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Modern differential geometry may be said to date from Riemann's famous 
lecture of 1854 (9), in which a distance function of the form F(x\ dx1) = 
(7ij{x)dxidxjY was proposed. The applications of the consequent geometry 
were many and varied. Examples are Synge's geometrization of mechanics (15), 
Riesz' approach to linear elliptic partial differential equations (10), and the 
well-known general theory of relativity of Einstein. 

Meanwhile the results of Caratheodory (4) in the calculus of variations led 
Finsler in 1918 to introduce a generalization of the Riemannian metric function 
(6). The geometry which arose was more fully developed by Berwald (2) and 
Synge (14) about 1925 and later by Cartan (5), Busemann, and Rund. It was 
then possible to extend the applications of Riemannian geometry. For example, 
Rund successfully generalized the dynamical results of Synge (11). In certain 
applications, such as quasi-linear elliptic partial differential equations, how­
ever, difficulties arise from the fact that a Finsler metric tensor y ij{x, x) must 
satisfy 

"TT? yjk\%y %) = = ~jv̂ & yij\%i %) = ~jHj yki\%j % ) * 

The following work is an attempt to avoid this restriction. 
In § 1 a suitable invariant differential, first suggested by Moor (7), is 

investigated and the problem of determining its coefficients in terms of the 
metric tensor is posed. This question is completely answered in §§2, 3, and 
4, and in § 5 relevant uniqueness theorems are established. The remaining 
sections deal with the geometrical structure of the space as revealed by the 
theories of autoparallels, curvature, and curve deviation. 

1. Fundamental Concepts. Consider a space of line-elements (x\ xl) 
(i = 1, 2, . . . , n) endowed with a second-order symmetric tensor gij(xk, xk). 
This tensor is assumed to be analytic in each of its 2n arguments (except 
when all the x* vanish). We introduce the scalar function 

(1.1) Fix*,**) = + (gi3(x\ x^xW)^ 

which in turn defines a second second-order symmetric tensor 

(12) y-(x* xk) = i f f l ^ i l 
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The class of functions of (x*, xl) which are positively homogeneous of degree 
p in x* will be denoted by Hp. 

The following conditions are imposed. 

(a) The gij(x, x) 6 H0: 

(1.3) gtjOc, kx) = kgtj(x, x) (ft > 0). 

In view of Euler's theorem on homogeneous functions it follows that 

(1.3') f p ^ = °-
Furthermore, relations (1.3) and (1.1) imply that F(x, x) G Hi. 

(b) The quadratic form g^(x, x)XiXj is positive definite for all line-
elements (xi

t #*)• From this we readily deduce that the determinant 

(1.4) g= \gt,(x,x)\ *0. 

(c) The quadratic form 7zy(x, x)XiXj is likewise positive definite. Conse­
quently 

(1.40 7 = \ytj(x9x)\ ^ 0 . 

If gij(x,x) = yij(x,x), then (1.1) defines a Finsler metric function, and, 
by (1.2) 

àgtj = dgjjc = dgkj 

dxk dxj dx% 

In the following work the strong condition that gij(x, x) be a second partial 
derivative is dropped and hence the geometry of a Finsler space occurs as a 
particular case of the geometry defined by conditions (a), (b), and (c). 

The expression gij(x, x)Xi(x, x)Xj(x, x) may be interpreted, by analogy 
with Finsler geometry, as the square of the length of the vector X1 defined 
with respect to the line-element (x\ x1). In particular, the unit vector Zz'(x, x) 
in the direction of the line-element is given by 

(1.5) l*(x,x) = [F{x, x)]-lx\ 

With the exception of F(x, x), the vectors, connections, and other tensorial 
quantities which will arise will depend only on the ' 'centre" xl and the direction 
of the line-element (xz, x1). Thus the magnitude of the vector xl does not 
affect these quantities and accordingly they Ç H0. 

There is no intrinsic method of comparing the directions of two vectors 
attached to different points of a metric space. For such a comparison it is 
convenient to introduce an "invariant differential." This is a linear operator 
D, acting on vectors Xi{xJ x), which consists of terms resulting from 

(a) a functional variation dXl(x, x) of X\ 

(b) a displacement of the centre xi of the line-element, and 

(c) a rotation of the line-element. 
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Thus 

(1.6) DX* = dXl + F - W / , ( x , x)Xjdx* + LM*> x)Xjdx\ 

where Mj\ and L/fc are functions defined with respect to the line-element.* 
As indicated above we require that DX1 be independent of the length 

F(x, x) of xi (and a fortiori of dF). Now, from (1.5), we have dxl = VdF-YFdl1 

and it follows that 

(1.7) M$\l* = M/o = 0 

and that the functions M/*, L/& 6 H0. The definition (1.6) then becomes 

(1.8) DX' = dXl + M^XW + LftX'da*. 

In particular, we have 

(1.9) Dl* = dl\bl
k + M0\) + U\dx\ 

It is essential that we have an explicit expression for dlk in terms of vectorial 
displacements Dl\ dx\ The simplest assumption yielding this is (7, p. 89) 

(1.10) Mo'tMo*, = 0, 

for it will then follow from (1.9] that 

(1.11) dl* = (Dlj - U\dxk){b) - Mo*,). 

By substituting this value for dl1 in (1.8) we obtain 

(1.12) DX1 = dXl + M/kXWlk + Lj
i
kX

jdx\ 

where 

(1.13) M,\ = M,\(bl - M0
r
k), 

Lj k = Lj k — Mj T{bs — Mo S)LQ k. 

It is easily seen that these relations are uniquely solvable for the M/ fc and 
L/fc in terms of the Mjl

k and L//- (7, p. 90). Hence the problem of deter­
mining the invariant differential is reduced to the determination of the latter. 

In order to ascertain the tensorial character of L/& and M3
l
k we first note 

that DX1 must be a contra variant vector for arbitrary choices of X\ Dl1 

and dx\ In particular, if the Dlk are taken to be zero, the right-hand side of 
(1.12) is formally the same as in Riemannian geometry and we conclude that, 
under a non-singular co-ordinate change 

(1.14) x* = x\ua), Va = — «, Vaij = -faïfaï ; etc. (a = 1, 2, . . . , n), 

the quantitities L/ A transform according to the law 

(1.15) L% = VjL^VjVf-VïjViVl. 

*The present treatment of the invariant differential follows closely that of Moor (7, pp. 
88-90). 
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Quantities satisfying 1.15 are said to transform like connection parameters. 
Although we shall also refer to the quantities M fa as connection parameters 
it is now clear that they transform as tensors. 

It follows from the first set of equations (1.13) that conditions (1.7) and 
(1.10) are equivalent respectively to 

(1.16) (a) Mfa = 0, (b) MSjMo'* = 0. 

If we now express dXl in terms of Dlk and dxk, equations (1.12) become 

(1.17) DX* = X\kdxk + X^-jtDl*, 

where we have written 

(1.18) (a) X\k = -£r - ^ i i ^ + x V » , 

(b) X\k = X'urM - Mo\) + XrMr\, 

and 

(1-19) X^-FW-

The tensors (1.18) (a) and (b) are called "covariant derivatives." If we 
assume that the product rule holds, it is possible to extend the definition to 
tensors of any order. A similar remark may be made for the invariant differ­
ential operator. In particular, the invariant differential of a scalar is its 
ordinary differential. Also, applying the processes of covariant differentiation 
to gijj we obtain 

(1.20) (a) gijijc = — r — gij\\rLor
k — grjLik — girLfa 

and 

(1.20) (b) gij;k = gijuM - M0\) - grSMi\ - girMfa. 

An interesting property of the covariant derivative (1.18) (b) is 

(1.21) X\.0 = X\.kl
k = 0, 

whenever X1 Ç HQ. This is an immediate consequence of the relations (1.16). 
In the sequel gtj and its inverse gij, the unique solution of 

(1.22) gi3glk = 5*' 

(which exists, by (1.4)), will be used to lower and raise tensor indices. If 
Tijk is any three-index symbol, we write \{Tijk + Tjik) = T(ij)k etc. Also we 
adopt the notation 

(1.23) hgijWt = A i J t k . 

Note, that by (1.3') and (1.19) we have 

(1.230 AtJ,o = 0. 
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The process of invariant differentiation is called metric if Dgtj vanishes 
identically. This assumption represents the generalization of the Ricci lemma 
of Riemannian geometry. It is equivalent to the assumption that the invariant 
differential of the length of a vector vanishes whenever the invariant differential 
of the vector itself does. In this case, several important identities follow. 
Firstly, applying D to the relation g^W = 1, and, noting the symmetry of 
gij, we obtain 

(1.24) 2giJl
iDlj = 2ljDlj = 0. 

Thus the displacements Dl* are not independent. However, (1.24) is the only 
relation connecting the Dll since further ones would imply the interdependence 
of the x\ Combining equations (1.17) (with X1 = /*) and (1.24) we conclude 
that, for arbitrary X*, 

l\kdxk + (J** - K + \%)Dlk^ 0. 

Now for each fixed i we can choose X* so that the coefficient of one of the 
Dlk vanishes. Since the remaining Dlk and the dxk are independent it follows 
that 
(1.25) /',* = 0 

and /,-fc' = ôfc* — \%. To find X* explicitly, we multiply these equations by 
lk and sum over k, noting (1.21) and the fact that ll is a unit vector. This 
yields ll = X* and hence 

(1.26) l% = ti- 1%. 

A similar argument applied directly to the condition for a metric invariant 
differential yields gtj\k = 0, gij;k = \ijlk, for some X^. In view of (1.21) we 
then find that the \ u must be zero. From (1.20) (a), (b), and (1.23) these 
conditions may be expressed in the form 

(1.27) (a) 9 T^F" ~ AijtTLor
k — Liij)k = 0 = gi:j\k, 

(b) Atjlk - AtJ,rM0
r
k - MW)k = 0 = gij;k. 

The problem of determining a metric invariant differential therefore depends 
on the solution of equations (1.16) (a), (b) and (1.27) (a), (b) for the L/fc 

and the Af/fc as functions of the gtj and their derivatives. Thus we are led 
to the following questions: To what extent, if at all, do these conditions determine 
Lj\ and M fat 

Moor has produced implicit solutions in (7). His treatment of explicit 
solutions and of uniqueness is, however, rather cursory. Certain conclusions 
drawn about uniqueness seem to be invalidated by the interdependence of 
the defining equations. 

In the following four sections we shall attempt to clarify the position as 
regards the uniqueness of the quantities Lfa and M fa as well as to determine 
new explicit solutions. 
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2. A bas ic e q u a t i o n . Both of the equat ions (1.27) (a), (b) have the form 

(2.1) X(ij)k = *ij,k ~~ AijiTXoTk> 

where the Xijk are the quant i t ies to be determined and Yij>ky AijtJc are given 
quant i t ies , symmetr ic in i and j , the la t ter of which satisfies A ijt0 = 0. We 
further assume tha t the unknowns Xijk t ransform either as tensors or as 
connection parameters (cf. (1.15)). In either case we choose a quan t i t y X%k 

with the same transformation law as Xijk so t h a t Xijk, defined by 

(2.2) X ijjc = X ijk + Xijk, 

is a tensor. Subst i tu t ion of (2.2) in (2.1) yields 

(2.3) X(ij)k = Zijtic — Aij>rXo7
k, 

where Z^ f fc is a tensor symmetr ic in i and j : 

(2.4) Zijfjc = Yijtk — X(ij)k — AijtTXo k-

If we now denote the par t of Xijk which is skew-symmetric in i and j by 

%ijk, we have 

(2.5) i;ijk = %(Xijk — Xjik) 

and it follows from (2.3) t ha t 

(2.6) Xijk = ZijJc — AijtrXor
k + tijk-

In order to deal with these equat ions, we shall find it convenient to intro­
duce a set of mutual ly orthogonal unit vectors spanning the cont ravar ian t 
t angent space a t a point P(x) of our ^-dimensional space. Two vectors X\ 
Yl defined with respect to the line-element (xk, x*) are called orthogonal 
with respect to this line-element if 

gij(x,x)XiYj = XjYj = 0. 

T h u s if we denote the basis vectors by /(„)* (M = 1, 2, . . . , n), it follows t h a t 

(2.7) llii)hy)i = 5MT-

Arbi t rary tensors may be expressed as a linear combinat ion of products of 
these vectors. For example, we have (repeated indices denote summat ion) 

(2.8) b) = kv)l(n)j, gij = hn)ihn)j, 

by the definition of the Kronecker delta tensor ô / , and (2.7). In part icular , 
the tensor Xijk may be wri t ten as Xijk = x^vkvik^jh^ki where xx^ are a 
set of nz scalars given by x^p = Xijkl(x)il(fl)

jliv)
k. 

We will assume t h a t the vector / ( D ' coincides with the vector defined by 

(1.5.)_ 
I t is also useful to introduce a basis for second order skew-symmetric 

covar iant tensors. This basis has elements 

(2.9) e(9)ij = kP)ih*)j - h*)ikP)j (0 = 2, 3, . . . , \n{n - 1) + 1 = N), 
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where p, a are related by 6 to the formula 

d = n(p- 1) + < r - | ( p + 2 ) ( p - 1). 

From this and the relations (2.7) we conclude t h a t 

( 2 - 1 0 ) e W ( 1 ) " \ 0 , (0 = rc+l,...,iV). 

If 7\;- is any skew-symmetric tensor, its components tpa satisfy ^p<r) = 0 
and hence it may be wri t ten twe^tj, by (2.9). 

Returning now to (2.6) we note t ha t ^ijk is skew-symmetric in i and j , by 
(2.5), and therefore there exist tensors a^tj such t h a t £ijk = a^ijl^)^ 

a(n)ij + ci(n)ji = 0. Accordingly %ijk = #V(0)*AM)A;> where the 6 / are the scalar 
coefficients of e^ij in the expansion of a (M)^. If we subst i tu te this expression 
for %ijk in (2.6), multiply by l^)\ sum over i and apply (2.10), we obtain 
Xor

k(grj + A0jtT) — Z0jtk = bflwjlwk (0 = 2, . . . , w). This equation may be 
used to determine the scalars b\ (/* = 1, 2, . . . , n, 6 = 2, 3, . . . , n) in terms 
of the Xor

k. Having done so we find 

(2.11) bn€(e)ijl(fx)k = li[Xo k(grj + AojtT) — Zojjk] — lj[Xo k(gri + Aoi,r) ~ Zoitk]. 

A combination of equations (2.2), (2.6), and (2.11) then yields 

(2.12) X ijk — X ijk + (Zijtk — liZojfk + ljZoifk) — Tk(Aij,r — liAoj,r 

+ ljAoitT — Ugrj + Ijgri) + (?ijk 

where we have set 

(2.12') Xor
k = n , aijk = bUvuU)* (0 = n+l,...,N). 

Hence we have shown tha t any solution of equation (2.1) must be of the 
form (2.12). Conversely one may readily verify t ha t any tensor of the form (2.12) 
satisfies equation (2.1) for arbitrary Tk

r, provided only that crijk satisfies 

(2.13) (J ijk + CFjik = 0, <Tojk = 0. 

T h e most general tensor which satisfies these conditions is given by the 
second par t of (2.12'), where the scalars 6 / are arbi t rary (ft = n + 1, . . . , N, 
jji = 1,2, . . . , n). Since it requires n2 scalars to form the arbi t rary tensor 
TV» it would appear t ha t the most general solution of equations (2.1) con­
tains n2 + n(N — n) scalars. However, not all of the components of Tk

r 

contr ibute to Xijk. T o prove this consider the expression l^)rl{V)k(A ijtT — liAoj>r 

-\- ljA%itr_— ligrj + Ijgri) which would occur in the third term of the right 
member of (2.12) if Tk

r were expanded in terms of the basis vectors. I t is 
obvious t h a t when /z = 1, this is zero, since A ijto vanishes. If it were to vanish 
for IJL ?£ 1, we would find, on multiplication by l\V)k and summation over 
i, k, t h a t 0 = I j (A oo,rhfi)T) ~~~ hn)j- Since the basis vector l{ii)j is not co-direc­
tional with lj this is impossible. Thus the coefficient of V in the expansion 
of TV contr ibutes nothing to Xijk and we may assume tha t 

(2.14) T0k = 0. 
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Hence the number of unspecified scalars in a solution of (2.1) is 

(2.15) No = n(n - 1) + n\\n(n - 1) + 1 - n] = \n\n - 1) 

and we can, in general, impose this number of new conditions on such a 
solution. 

It should be emphasized, however, that, in specifying a solution of (2.1) 
by means of (2.12), we may choose the tensor Tk arbitrarily. This situation 
is clearly advantageous from a practical standpoint and it would be desirable 
to have the solution (2.12) expressed entirely in terms of arbitrary tensors. In 
particular, it would be rather difficult to specify the tensor aijk by means 
of the latter relation of (2.12') since the basis vectors would first have to 
be constructed. This difficulty may be avoided by the use of the following 
lemma. 

LEMMA 1. Suppose that $(x, x) is any scalar £ Hi and suppose that the 
matrix ((Bi3)), where 

(2.16) S^g-H^gg;,;,, 

is of rank n — 1. Then, a tensor aijk £ HQ satisfies (2.13), if and only if it 
has the form 

(2.17) aijk = (BirBjs — BisBjr)Sk . 

Proof. That the right-hand side of (2.17) satisfies conditions (2.13) is 
evident from the homogeneity of g. To prove the converse we may assume 
that Sk

rs + Sk
sr = 0, Sk

os = 0, since these parts of the tensor Sk
rs will con­

tribute nothing to the sum. But then (2.17) reduces to 

(2 .17 ) 2aijk — BirBjSok . 

These relations are solvable for Sk
rs. Indeed let us assume that bap are the 

scalar components of the tensor Bi3 under expansion in terms of the basis, 
that is, Bij = ba0l(a)ihp)j. In view of the homogeneity of g, we have B0j = bip 
hp)j = 0 and, since the basis vectors are linearly independent, it follows that 
the bip all vanish. By the symmetry of Bih a similar result holds for ba\. Fur­
thermore, the matrix ((/(«)*)) is non-singular. In fact, from the second part 
of equations (2.8), we have 

(2.18) g = |/(MH|2 

and, in the light of (1.4), the left-hand side here does not vanish. Consequently, 
the matrix ((bap)) has the same rank as the matrix ((Bij)), namely n — 1. 
Since the entries in the first row and column of ((bap)) are all zero, it follows 
that the cofactor of bn is non-singular and therefore, considered as a matrix, 
it has an inverse, say ((bpa)) (p, a = 2, 3, . . . , n). A new tensor Bij may 
now be defined by Bij = bpJ^H^K From the definition of the bp(T and (2.7) 
it then follows that 

(2.19) B^B* = 8] - lklt. 
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(2.20) | ( g 2 W - | = - 2 * 3 " -

Wi th these remarks in mind (as well as the conditions (2.13)), we find 
t h a t the solution of equations (2.170 is Sk

hm = %aijkB
hiBmj, which proves 

the lemma. 

In order t h a t the rank of ( (5 i y ) ) be n — 1 it is sufficient t ha t the matr ix 
of second derivatives of g 2 be non-singular. For it can be shown (12, pp. 8 -9) 
t ha t 

VJxixJ Vxi | 

where the de terminant on the r ight-hand side has (n + l ) 2 entries. Now, if 
((Bfj)) has rank less than n — 1, then there exists a non-trivial solution X1 

of the corresponding homogeneous linear equations other than Xx\ Therefore 
there must exist a solution say z\ such t ha t 

z%t = 0, 

as well. Bu t then the {n + l ) 2 de terminant of (2.20) vanishes which is a 
contradiction. 

In the light of (1.2) and (1.4') it follows tha t the function F(x, x) is a 
suitable choice for g. For future reference we note t h a t the associated space 
whose metric tensor is given by yi3 is of the Finsler type and we shall refer 
to it in the sequel as the associated Finsler space* 

On application of Lemma 1 it follows t ha t 
T H E O R E M 1. Any solution of equations (2.1) can be expressed in the form 

(2.21) Xijjc = Xijk + (Zfj^ — liZojj + ljZoi,k) ~~ 

— Tk(AijtT — liAojtT + ljAoitr — ligjr + Ijgir) + 

-\-{BirBjS — BjTBis)S]c , 

and, conversely, any expression of this form, where Tk
r and Sk

rs are completely 
arbitrary tensors, is a solution of (2.1). 

If, in addit ion to conditions (2.1), we demand t h a t the Xijk be symmetr ic 
in i and k we obtain \n2{n — 1) new conditions. In view of (2.15), then, the 
solution would appear to be unique. We shall obtain necessary and sufficient 
conditions for the uniqueness of a symmetric solution. Equat ions (2.1), 
together with 

(2.22) Xijk — Xjcji, 

may be explicitly solved for Xijk in terms of X0%: 

(2.23) X ijjc = {Yijiï H- fkj.i ~~ *ik,j) ~ (Aij>rXo k + AkjtrXo * — AiktTXo j). 

If we mult iply this equation by /*, sum over i, and collect the coefficients 
of Xors, we find 

(2.23') Xorsfâôl + Aoj/ôt + Ajk,V — ^4o*, a]) = (Y0jtk + Ykjjo — YokJ). 

*See (12, chapter i ) for the set of conditions defining a Finsler space. 
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Adopting the notation of Moor, we call the tensor in the left member of 
(2.23') Hjk

rs and state 

THEOREM 2. In order that equations (2.1) and (2.22) should define a unique 
solution Xijk, it is necessary and sufficient that there exists a tensor Kmn

jk such 
that 

(2.24) HrjS
kK

J
mn = ômôn. 

This result follows directly from equations (2.23'), for, under the stated con­
dition, these equations can be solved for X0rs which, in view of (2.23), yields 
Xijk uniquely.* 

3. Determination of Lfk. We are now in a position to determine the 
parameters Ljl

k (and hence Lijk) since the defining equations (1.27) (a) are 
of the form (2.1) with Yijtk = \dgij/dxk and Aijjk given by (1.23). The 
right-hand side of equation (2.21) then yields Lijk in its most general form. 
A more precise specification involves the choice of a suitable X*jk and this 
choice should be governed by the particular problem under consideration. 

Problems in which the extremals of F(x, x) occur suggest the use of the 
Berwald connection parameters G/fc which are defined byf 

/ o i N r i ^G% r i - 1 n( d2f2 •'« df2\ 
( 3 ' 1 } Gj * " WdF ' G " 4 7 \dxh'dxm X - ~dxV ' 

The extremals of F(x, x) are the solutions of the differential equations 

(3.2) --J- + 2G\x, x) = 0. 

Having formed the G^ we may choose Xijk* to be gjhGih
k. 

The Cartan connection parameters T/k for a Finsler space (3, equation 
(2.8)) are defined by 

(3 .3) r / f c = hyth(yjh{k} + ymij} — yjkihùy 

where, for arbitrary 0, 

. _ d<t> d(j> dGr * 

If a comparison with the associated Finsler space is desired, then we may 
use gjnYi\ for the Xm*. 

*Cf. (7, pp. 92-93). Moor does not appear to have realized that the assumption of the 
existence of KmrJ

k insures the uniqueness of a symmetric L ,V 
tSee, for example, (3, equation (2.1) et seq.). The equations (3.2) above are equivalent to the 

Euler-Lagrange equations, namely, 

This type of derivative was introduced by Berwald. It is obtained as the coefficient of 
ll = dx{/ds in the derivative of cf> with respect to the arc-length of the extremal through the 
line-element (x, x). 
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On the assumption t ha t the tensor Kmn
jk of equation (2.24) exists, we m a y 

obtain a third choice for X*jk, namely, the result of solving (2.23') for X0rs 

and subst i tu t ing in (2.23). (Note t ha t here 

0.4) FW, + r#, - ya., = ±(fg* + gf - ff) « [#], 
the Christoffel symbol of the first kind.) Following Moor (7, p. 92,) we denote 
this quan t i ty by T*jk. I t has the required transformation law, as m a y be 
seen by a somewhat lengthy calculation based on the transformation law of 
the Christoffel symbols. I t is noteworthy tha t not all solutions of (1.27) (a) 
do possess the proper transformation properties, a fact which is exemplified 
by the solution [ijk] — li[0jk] + lj[0ik]. 

For a general discussion it is most convenient to choose X*jk = gjhYih
k 

since the Car tan parameters have well-known properties and are capable 
of explicit expression in terms of the gtj by means of (1.1), (1.2), and (3.3). 
Condition (c) of § 1 shows t ha t yij (the inverse tensor of y z ;) is well defined. 
We have adopted this assumption in preference to the existence of Khk

ij in 
view of its importance for the associated Finsler space. 

Having chosen X*jk1 we see from (2.4) t ha t Zijtk represents one-half of 
the covariant derivative of gtj with respect to the connection parameters 
X*i3

k. For example, if X * / * = r / ^ , we have 

2Zij,k = ~T~k "TT7 \gij)TskX — grj^ik ~~ gir^jk — gij[k, 

the Car tan covariant derivative of gtj (12, p. 70). Also we note t ha t if 
X*i3

k = r * î \ , then Zijjk vanishes identically. 
The discussion following Lemma 1 of § 2 indicates t ha t a suitable choice 

for Bfj will be given by (2.16) with % = F. In view of these remarks and the 
ident i ty 

(3.5) l[, = 0,* 

we see t h a t equation (2.21) can be wri t ten 

(3.6) Lijk = gjfiTik + \2gijik -~ AijtTTk) — hi^ljik — (gjr + Aoj,r)T k] 

+^•[2^1* — (gtr + A0itr)Tr
k] + (BirBjs — BjrBis)Sk . 

This is the most general connection parameter for which the Ricci lemma (1.27) (a) 
holds. I t follows from (2.14) and (3.5) t h a t 

(3.6') LoJ
k = T3

0k + Tr
k(5r

j- lJAoo,7). 

Part icular cases are immediately obtainable by specializing the (arbitrary) 
tensors Tk

r and Sk
rs. The simplest example is 

(3 .7) Lijk = gjh^ik ~T 2\êij[k ~~ hhik "T ljli[k)i 

*See, for example, (12, p. 74, equation (2.12)). Compare also with (1.29) in the present 
work. 
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where both Tk and Sk
rs have been taken to be zero. Although this expression 

differs from Tijk in t h a t it is not, in general, symmetr ic in i and k, it does 
have the proper ty t h a t L^k = IY*. T h u s we expect t h a t a theory based on 
this connection would bear some resemblance to the theory of Finsler spaces. 

Another simple solution may be obtained when the matr ix {{ga + Aaitj)) 
is non-singular, for then there exists a tensor Jki satisfying 

(3.8) (gij + Aoij)^ = ôl* 

and hence, choosing Tk = ^Jrsls[kj Sk
rs = 0, we find t ha t equat ion (3.6) 

becomes 

(3.9) Lijk = gjhlik I 2\fLij[k ~~ Aij<rJ ls[ic). 

I t follows from (3.6') and (3.8) t h a t L0
j
k = T0

s
k + hJjrlr[k. This relation is 

slightly more complicated than the previous one bu t it is still manageable . 
If we assume the existence of Khk

ij then, as was previously remarked, 
when X*ijk is set equal to T*ijk, the Zihk vanish and equat ion (2.21) becomes 

(3.10) Lijk = Tijk — (Aijtk — liAojiT + ljAoijT — hgjr + ljgir)Tk + 

+ (BirBjs — BisBjr)S
r
k. 

Part icular solutions similar to those described above may again be found 
from this form for Lijk. 
T h e advan tage of solutions of the form exhibited in equat ion (3.6) over 
solutions in the form (3.10) lies in the fact t h a t the former are determinable 
explicitly from the gtj and its derivatives while the la t ter are obtained 
implicitly by the inversion of matrices. 

4. D e t e r m i n a t i o n of Mj\. In view of §3 it is only necessary to specify 
Mijk to complete the evaluat ion of the invar iant differential (1.12). This 
tensor mus t satisfy equat ions (1.16) and (1.27) (b) which we now proceed 
to solve. T h e lat ter equat ions may be solved by the theory developed in § 2 
if Xijk, Yijfk and Aijtk of (2.1) are interpreted as Mijk, Aij>kj and AiJtk re­
spectively. As in § 3 wre mus t now choose X*ijk. In this case, however, X*ijk 

is a tensor and so may be taken to be zero. W e then iind t h a t Zijtk} as given 
by (2.4), is Aijtk and hence, by (2.21), the most general solution of (1.27) (b) 
may be written 

(4.1) Mijk = (AijtT — liAojtr + ljAoitT)(ôZ — Tr
k) + liTjk — ljTik + aijk, 

where aijk is defined by (2.13) with the same value for Bir as in § 3. 
T h e tensors Tjk and Sk

rs may be chosen in an arb i t ra ry manner , the simplest 
choice being zero for bo th : 

(4.2) Mijk = AiJtk - liA0J,k + ljA0itk. 

*An equivalent tensor Jtf was introduced by Moor (7, §2, equation (2.15)), but for an 
entirely different purpose. In fact, this tensor occurs in Moor's solution for the connection 
parameters. 
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Other tensors may of course be used for X*ijk in (2.21) but in view of 
the relative simplicity of (4.1) we shall adopt the above choice in the sequel. 

We now consider the effect of superimposing conditions (1.16). Note that 
(1.27) (b) implies that AiJtk = M(ij)k + (M(ij)r + AijiSM0

sr)M0
r
k} the last 

term of which vanishes, by (1.16) (b). Inner multiplication with the tensor 
IH3 then yields 

(4.3) Aoo,ic = Mooic, 

and hence AoojMor
k = 0. Now the most general solution of (1.27) (b) has 

the form (4.1), where Ttj is arbitrary, while <rijk satisfies (2.13). Condition 
(1.16) (a) is therefore equivalent to 

(4.4) — (AijtT — liAojjT + ljAoijr)To + liTjo — ljTto + c^o = 0, 

by virtue of (1.23'). If we multiply this by l\ summing over i, and then 
repeat the process with lj, we obtain successively — /^4oo,r?V + TJO — ljT00 

= 0, — Aoo,rTor = 0, in view of (2.13). Substitution from the latter relation 
in the former then yields 

(4.5) Tj0 = IjToo, 

and hence, by (1.23'), equation (4.4) reduces to 

(4.6) aij0 = 0. 

Turning again to (4.1), we multiply by /* and sum, thus deriving 

(4.7) M0jk = IjAooAti - TT
k) + Tjk - ljT0k, 

again by (2.13). Consequently, we have M00k = A00,r(àk
r — Tk

r) = A0O,JC, by 
(4.3). It therefore follows that 

(4.8) Aoo.rTl = 0. 

Combining (4.7) and (4.8) we find M0jk = lj(A0ofk — T0k) + Tjk, to which 
we apply conditions (1.16) (b). In the light of (4.5) and (4.8), this leads to 

(4.9) ( r j - / T o . ) 71 = 0. 

The above results yield 

THEOREM 1. In order that a tensor Mijk satisfy conditions (1.27) (b) and 
(1.16), it is necessary and sufficient that Mijk be given by (4.1) where Ttj is a 
tensor satisfying (4.5), (4.8), and (4.9) while aijk is a tensor satisfying (2.13) 
and (4.6). 

Proof. We have just seen the necessity of these conditions. Their sufficiency 
follows by direct substitution. 

The problem of determining the connection parameters Mijk is therefore 
reduced to the problem of representing tensors Ttj and aijJc which satisfy 
the above conditions. This problem, as regards <rijk, is completely resolved by 
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L E M M A 1. The class of tensors aijk satisfying (2.13) and (4.6) is identical to 
the class of tensors of the form 

(BirBjs - BjrBis)V
rstBtk, 

where Vrst is arb i t ra ry and Btj is any tensor which fulfils the conditions of 
Lemma 1, § 2. 

Proof. I t is evident from the homogeneity properties of such B tj t h a t tensors 
of the above form satisfy equat ions (2.13) and (4.6). Conversely if a tensor 
dirt is given, subject to these conditions, there exists a corresponding tensor 
Vrst, namely ^BriBsjaijkB

k\ as m a y be verified using (2.19). 
Since the tensor aijk of Theorem 1 is determined by choosing Vrst arbi trar i ly, 

we need only find a tensor Tijy satisfying the conditions of Theorem 1, to 
complete the specification of Mijk. T h e non-linearity of equat ion (4.9) indi­
cates t h a t a simple representat ion of Tfj in terms of arb i t ra ry tensors would 
be qui te difficult to construct . Special solutions are, however, easily derived. 
T h e simplest of these is, of course, when Tij is taken to be zero. A second 
choice would be Tij = XiAooj, where Xt is any vector, other than lu or tho­
gonal to Aooj. 

I t is wor thy of note tha t , a l though ltVj (arbi t rary V3) is a suitable TiJ} 

it gives the same value to Mijk as the zero solution. Hence, in order to obtain 
distinct values for Mijk, we may assume (as in § 2) tha t equat ion (2.14) 
holds. In the light of this remark the conditions on Ttj become 

(4.10) 7\o = 0, Tjo = 0, Aoo.rÏÏ = 0, T)Ti = 0. 

In summary , then, the work of this and the preceding section allows us to 
express the most general metric invar iant differential in terms of explicitly 
defined quant i t ies . 

5. U n i q u e n e s s t h e o r e m s . The results of §§ 2, 3, and 4 lead to several 
theorems concerning the uniqueness of the connection parameters of a metric 
invar iant differential. 

T H E O R E M 1. There are \ri1(n — 1) unspecified scalar s in the most general 
metric connection Lijk of an n-dimensional space. This will be uniquely defined 
by the further condition of symmetry in i and j if and only if the tensor Khk

ij 

of equation (2.24) exists. 

Proof. These results are immediate consequences of equat ion (2.15) and 
Theorem 2, § 2 , as applied to condition (1.27) (a). 

Before proceeding further, let us note tha t , by (1.1) and (1.2), we have 

/ e i \ i .r d .T d 1 ,r.s d"grs 

(5.1) yti = gil + xwgtT + x wgjr + ^xx — ^ . 

Hence, using (1.3') and (1.23) we obtain 

(5.2) ytJ> = Ftt = l, + -J oo,,, 
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It is also readily deduced from (5.1) that a necessary and sufficient condition 
that the space be a Finsler space (gz;- = y{j) is 

(5.3) Aotj = 0.* 

THEOREM 2. The connection defined by equation (3.3) is the only metric con­
nection in a Finsler space which is symmetric in j and k. 

Proof. According to (5.3), the tensor Hhk
ij of § 2 reduces to <V<V + AnkH

j 

in a Finsler space. From (2.24), then, the tensor Kr,
hk exists and is given by 

(5.4) Kfs = ?>%- ATS!
llk. 

Using this form for Krs
hk to solve (2.23') and making the appropriate replace­

ments in the right-hand side of (2.23) (see (3.4)), we find, after some calcu­
lation, that the resultant quantity (with middle index raised) coincides with 
the right-hand side of (3.3). 

Uniqueness theorems for M ijk present a great deal more difficulty than 
the corresponding theorems for Lijk since the auxiliary conditions (1.16) must 
be taken into account. It is clear, for example, that a symmetry condition 
together with (1.27) (b) may completely determine an Mijk for which (1.16) 
is not fulfilled. It is possible, however, to obtain several special results before 
considering the above problem in full detail. 

One such result is embodied in 

THEOREM 3. In a Finsler space, the only solution Mijk of equations (1.16) 
and (1.27) (b), which is either (a) symmetric in i and k or (b) symmetric in 
j and k, is A ijtlc. 

Proof. In a Finsler space the tensor Khk
ij exists and is given by (5.4). Hence, 

when assumption (a) is applied it follows from Theorem 2 of § 2 that there 
is an unique solution Mijk. The identity (5.3) shows that Aijik is this solution. 

To prove the second part, we consider the explicit form of Mijk in a Finsler 
space, which, by (4.1) and (5.3) is 

(5.5) MijJc = Aijtr(J>l - Tr
k) + ltTjk — ljTik + aijk. 

Condition (b) then yields 

(5.6) Aijjl k -\~ til jjc tjl ik + (Tijk = —Aiktrl j + li± kj — ijcl ij A" Gijk' 

Multiplying this by ll and summing over i, we deduce that Tjk = Tkj, by 
virtue of (5.3), (4.10), and (2.13). After substituting this in (5.6) we multiply 
by V and sum, thus obtaining — Tik = <Tik0 = 0, by (4.6). We substitute 
again in (5.6) and find that <rijk is symmetric in j and k. But this result together 
with (2.13) implies that crijk vanishes. Finally, then, (5.5) reduces to Mijk = A ijjk 

which completes the proof. 
We return now to the question of the uniqueness of Mijk as specified by 

the original conditions (1.16) and (1.27) (b) (or, equivalently, by (4.1) sub­
ject to (2.13), (4.6), and (4.10)). If we expand crijk in terms of its components 

*For a complete proof of this see 7, §4. 
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with respect to the basis introduced in § 2 and apply (2.13) and (4.6) we 
find that it has the form CV(0)^(M)A; (/x = 2, . . . , n, 6 = n + 1, . . . , N = 
\n{n + 1) + 1). Thus the number of undetermined components of aijk is 

(5.7) N = \{n - 1)2(^ ~ 2). 

The corresponding number for Ttj may be found with the help of 

LEMMA 1. If A is an m X m matrix whose square is the zero matrix and 
whose rank is p, then 

(i) p < \m, 
and 

(ii) A is determined by 2p(m — p) of its entries. 

Proof. Part (i) follows from a theorem of matrix algebra (1, p. 87) to the 
effect that a nilpotent m X m matrix of index 2, rank p is similar to 

I to, i„ o, A\ 
I I 0P, Op, Op,qj\ q = m - 2p, 

where Iv is the ^-dimensional unit matrix and the other entries are all zero. 
Turning to (ii) we remark that, since A has rank p, (1, p. 49) there exist 

non-singular m X m matrices P and Q such that 

*** - (Co: o)) - *-
It follows that any matrix A of rank p may be obtained from Ep by choosing 
P and Q to be non-singular and forming PEPQ. No loss in generality results 
from the assumption that the first p rows and columns of A form a non-
singular matrix. Accordingly, if we let P and Q be given by 

where Pn and Qn are p X p matrices, we find that the general matrix of 
rank p can be represented in the form 

A . PE.Q . ((J" J g,,. P., X 0.,)) . 

Hence the matrix A is determined by the three matrices a, /3, and y where 
a = Pn X Qn, /3 = Pu X Qi2, 7 = ^21 X Qn, since the lower right-hand block 
in A is given by P2i X Q12 = yQ\rlPi\~lP = 7« - 1^, that is, 

™ -' - ((: u)) 
*This follows by the process of block multiplication for matrices, also explained in (1). 

I am indebted to E. Liberman for suggesting this approach to me. 
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where a, /3, and 7 are arbi t rary apa r t from the condition t ha t a be non-singu­
lar. I t then follows t ha t 

A2 =(( ^ + ^7) ' tf t /37)a~1/3
1 ^ 

\ \ 7 a ^ a 2 + $7) , 70: 1(a2 + 07)0; ^ 7 / ' 

T h u s A2 = 0 if and only if a2 + £7 = 0. This relation provides p equat ions 
for the p(m — p) entries of 7. Accordingly any matrix A satisfying the con­
ditions of the lemma is completely specified by a, 13 and the remaining entries 
of 7, t h a t is, by 2p(m — p) of its entries. This proves the lemma. 

Returning to the tensor T{j occurring in (4.1) ,we expand in terms of the 
basis of § 2: Ttj = hj^il^j. In view of the first two par ts of (4.10) all the 
scalars t^ whose indices involve a 1 vanish. The last par t of (4.10) implies 
A2 = 0, where A is the matr ix of the remaining t\p. Assuming t ha t the rank 
of A is p, we apply the above lemma with m = n — 1. Consequently the 
rank p may not exceed \{n — 1) and the number of components t^ (X, n — 2, 
. . . , n) necessary to specify A is 2p (n — 1 — p). The third par t of (4.10) 
provides 0 or p further conditions on the tx^ depending on whether or not 
the vector Aoo,i vanishes identically. 

Combining these results with (5.7) we see t h a t the total number of a rb i t ra ry 
components of Mijk is 

(5.9) N1(p) = i ( » - l)2(n - 2) + 2p{n - 1 - p) - p (2p < n - 1), 

if Aoo,i is non-zero, and 

(5.9r) ^2(p) = \{n - iy(n » 2) + 2p(n - 1 - p) (2p < n - 1), 

if Aooti vanishes. In either case p is the rank of the matrix A defined above 
and hence satisfies 0 < p < \{n — 1). 

I t is easily seen t h a t both Ni and iY2 are increasing functions for this 
range of p. T h u s we have 

T H E O R E M 4. The most general Mijk is obtained when the rank of ((Tij)) 
assumes its greatest value, namely, \{n — 2) when n is even, and \{n — 1), 
when n is odd. In both these cases 

(5.10) 

On the other hand, 

(5.10') (7V2)n 

From this result it is clear t h a t the solution is unique only if n = 2. In fact 
the unique solution is given by (4.2). In general, (5.9) and (5.9') show t h a t 
the order of magni tude of iVi and N2 is \nz. For (iYi)max we find the values 
3, 12, and 30 when n is 3, 4, and 5, respectively, while the corresponding 
numbers for (iV2)max are 4, 13, and 32. 

(tfi)max = \<n - 1)(» - 2). 

(k - l ) ( 4 r - 2fe + 1) (n = 2k) 
W {n = 2k + 1) 
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6. Autoparallels and extremals. Consider the set of line-elements (x, x) 
denned by a curve C\xl = xl(s) and a vector field xl(s) given along it. The 
parameter 5 of C is the arc-length of C with respect to these line-elements. 
Thus ds2 = gijix, x)dxidxj and dxl/ds = xfi is the unit tangent to C, while 
ll{x, x) is defined by (1.5). 

DEFINITION. A vector £* is said to be transported by parallel displacement 
with respect to xl along C if it satisfies 

(6.1) ^ = D£* = f* + £>| = o, 

where Dlk is given by putting X1 = I' in (1.12) and solving with the aid of 
(1.16) (b): 

(6.1') Dl* = [ô*r + M0*r(xf x ) P f (x, *) + L0
r
s(x, s)ds ' ] . 

Since (6.1) is a system of first-order linear differential equations for £\ it 
is clear that parallel displacement yield a bi-unique map between tangent 
spaces at points of C. 

Curves whose tangent vectors are transported by parallelism with respect 
to themselves are called autoparallels. Their equations therefore follow from 
(6.1), (6.10 by identifying the three vector fields £\ x\ and xn. Thus, 
denoting the unit vector xfi by / \ and using (1.16) (b), we have DJ,1 = 
(Z'r + LooO (5r* + Mo*r) = 0 or, equivalents, 

(6.2) T + U\ = x"T + L/jix, x')xfixij = 0. 

It is of interest to compare the autoparallels, thus defined, with the geo­
desies of the space. These curves give extreme values to the integral 
JF(x, dx) = jds = f[gij(x, dx/dt)dxidxj]^ and hence are denned by the Euler-
Lagrange equations: 

(6.3) i^-!? = 0-
It is possible to write these equations in a form suitable for comparison 
with (6.2). 

First we remark that the covariant derivatives (1.18) may be formally 
applied to tensors which do not belong to H0. For example, 

(6.4) **„ = 0, x1;, = FÔ), 

by (1.5) and (1.19). Hence, putting xi = Fl* and using (1.25) and (1.26), 
we obtain expressions for F\j and F;j: 

(6.5) (a) Fu = — j - FluUj = 0,(b) F.-, = FUr(ô
Tj - M/j) = Fl}. 

Also it follows from (5.2) that 

~r (Fa) — M^JFXTDSV — LijFiT—r-(6.6) D,(Fn) = -r (Fit) - M^F^D}* - J ^ W ^ r = Dslt + DsA00,t. 
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In the identities (6.5) (a), (6.6) we replace xl by the unit vector xfi (hence­
forth wri t ten as V) and subst i tu te in (6.3), using the fact t h a t Dgtj = 0: 

(6.7) {gij + FzrMSjW + DsA0o,i + Fir(Lt
ro - Ux) = 0. 

Comparison of this equation for the geodesies with equation (6.3) for the 
autoparallels yields 

T H E O R E M 1. (a) If Ca is an autoparallel along which the conditions 

(6.8) DsAoo,t + Fir(Liro - L0
r
t) = 0 

are satisfied, then Ca is also a geodesic. 
(b) If Ce is a geodesic along which the conditions (6.8) and \gtj + F-xTMi d\ p^O 

are satisfied, then Ce is also an autoparallel. A theorem of Moor {incorrectly 
stated) follows from this result when Lijk = T*iJk (7, p. 101). 

T H E O R E M 2. The class of autoparallels defined by a metric invariant differ­
ential coincides with the class of geodesies defined by a metric function Fix, x) 
if and only if the tensor Ttj occurring in (3.6) satisfies 

(6.9) Ti0 = 0. 

Proof. Equat ions (6.3) are equivalent to (3.2) which in tu rn are equivalent 
to x'n + Yù\[x,x,)x'ix,li = 0 (12, equation (3.1.26)). T h u s (6.3) coincides 
with (6.2), for all (x,xf), if and only if r z

0 0 = L\Q. Calculating Z/ 0 0 from 
(3.6') we find t h a t this condition reads T'oiar1 — /*-4oo,r) = 0 or, on inner 
multiplication with bj + ljAoo,i, Tj

0 = 0, which is the s tated result. 

T H E O R E M 3. Conditions (6.8) and (6.9) are equivalent along an autoparallel. 

Proof. T h a t (6.8) implies (6.9) follows from Theorem 1 and the analysis 
of Theorem 2. T h e following identities are used to prove the converse. 

(6.10) Fxj\i = F-xrLk
7'i\\jl , 

(6.11) Fxr(LoTt - IV , ) = 0, 

(6.12) l\u = S]- I'Fv, 

(6.13) Ti j\\kl I = rooiifc — 2To;fc + 2FikToo = 0. 

T h e first of these is obtained by differentiating (6.5) with respect to xl and 
rearranging terms. T h e second follows from (3.6 r), (5.2), and (2.14). T h e 
third is a simple consequence of (1.5) and the last is a well-known ident i ty of 
Finsler geometry (12, p. 63). 

Now, along an autoparallel , we have DAooj = Ao0j\idxi + Aw^^Dl1 = 
Aooj\idxi by (6.2). In view of (5.2) and (1.29), AQOJH is the left side of 
(6.10) and hence, using (6.12) repeatedly, we find DsA0oj = Fir[Loro\\j — L0

rj 
— L/o + 2FijLoro]. Bu t (6.9) implies t h a t L0

ro = IVo- Subst i tut ion from 
(6.13) and (6.11) then leads to (6.8) as required. 
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Theorem 2 shows t h a t the connection parameter Lijk of (3.6) can always 
be chosen so t h a t geodesies are identical with autoparallels . For some pur­
poses it may not be desirable to do so. For example, the geometry of pa ths 
is concerned with curves which may not be expressible as the extremals of a 
function F(x, x). I t is possible, however, for them to occur as the autoparal lels 
of a connection Lijk of the form (3.6). 

7. C o m m u t a t i o n f o r m u l a e . In this section we consider the effect of 
commut ing the various tensorial derivat ives introduced in § 1. Th is leads to 
the curva ture tensors which relate to the integrabil i ty of various displace­
ments of the element of support and which are basic to such studies as "geo­
desic devia t ion." 

For convenience we introduce two preliminary differentiation processes 
defined for all functions of (x, x) : 

(7.1) (a) (j){i) = — î - 4>\\rLji (b) ct>[i] = </>nr(<5* - M0
r<). 

For tensorial </>, these are the par t s of the covariant derivat ives (1.18) which 
do not involve summat ion over the indices of <£. Two useful identit ies are 

(7.2) (a) 0 , n = « I r ](ôï + -M70, (b) 0 [o ] = <t>[r]l
r = 0 ( « 6 Ho). 

T h e first of these follows from (7.1) (b) and (1.16) (b) while the second 
follows from the first by (1.16) (a). I t is also notewor thy t h a t 4>[t] = 4>\M 
when n = 2, (<£ £ Ho) since Mijk is then given uniquely by (4.2). 

T h e commuta t ion formulae for the derivat ives (1.19) and (7.1), are found 
by straightforward calculations using the identities (1.25), (1.26), (4.3), (5.2), 
(6.5), and (6.12): 

(7.3) (a) (4>ii7i)(A;) — (4>(k))\\h = — <l>\\r[LQhk ~ Ln\] 

(b) (4>\\h)lk\ — (<£[*:]) lift = ~ 0 | | r [ ^OM ~ Mhk + Fih8k ~ lkÔh] 

( c ) (<t>(h))(k) — (4>(Jc))(h) = — (j>\\rRohk 

(d) (<l>(h))[k] — (</>M)U) = — </>||rlPo hk + Lh k(ôs — Mo s)] 

(e) (*[«)[*] - (*[«)[« = " <J>\\rlSor
hk ~ (Mh

r
k - M / , ) + ( / A - - / X ) ] -

T h e barred quant i t ies here (which are easily seen to be tensors) are defined 
by 

(7.4) (a) Lihk= —Lik\\h 

(b) M/m= -Mt\\\h 

(c) Rt hk = Li h(k) — Lt k(h) + Lt hLs k — Li kLs h 

( d ) Pi hk — Li h[k] ~~ Mi k\h 

(e) S/h, = Mi\m - Mir
k[h] + Mi\Ms\ - Mi\Ms

r
k. 

From (7.3) it is a relatively simple ma t t e r to deduce the corresponding formulae 
for the tensorial derivatives (1.18) and (1.19) of a con t ravar ian t vector X\ 
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(7.5) (a) (Xl\\h)\k— (Xl\k)\\h= — Xl\\rLo hk + XrLr\k 

(b) (*',,*);* ~ (X\.k)llh = - X]lr(M0
r
hk + F,nbr

k - IX) + XrMr\k 

(c) (X \h)\k — (X \k)\h = — X\\rRo hk — 2X)rQhr
k + XTRr\k 

(d) {X\h);k - (X\.k)lh = - X'urP^ - X\rMh\+XTPr\k 

(e) (X\.h);k — (X\.k);h = — Xt\\r[So\k — 2\ph\ + lifil — IX] ~ 
2Xl ;T\ph

r
k + XrS rhk-

In these relations we have introduced, for brevity, the torsion tensors 

(7.6) £2A = h(LA ~ V<); *i\ = i(MA - Mk\). 
It is convenient to have the right sides of (7.5) expressed entirely in terms 
of the covariant derivatives (1.18). To this end we note that Xl\\T = {X^1 

- XkMk
i
a)(àrt + Mo\) by (1.18) (b), (7.1) (b), and (7.2) (a). Thus (7.5) 

becomes 

(7.7) (a) (X \\n)\k — (X*\k)\\h = — Xl
;rLo hk + XrLr\k 

(b) (X*,„)..* - (X\.k)llh= - X\r(M,\k + F,nbT
k - IA) + XrMr\k 

(c) (Xl\h)\k — (Xl\k)\h = — 2Xl\rUhk — X\.rRor
hk + XrRr\k 

(d) {X \}l);k — (X ;k) \h = — X \rMh k — X ;rPo hk + X PT hk 

(e) (X\-h);k — (Xl;k);h = — X ;r(S() hk 4~ l}fik ~ Wft ) ~)r X? S^hk, 

where 

(7.8) (a) Lr\k = Lr
i
hk + Mr

iM + MQ
s
t)Lothk 

(b) Mr\k = Mr\k + Mr'sfâ + M,\)(M,\k + FiHdl - IX) 

(C) Rr\k = Rr\k + Mr\{bS
t + Mo* t)Ro\k 

(d) Pr\k = Pr\k + MT\(b\ + MoS
t)Polhk 

(e) SAk = Sr\k + Mr\{bs
t + M0%)(5O'A* + Iffil - IX - 2^ '* ) . 

Identities similar to (7.7) are valid for arbitrary tensors. For example, 
{Xl

m)\k - (X^i^nh = - X^^Lo'hk + X/L/hk - X\LjThk. The quantities 
defined by (7.8) are called the curvature tensors. The barred curvature 
tensors (7.4) are uniquely determined by the unbarred ones. For example, 
inner multiplication of (7.8) (c) with V yields R*\k = So^ô** + MoS), 
which, when substituted back into (7.8) (c), leads to 

(7.9) RAk = RAk ~ Mr\R,shk. 

The last three tensors of (7.8) may be shown to be identical to those derived 
by Moor (7, § 7) in a different manner. 

The curvature tensors satisfy several identities. Clearly 

(7.10) (a) Rijm = 0, (b) Rij(M) = 0, (c) Sij(hk) = 0, (d) Sij(hk) = 0. 

Also, applying the commutation formulae to gtj, it follows that 

(7.11) (a) L(ij)hk = - AijMk (b) M(ij)hk = - AiJth;k 

(c) R(ij)hk = 0 (d) P(ij)hk = 0 (e) S(ij)hk = 0. 
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In view of (1.25), (7.2) (b), and (1.16) (a), the definitions (9.4) yield 

(7.12) (a) L/o* = 0 (b) Mt'0k = 0 (c) Pt'M = 0. 

Also, since lk
[h] = Ve

;h — Mok
h, we have, by (1.26), 

(7.12') (d) S/no = - M , W * = + Mir
kl

k
w = MïM - ¥ o ^ . 

The corresponding equations for the unbarred tensors are 

(7.13) (a) L/o* = 0, (b) M/OJC^ M/M + Mo8*) (c) iV f t0 = 0 

(d) 5Ao = 0. 

Another set of identities is obtained by straightforward calculation from the 
definitions: 

(7.14) (a) [R/kh - 20/*,* + 4û/*ûA] + (eye.),*» = 0, 

(b) [S/kh - 2*;k:h + 4* /* t f « + (eye.),*» = 0, 

where (eye.),*» denotes the sum of the two terms derived from the quoted 
one by cyclic permutation of j , k, and h. Similar formulae for the unbarred 
tensors follow from these by means of relations typified by (7.9). 

Finally we mention the Bianchi identities: 

(7.15) (a) [Rt
r
Jk{h + 2Rt

T
jstfkh - L/^R^] + (eye.),,, = 0 

(b) [SiT
jk:h + 2SiT

js\f/
s
kh — Mir

Sj(So\h + lkd
s
h — lhdk — 2\f/kh)] + 

(cyC')jkh = 0 

(c) [R/jk\h + 2Rir
jstt

s
kh + PirjsRos

kh] + (cyc.)^A = 0 
(d) [Si jk)-h ~ 2oj ftlh -f- Si jSSo hk\ + (cyc.)^a = 0. 

These formulae may all be established by an adaptation of the method given 
in (12, pp. 109-111). We shall outline this approach in the derivation of 
(7.15) (d). 

The commutation formula (7.7) (e) for a covariant vector Xt reads 
Xi;j;k - Xi;k;J = - Xi;r(Sor

jk + hhr - W / ) - XrSir
jk. If we apply the 

operation " ;," to this, permute the indices j , k, h and add, the left side be­
comes (Xi;j;k;h — Xi;j;h;k) + (cyc.)jkh. To this, the commutation formula 
for the tensor Xi;j may be applied. We combine the result with the right 
side to obtain an equation involving linearly the terms Xr, Xi;r, and Xi;r;j 

— Xi;j;r etc. The latter forms may be simplified again by the commutation 
formula for Xt. In the resulting relation the left side of (7.15) (d), which we 
denote by Sir

jkh, appears as the coefficient of Xr, while the coefficient of 
Xi;r is, by (1.26), (1.27) (b), 

[— (So sj + W, — lfis) {So kh + / A — lhÔk) + So jk;h — Sj kh + (gjn — ljln)ôk
7 — 

-(gkh - V»)5j] + (eye.),*». 

After some simplification, based on the identities (7.10) (d) and (7.11) (e), 
this coefficient assumes the form Sor

jkh and hence the resulting equation reads 
Xî;rSor

jkh + XrSir
jkh = 0. Since X{ is an arbitrary vector, Sir

jkh vanishes and 
(7.15) (d) is proved. The other formulae of (7.15) follow from the process 
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described above applied to the commutation relations (7.7) (c), (7.5) (a), 
and (7.5) (d). 

In a Finsler space it is customary to assume that the connection parameters 
are symmetric and hence, by Theorems 2 and 3 of § 5, we have Lt

j
k = Yt

j
k 

and Mijk = Aijtk. Since we also have gtj = ytj in this case, Aijtk is com­
pletely symmetric and satisfies (5.3). The derivative "[*]" then reduces to 
"lli." In view of these remarks, the results of this section imply corresponding 
ones for Finsler geometry. For example, (7.15) (a) and (c) reduce to the 
Bianchi identities of (12, pp. 110-111). The Finslerian forms of (7.15) (b) 
and (d) are of some interest since they have not appeared in the literature. 
They are 

(7.16) (a) [St
r
jkUn + A/JUM - U ) ] + (eye.);*» = 0 

(b) [Sir
jk]\h - 2SiT

jklh] + (cyc.)#A = 0, 

where St
r
hk = - (At\hAs

r
tk - J 4 , V 4 / . » ) . Bt

r
hk = St

r
hk + AtrJk - At

r
>klh. 

8. Applications of the curvature tensors. A large number of structural 
theorems follow from the work of § 7. Some of these will be proved in this 
section. 

THEOREM 1. If Mijk is independent of x\ the space is Riemannian. 

Proof. By hypothesis Mt
T

hk = 0. It then follows from (7.8) (b), (1.16) (b), 
and (7.11) (b) that — Aijfh;k = AiJir(F-xhbk

r — lk5h
r). Inner multiplication with 

lk leads to — Aijth = 0, in view of (1.21), and since this is equivalent to 
gij = gij(xk), the theorem is proved. 

A second result follows immediately from (7.4) (a), (7.8) (a), and (7.11) (a): 

THEOREM 2. If Lx\ is independent of the x\ then Aijtk\h vanishes. 

THEOREM 3. T*^ is independent of the x1 if and only if Aijtk\h vanishes. 

Proof. The existence of r*/* implies the existence of Khk
ij (cf. § 3 and 

Theorem 2 of § 2). Also T*iJk is a member of the family (3.6) and hence may 
replace Lijk in the formulae of § 7. The necessity of Aijtk\h = 0 then follows 
from Theorem 2. To prove the sufficiency we note that L ( ^ ) M = — Aijth\k 

by (7.8) (a), (7.11) (a) and (1.27) (b). Denoting LiJhk, when 
LiJk = T*ijk, by L*ijhk we solve the above relations together with 

L* ijhk — ±J kjhi-

(8.1) h ijhk — ~~ \Aijyh\k ~T Ajk,h\i — Aik>h\j) — AiJiTLohk — AjkjTLohi + 
ik,rL()Thj-

On inner multiplication by l\ it follows that 

(8.2) LorhsHjk = — (Aoj,h\k + Ajk)h]o — Aokth\j). 

Since Khk
ij exists, we can find L*orhs from (8.2) (cf. (2.24)) and, substituting 

in (8.1), we will have L*ijhk expressed as a linear combination of the AiJtk\h. 
The second part of the theorem follows at once. The special case of this 
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expression for L*ijhk when the space is Finslerian is well known (12, p. 81 , 
equat ion (3.13)). 

A vector field £*(x), defined throughout a region, whose elements are 
obtained from each other by parallel displacement with respect to themselves 
(see § 6) mus t satisfy the system of part ial differential equat ions £1'^ = 0, 
(L/n — L/k (x, £)) whose integrabili ty conditions are easily seen to be 
Z'RSjkix, £) = 0- Similarly, the integrabili ty conditions for n linearly inde­
pendent vector fields TJ^)1 (n = 1, . . . , n), parallel with respect to £ \ are 
Vi^R^jkix, £) = 0, t h a t is, Rr

i
jk(x, £) = 0. But if this condition is satisfied, 

there exists a co-ordinate system (dependent on £*) in which T*^ vanishes 
(see (12, pp. 135-136)). In order t h a t this special co-ordinate system be 
independent of £* it is sufficient t h a t r * / & be independent of direction. These 
remarks lead to 

T H E O R E M 4. If r* / f c exists, and if both R^jk and Aijth\k vanish identically, 

the space is Minkowskian, that is, gtj = g^ (xk). 

Proof. T h e proof, based on Theorem 3, is formally identical to t h a t given 
in (12, p. 136). 

T h e general theory of curve deviat ion is another example of the applic­
ability of the work of § 7. W e begin by considering a subspace L2 defined 
by xl = xl(u, v), rank ((dxi/du, dx1/dv)) = 2, (i = 1, 2, . . . , n).* T h e tan­
gent vectors to the parameter curves of L 2 satisfy 

(8.3) (a) £* = — =.xi, t]% = — = xl; (b) £ = yl 

Having chosen a vector field xl = xl(x) on L 2 we introduce the derivat ives 

(8.4) (a) VUX< = X'tf* (b) V„X' = X',„„», 

defined for all vectors X1 a t tached to the line-element (x, x). For example, 
we have Vc£* = £ \ + Lr

i
h{x, x ) £ V and a similar equat ion for V„?7?:. Com­

bining these and using (8.3) (b) and (7.6), we find 

(8.5) V»r- W = 2ttUx,x)tvk. 

I t is also easily seen from (7.5) (c) and (8.5) t h a t 

(8.6) vLr - V l r = (ÏU - £U)*V + ZU&v? - VuV
h) = RT\k(x, * )€ 'ÉV. 

Now let c, e (small) be constants and consider the neighbouring curves 

C\v — c and C':v = c + e. A natura l correspondence between points A of 
C and B of C is given by A(u, c) <-> B(u, c + e). We adopt , however, a 
general correspondence A(u, c) <-*B(u'y c + e), where u' — u + f(u), f(u) 
being of the same order as e. If zi{x) represents the displacement vector from 
A(xi) = A(u, c) to B(x* + dxl) C B(u', c + e) we therefore have 

(8.7) z*(x) = dxl = £*du + v'dv = f(u)^ + ey\ 

*The method of approach here is essentially that of Rund. See (12. pp. 111-118). 
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neglecting quantitites of the order e2. The differential equation satisfied by 
zl is known as the deviation equation. To find it, we apply the operator Vw 

to (8.7), noting (8.5) and the skew-symmetry of SV*: VMs* = VM(/f') -
2£Vfc£V + eV„£\ Thence, a second differentiation, together with (8.6) and 
(7.10) (b), yields 

(8.8) vy + 2®ik?vy + [ÂA*É'É* + 2vtt(n^)]2* = evW + vKfï), 
or, since eVvuT = W)lh(z

h - / £ * ) , 

(8.9) V^' + 2 0 ^ V + [ f i / ^ V + 2V M (0^) - ( V ^ ) i*]** = A ' + 
+ 2fVMf'. 

77m- second-order differential equation involving arbitrary f(u) and x{ is the 
most general deviation equation for the family of curves v = constant. 

If we assume that u represents arc-length 5 and that the members of the 
family v = constant have tangent vectors which satisfy Vs£* = 0, we have, 
by (7.1) (a), 

0 = (V,*'), = [-£n ( V ^ ) + F - \ x , x ) ( V , r ) M r | | i ] ^ = ( V , * W + 

F~\vs^)llrVvx
r. 

For such curves v = constant we also have Vvs
2£* = [(Vs£ *')(/*) + (v^O^AlV* 

= ( V s r W and (V,fOiir = ~ Lh\k£
he, by (7.4) (a). Finally, if we assume 

that the fields xl and £* coincide, then x1 is a unit vector and the curves 
v = constant become autoparallels (cf. (6.2)). When the line elements are 
(x, £), with Vs£* = 0, we may replace the symbol Vs by Ds. In view of the 
above remarks, the right-hand side of (8.8) becomes e(Ds£*)(h)r)h +ff(s)£i 

= tLSnix, Ô£*Ç*Vrr +/"£< = Wr^e[Ds{zr -f¥) + 2%\?z*] + /"£ ' , 
where (8.5) and (8.7) have been used. Thus the equation of autoparallel deviation is 

(8.10) DW + (214 - Lo\k)Dsz
k + (fio'o* + 2D$o\ ~ 2U\r%\)zk = /"(*){' , 

in which we have put Q/*£^ = $V* etc. This special case of (8.9) has been 
given in (8, equation (3.7)). 

The following lemma will be useful in the sequel. 

LEMMA. Let L2 be defined by xl = xf(s, v), where s is the arc-length of the 
curves v = constant. Then ,with xl = £\ rj\ and Vs defined as above, 

(8.11) (a) Fi\x, ?)V sr = 0 (b) FiWrf + 2120V) = 0. 

Proof. Since ds2 = F(x, dx), we have F(x, £) = 1 and hence 

0 = dF = Fxi(^ds + fy) + F^i^lds + Sl<h>). 

Substituting for Fxi from (6.5) and using the definitions of Vs and 0 /^ (cf. 
(7.6)) we obtain the parts of (8.11) as coefficients of the arbitrary du, dv. 

It follows from this lemma, (8.7), and the fact that F G Hi that 

(8.12) Fii(Dsz
i + 2ttikz

k) =f'(s) 
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is & first integral of the equation of autoparallel deviation (8.10). It is some­
times convenient to assume that the variation vector zl is normal, that is, 
gij(%, £)¥zù = 0. If this condition is imposed on z\ then (8.12) must be con­
sidered as a definition of f(s). 

Equation (8.9) may also be used to obtain the equations of geodesic devia­
tion. This is, however, essentially a problem of Finsler space (cf. § 6) and 
the results of (13) give a simpler description. 

The Bianchi identities of § 9 may be used to obtain results analogous to 
the Schur Theorem of Riemannian geometry. However the close relationship 
between isotropic spaces and spaces for which the Schur theorems hold, which 
extends to Finsler geometry, seems to break down here. 

We hope to consider the extensions of these and related problems at a 
later date. For the present we remark that the preceding work provides a 
generalization of the requisite analytical tools. 

To conclude, I wish to express my deep gratitude to Professor H. Rund, 
who supervised this thesis work and to whom I am indebted for many con­
structive suggestions and criticisms. 
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