z) = V^w, z)+U{r, 6), (3.1)

where U(r, Q) is a potential satisfying the conditions

U(r, 0) = f(d) = V0- Vx{fL sin 0, a cos 0)

on the cap r = a(O^0^a), (3.2)

= j(z) = — Vx(c, z) on the cylinder m = c(— oo < z < oo) (3.3)

Further, U(r, 9) is continuously differentiable at all interior points of the cylinder
except those on the cap, whilst U and dU/dr are continuous for approach
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AXISYMMETRIC BOUNDARY VALUE PROBLEMS 17

to the cap except that for points on the rim (r = a, 9 = a) of the cap dUjdr
tends to infinity as the inverse square root of the distance from the edge:
Finally, U{r, 0) is 0(| z\~l) for large \z\.

This potential U(r, 0) is due to distributions of charges induced on the cap
and the cylinder, and hence we represent it as

U(r, 0) = -
2e-' '-2arcos0)*

+ (Ai(A)cos Xz + h2(X) sin Xz)I0(Xtn)dX, (3.4)
Jo

where g{rj), h^X), and h2(X) are real continuous functions, g(ri) being even,
and I0(Xm) is the modified Bessel function of the first kind of order zero (7,:

p. 77). The first integral has the form (2.5) and is the potential of a distribution
of charges on the cap, whilst the second integral is a solution of Laplace's
equation appropriate to the interior of the cylinder and is a representation of
the potential due to a distribution of charges on the cylinder. The potential
(3.4) can be shown to satisfy the conditions of the problem other than (3.2)
and (3.3) by the methods used in a previous paper (3) for the potential for
a cap in infinite space. We now use conditions (3.2) and (3.3) on the cap and
the cylinder to derive a Fredholm equation governing the problem.

We first consider the condition (3.2) satisfied by U(r, 9) on the cap
r = a(O^0^a). It can be shown (3) that the limit of the first integral in
(3.4) as the point (r, 0, <j>) approaches a point on the cap is the value of the
integral at that point, and hence from (2.8) and (2.9) we have that •

T qirddri + f00 (/ji(A) c o s ̂ a CQS 0) + ^ ) S j n (Xa cos 9))
Jo (2cos>f-2cos0)* Jo

x I0(Xa sin 9)dX=f(0) (O^0ga) (3.5)

This we regard as an Abel integral equation for girf), the first integral in (3.5)
reducing to the usual form of this equation after a change of variable, and
on solving it obtain g(rj) in terms of hx(X) and h2(X). To do this we need to
express the second integral in (3.5) in the same form as the first.

Since I0{Xxn) cos Xz and I0(Aw) sin kz are symmetrical potentials which
have the finite values cos Xz and sin Xz on the axis m = 0, we use Laplace's
expression (8) for such potentials to obtain

1 f *I0(Xm) exp (iXz) = - exp \)X(z + im cos
rcJ

When z = a cos 9 and m = a sin 9, we have

I0

E.M.S.—B

a cos 9 and m a sn 9, we a e

, f, • m / . , m 1 fasine exp[U(acos0+iY)]^
I0(Xa sin 9) exp (iXa cos 9) = - , 2 . 2n—dr~-

rcJ-asins (a2sin20-f2)*
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18 W. D. COLLINS

If we now suitably deform the contour of integration away from the real
axis into an arc of a circle of radius a and make the change of variable

aein = a cos 6+it, -9£ri^9,

we obtain

I0{ka sin 9) exp (ika cos 9) i f 9
= -

71 J-e (2 cost] — 2cos0)*

Taking the real and imaginary parts of this expression, we have

I0{ka sin 9) cos {ka cos 9) = — I ————
n J 0 (2 cos t] — 2 cos 0)*

and
M20/, A)tfyI0(ka sin 0) sin (Aa cos 6) = — • .,

7cJo(2cos/;-2cos0)*

where

MyOi, k) = cos i?/ cos {ka cos >;) cosh (Aa sin r\)

+ sin •£»; sin (Aa cos //) sinh {ka sin /;) (3.6)

and

M2{rj, A) = cos \r\ sin (Aa cos v) cosh {ka sin /;)

— s in^cos {ka cos ^) sinh {ka sin ^) (3.7)
Using these results, we write the second integral in (3.5) in the same form

as the first and hence obtainf
Jo

)0 (2 cos rj — 2 cos
where

- f
" J o

2(X)M2{r,, k))dk = Fft,) (0^ij^a)....(3.

Equation (3.8) reduces to Abel's integral equation after a change of variable,
and its solution is found as

f(9) sin \,»v tn*--*-^. pio)
n dt] Jo (2 cos 0-2 cos »/)*

hence F{rj) is known and further is even.
The condition (3.3) on the cylinder w = c{— oo<z<oo) gives

r
Jo

cos kz + h2(k) sin

'£T ' <3J1)
On replacing z by —2 in this equation we obtain a second equation for h^
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AXISYMMETRIC BOUNDARY VALUE PROBLEMS 19

and h2(X) as

cos Xz-h2(k) sin Xz)I0(Xc)dX

a i 2 >

On adding and subtracting (3.11) and (3.12) we obtain equations determining
/JX(A) and h2(X), these being

2 I ft,(A)/0(Ac) cos kzdX
JoJ

1 r
(-oo<z<oo) (3.13)

and

2 ° ft2(A)/0(Ac) sin
J

°°
Jo

f J!. [( ( W ( (
(-oo<z<oo) (3.14)

where

We now invert equations (3.13) and (3.14) to find h^X) and h2(k) as

and

—J\dridz,
(c2 + (z + ae-")2)*J

(3.16)
(c2 + (z + ae")2)*J

where
j+(A) = 1 1°° ;-+(z) cos Azdz, J_(A) = - r j_(z) sin Azdz.

j n J
If in (3.15) we interchange the order of integration in the integral on the
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20 W. D. COLLINS

right-hand side and note that g{rf) is even, we find we need to evaluate the
integral

(c2+(z-ae")2)*

^ + —2—: ;r^n I cos kzdz.

By considering the integrals (7, p. 410)

ititt <
where a | sin /j | < c and #o0*c) is t n e modified Bessel function of the third
kind of order zero (7, p. 78), we can show that

I(rj, A) = AKoQciMiHn, X),
where M^ij, A) is given by (3.6), provided a \ sin r\ \<c. This last condition
is satisfied for all r\ since the cap lies "wholly within the cylinder. Equation
(3.15) thus gives

JotAcMA) = J+JL)- 2 a K o ( A c ) ['gftMtf, XW (O^A<co). ...(3.17)
n Jo

Similarly, from (3.16) we find that

J0(Ac)fc2(A) = J-(X)- 2aK°^ \" g(£)M2(Z, X)d£, (0^A<oo), ...(3.18)
i Jo

where M2(£, A) is given by (3.7).
We next substitute these expressions for /^(A) and h2(X) in (3.9) to obtain

g(rj)- - \ K(£, ri)g(J3dt = G(rj), (Ogf^a) (3.19)
"Jo

where
4a f00 JCo(Ac) r w ,E , ^ , , ,„ „ , , , ^ A)M2(?;, A)]dA
71 Jo

and
- 2 ["[AWM.^

n J o
Since G(>/) is known, this is a Fredholm integral equation determining g{r\).
We can however show that

K(e,v)=k(g, ti)+k(-{,ti),
where

KS, n)

= ^ f" ^ £ > [cos [Aa(cos ^ - c o s >,)] cosh [Aa(sin ^ + sin »/)] cos KS-f)
1 Jo /oC '̂c) L

+sin [Aa(cos «g - cos >/)] sinh [Aa(sin ^ + sin ?/)]sin ft£ -tj)\dA,.. .(3.21)
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so that we replace (3.19) by the equation

= Gfo), ( - ag i j ^a ) (3.22)

and G(tf) being even functions, and take this as the integral equation
determining g{r\). It may be noted that this equation has a symmetric kernel.
The functions h^X) and h2(X) are then given in terms of g{t]) by (3.17) and
(3.18).

An exact solution of (3.22) is not known, and for general values of a and c
it is necessary to solve it numerically. When the ratio ale is sufficiently small
however, an iterative solution can be obtained as a convergent power series,
the first few terms of which provide a good approximation to g(ti). To obtain
this approximate solution we expand k{£,, t]) in powers of a/c to give

«€. 1) = - I"" ^ [ e x p \ l - « - , ) ] cos|W-e-*)]

+ exPr- Itf-rtlcosfee-'*-^!! du

= - t Jr^wjU-Yn+lx cos K« + iX«-»j)] sin2"K̂  + »?),...(3.23)
7i o ( 2 n + l ) ! \ c /( ) \c

where
f
Jo

1 f " U2VM

(«!)2Jo /S(«)
The coefficients P2n are tabulated by Smythe (9) for integer values of n from 0
to 41, the first three coefficients being

Po = 1-3677, p2 = 1-9407, /?4 = 2-5873.

4. The Cap Maintained at a Constant Potential
When the cap is maintained at a constant potential Vo in the absence of an

external field, we have
/(0) = Vo, j{z) = 0,

so that
/+(A) = J_(X) = 0,

and from equations (3.10) and (3.20) we obtain

n

Thus the equation to be solved for g{t\) is

= ^ cos it, (-ag^a) (4.1)
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22 W. D. COLLINS

The capacity C of the cap is then given by

V0C = a \'g(ri) cos \r\dr\ (4.2)
Jo

Using (3.23) and writing a — ale, we find the approximate solution of
(4.1) by iteration as

— —-
n ]_

c o s ii + -^-§- (a + s i n a ) c o s %1 + , (a + sin a)2 cos

o_\ P0P2 /1

T I 4 L 3 V

—\ - — ( i(3 sin 2a + 2 sin 3a) cos |>/-(2 sin a + sin 2a) cos \r\
« L 3 V

+ (a + sin a) cos \r\ I + -^~ (a + sin a)3 cos \i\
) * J

sm a + s i n 2a)2-(a + sin a)(3 sin 2a+ 2 sin 3a)] cos \r\

+ 2(a + sin a)(2 sin a + sin 2a) cos \r\ — 2(a + sin a)2 cos \r\ J

+ ? M (a + sin a)4 cos \r\ 1

-)—- — ( 2^(5 sin 4a+4 sin 5a) cos it]—^(4 sin 3a+ 3 sin 4a) cos \r\
n2 l_15 \

+(3 sin 2a + 2 sin 3a) cos \r\—2(2 sin a + sin 2a) cos \r\ + (a + sin a) cos f 77

. ( a + s i n a )^[6(2 sin a+sin 2a) 2

3n4

— 5(a + sin a)(3 sin 2a+2 sin 3a)] cos \r\

+ 2(a + sin a)(2 sin a + sin 2a) cos \r\ — 2(a + sin a)2 cos \r\

32Bs ~n

H ~ (a + sin a)5 cos \r\ +O(<76).
n JJ

The capacity of the cap is then found from (4.2) as
C (a + sin a) 2Boa , , . . 2 ^Blo2, . x3— = ^ -H—~— (a + sin a) + " (a + sma)_ y « I w»i« •rvj 1

SA (a + sin a)4

TC

n4

) , (4.3)

https://doi.org/10.1017/S0013091500014449 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500014449


AXISYMMETRIC BOUNDARY VALUE PROBLEMS 23

where
P(a) = (2 sin a + sin 2a)2-f(a + sin a)(3 sin 2a + 2 sin 3a)

and
6(°0 = To(a + s m a)(5 sin 4a+ 4 sin 5a)

— ̂ (2 sin a + sin 2a)(4 sin 3a + 3 sin 4a)

When a equals n, the cap becomes a sphere and we have that

C - 14. 2Poa , 4/Jg 2 8 $ 3 , 16/tt 4 , 32j?g 5 6
= i H a H — a + —— a + —— a H — o + U{a )

a n n n n n

The problem of a sphere situated inside a circular cylinder has previously
been investigated by Smythe (9) and Knight (10) using other methods.

When a tends to zero and a tends to infinity in such a way that ace tends
to a finite limit b, the cap becomes a disk of radius b. The limit of (4.3) then
gives the expression for the capacity of a disk situated inside a cylinder obtained
previously (1).

Finally, the problems of the flow of perfect fluid past a spherical cap in a
cylinder and of the slow steady rotation of a cap in a cylinder containing
viscous fluid can be investigated using the method of this paper and the
representations (2.6) and (2.7).
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