A GENERALIZATION OF FINSLER GEOMETRY
J. R. VANSTONE

Modern differential geometry may be said to date from Riemann’s famous
lecture of 1854 (9), in which a distance function of the form F(x? dx?) =
(y1;(x)dx'dx?)* was proposed. The applications of the consequent geometry
were many and varied. Examples are Synge’s geometrization of mechanics (15),
Riesz' approach to linear elliptic partial differential equations (10), and the
well-known general theory of relativity of Einstein.

Meanwhile the results of Caratheodory (4) in the calculus of variations led
Finsler in 1918 to introduce a generalization of the Riemannian metric function
(6). The geometry which arose was more fully developed by Berwald (2) and
Synge (14) about 1925 and later by Cartan (5), Busemann, and Rund. It was
then possible to extend the applications of Riemannian geometry. For example,
Rund successfully generalized the dynamical results of Synge (11). In certain
applications, such as quasi-linear elliptic partial differential equations, how-
ever, difficulties arise from the fact that a Finsler metric tensor v;;(x, £) must
satisfy

F:a

. . d . 0 .
537 Ya(x, %) = —pvix, &) = 59—07 Vi (x, %).

ax"
The following work is an attempt to avoid this restriction.

In §1 a suitable invariant differential, first suggested by Moér (7), is
investigated and the problem of determining its coefficients in terms of the
metric tensor is posed. This question is completely answered in §§ 2, 3, and
4, and in §5 relevant uniqueness theorems are established. The remaining
sections deal with the geometrical structure of the space as revealed by the
theories of autoparallels, curvature, and curve deviation.

1. Fundamental Concepts. Consider a space of line-elements (x?, x?)
(1 =1,2,...,n) endowed with a second-order symmetric tensor g;;(x*, &¥).
This tensor is assumed to be analytic in each of its 2n arguments (except
when all the %% vanish). We introduce the scalar function

(L.1) F(x', &%) = + (gu, (¥, #9545,

which in turn defines a second second-order symmetric tensor
e by o LI, &)

(1.2) v (x”, &) = 2 oxtow
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The class of functions of (x% £%) which are positively homogeneous of degree
p in x* will be denoted by H,.

The following conditions are imposed.

(@) The gy;(x, %) € Hy:

(1.3) gis(x, kx) = kgi;(x, %) (k> 0).

In view of Euler’s theorem on homogeneous functions it follows that
, 98 & _

Furthermore, relations (1.3) and (1.1) imply that F(x, %) € Hi.
(b) The quadratic form g;;(x, %)X *X? is positive definite for all line-
elements (x% #%). From this we readily deduce that the determinant

(1.4) g = |gi(x, )] # 0.

(c) The quadratic form v;(x, %) X*X? is likewise positive definite. Conse-
quently
(1.4 v = |vux, %) # 0.

If gij(x, ®) = v4(x, %), then (1.1) defines a Finsler metric function, and,
by (1.2)

981y _ 98w _ 98
ax® et axt

In the following work the strong condition that g.;(x, %) be a second partial
derivative 1s dropped and hence the geometry of a Finsler space occurs as a
particular case of the geometry defined by conditions (a), (b), and (c).

The expression g;;(x, )X *(x, x)X?(x, ) may be interpreted, by analogy
with Finsler geometry, as the square of the length of the vector X* defined
with respect to the line-element (x¢, £%). In particular, the unit vector !(x, %)
in the direction of the line-element is given by '

(1.5) i, %) = [F(x, )] %"

With the exception of F(x, %), the vectors, connections, and other tensorial
quantities which will arise will depend only on the ‘‘centre’ x*and the direction
of the line-element (x?% %%. Thus the magnitude of the vector %! does not
affect these quantities and accordingly they € H,.

There is no intrinsic method of comparing the directions of two vectors
attached to different points of a metric space. For such a comparison it is
convenient to introduce an “invariant differential.”” This is a linear operator
D, acting on vectors X*(x, £), which consists of terms resulting from

(a) a functional variation dX(x, &) of X?,

(b) a displacement of the centre x* of the line-element, and

(¢) a rotation of the line-element.
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Thus

(1.6) DXt = dX*' 4+ F'M i (x, %) X/di* + L5 (x, %) X dx?,

where M ;% and I-/,"k are functions defined with respect to the line-element.*
As indicated above we require that DX® be independent of the length

F(x, %) of % (and a fortiori of dF). Now, from (1.5), we have dx* = ['"dF} Fdl*
and it follows that

(1.7) Mﬂklk = Mjio =0
and that the functions M %, L,% € H,. The definition (1.6) then becomes
(1.8) DXt = dX' + M, Xdl* + L ;%X %dx".

In particular, we have
(1.9) DI' = dI*(5; + Mo") + Lo'dx”.

It is essential that we have an explicit expression for d/* in terms of vectorial
displacements DI?, dx®. The simplest assumption yielding this is (7, p. 89)

(1.10) Mo4M*, = 0,

for it will then follow from (1.9] that

(1.11) di* = (DV — Lydx"™) (6 — My')).
By substituting this value for dl* in (1.8) we obtain
(1.12) DXt =dXt'+ M;4X’'DI¥ + L, Xdx*,
where

(1.13) M5 = M6 — Mo,

S = L% — M, (57 — Mo ) Lo*s.

It is easily seen that these relations are uniquely solvable for the M % and
L% in terms of the M,% and L, (7, p. 90). Hence the problem of deter-
mining the invariant differential is reduced to the determination of the latter.
In order to ascertain the tensorial character of L;% and M ;% we first note
that DX must be a contravariant vector for arbitrary choices of X?¢ DI*
and dx®. In particular, if the DI* are taken to be zero, the right-hand side of
(1.12) is formally the same as in Riemannian geometry and we conclude that,
under a non-singular co-ordinate change
i 2 «a
(1.14) x' = '), Vi= g—Z;, e = 52% cete. (@=1,2,...,n),

the quantitities L;% transform according to the law

(1.15) L§, = ViL,\ ViV =V ViV,

*The present treatment of the invariant differential follows closely that of Moér (7, pp.
88-90).
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Quantities satisfying 1.15 are said to transform like connection parameters.
Although we shall also refer to the quantities M ;% as connection parameters
it is now clear that they transform as tensors.

It follows from the first set of equations (1.13) that conditions (1.7) and
(1.10) are equivalent respectively to

(1‘16) (a) M, = 0, (b) MoijMojk = 0.
If we now express dX* in terms of DI and dx*, equations (1.12) become

(1.17) DX' = X' dx" + X*,.DI¥,
where we have written

aXz T r i
- — X' Loy + X LY,

(1.18) (a) X' = o

(b) Xi;k = Xi||r(5;€ it Mork) ‘I" XTJ riky
and
(29
"’

The tensors (1.18) (a) and (b) are called ‘‘covariant derivatives.” If we
assume that the product rule holds, it is possible to extend the definition to
tensors of any order. A similar remark may be made for the invariant differ-
ential operator. In particular, the invariant differential of a scalar is its

ordinary differential. Also, applying the processes of covariant differentiation
to gy, we obtain

(1.19) XY,=F

(120) @) g = g — g1 Los = glds — gals
and
(1.20) (b) g = gu11:6r — Mo'y) — giiMix — g1 M s
An interesting property of the covariant derivative (1.18) (b) is
(1.21) Xiog=X40F =0,

whenever X € I1,. This is an immediate consequence of the relations (1.16).
In the sequel g;; and its inverse g%/, the unique solution of

(1.22) g = o

(which exists, by (1.4)), will be used to lower and raise tensor indices. If
T is any three-index symbol, we write 3 (7 ix + ) = Tipr ete. Also we
adopt the notation

(1.23) 38k = Aijr
Note, that by (1.3’) and (1.19) we have
(1.23) Ao = 0.

https://doi.org/10.4153/CJM-1962-008-7 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1962-008-7

A GENERALIZATION OF FINSLER GEOMETRY 91

The process of invariant differentiation is called metric if Dg,, vanishes
identically. This assumption represents the generalization of the Ricci lemma
of Riemannian geometry. It is equivalent to the assumption that the invariant
differential of the length of a vector vanishes whenever the invariant differential
of the vector itself does. In this case, several important identities follow.
Firstly, applying D to the relation g;;/%/ = 1, and, noting the symmetry of
gij, we obtain
(1.24) 2g,l'DlY = 21,Dl’ = 0.

Thus the displacements DI* are not independent. However, (1.24) is the only
relation connecting the DI’ since further ones would imply the interdependence
of the £, Combining equations (1.17) (with X7 = /%) and (1.24) we conclude
that, for arbitrary N,

Now for each fixed 7 we can choose A% so that the coefficient of one of the
DI¥ vanishes. Since the remaining DI* and the dx* are independent it foliows
that

(1.25) ' =0

and /% = 8" — N.. To find A" explicitly, we multiply these equations by
/¥ and sum over k, noting (1.21) and the fact that /? is a unit vector. This
yields /* = N* and hence

(1.26) I = 6¢ — 1.

A similar argument applied directly to the condition for a metric invariant
differential yields g5 = 0, g = Niyly, for some \;;. In view of (1.21) we
then find that the \;; must be zero. From (1.20) (a), (b), and (1.23) these
conditions may be expressed in the form

(1.27) (a) “—;;»; = AL’y — Lapr = 0 = gy,
(by 4 g — A ij,riMOTk — Mupr = 0 = gujire

The problem of determining a metric invariant differential therefore depends
on the solution of equations (1.16) (a), (b) and (1.27) (a), (b) for the L,
and the M, as functions of the g;; and their derivatives. Thus we are led
to the following questions: To what extent, if at all, do these conditions determine
L) and M;%?

Moér has produced implicit solutions in (7). His treatment of explicit
solutions and of uniqueness is, however, rather cursory. Certain conclusions
drawn about uniqueness seem to be invalidated by the interdependence of
the defining equations.

In the following four sections we shall attempt to clarify the position as
regards the uniqueness of the quantities L;% and M ;% as well as to determine
new explicit solutions.
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2. A basic equation. Both of the equations (1.27) (a), (b) have the form
(2-1) X(ij)k = Yij,k - A'lj,rXOrky

where the X, are the quantities to be determined and Y;;, 44, are given
quantities, symmetric in ¢ and j, the latter of which satisfies 45,0 = 0. We
further assume that the unknowns X,;; transform either as tensors or as
connection parameters (cf. (1.15)). In either case we choose a quantity X7,
with the same transformation law as X ;j. so that Xij;,, defined by

(2.2) Xip = thk + X
is a tensor. Substitution of (2.2) in (2.1) yields
(2-3) X(ij)k = Zij,k -4 ij,rX()ykv

where Z;;, is a tensor symmetric in 7 and j:
* *,
(2.4) Zijx= Y — Xape — 44X 0 1

If we now denote the part of X;; which is skew-symmetric in 7 and j by
&5, we have

(2-5) Eijk = %(Xijk - ink)
and it follows from (2.3) that
(2-6> Xijk = Zij,k — 4 ij,rXOTI: + gijk-

In order to deal with these equations, we shall find it convenient to intro-
duce a set of mutually orthogonal unit vectors spanning the contravariant
tangent space at a point P(x) of our n-dimensional space. Two vectors X7,
V? defined with respect to the line-element (x*, &¥) are called orthogonal
with respect to this line-element if

gi(x, )XYV = X,V = 0.
Thus if we denote the basis vectors by I(,,¢ (u = 1,2, ..., n), it follows that
(2.7) Liloyt = Buy.
Arbitrary tensors may be expressed as a linear combination of products of
these vectors. For example, we have (repeated indices denote summation)
(2.8) 8 = lwlwsn g5 = lwdws

by the definition of the Kronecker delta tensor §,%, and (2.7). In particular,
the tensor X”k may be written as X,-jk = Xawlovy i Loy, where xy,, are a
set of #n® scalars given by xn = X iiloy Liw ik

We will assume that the vector /i)* coincides with the vector defined by
(1.5.)

It is also useful to introduce a basis for second order skew-symmetric
covariant tensors. This basis has elements

(2.9) €0 i; = Lo — Loy, 0=23,...,3n(n—1)+1=N),
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where p, ¢ are related by 6 to the formula
0=np—1)+c—30+2)0p—1).
From this and the relations (2.7) we conclude that

l(o)j, (0‘—‘2,3,...,%)
00 G=n+1,...,N).

(2.10) ey iy’ = {

If T,; is any skew-symmetric tensor, its components ¢, satisfy f,n = 0
and hence it may be written f)e) 5 by (2.9).

Returning now to (2.6) we note that £, is skew-symmetric in ¢ and j, by
(2.5), and therefore there exist tensors a@qy;; such that & = aw il
Qg i; T awysi = 0. Accordingly &5, = b%e) 1wr, Where the 8,% are the scalar
coefficients of € ;; in the expansion of ay ;. If we substitute this expression
for £;; in (2.6), multiply by [? sum over ¢ and apply (2.10), we obtain
Xoe(gr; + Aoj.r) — Zojr = bulwydawr 0 = 2,...,n). This equation may be
used to determine the scalars 8% (u = 1,2,...,n,0 =2,3,...,n) in terms
of the X,". Having done so we find

(2.11) buecoy idowr = LlXow(grs + Aogr) = Zogal = LXK e(gri + Aoir) = Zossl.
A combination of equations (2.2), (2.6), and (2.11) then yields
2.12) X=Xy + Zijw = LiZojs + LiZois) = Ti(A iy — Lidog,
+ Loy — Ligrs + 1igrd) + oun
where we have set
(2.12") Xo =T o = biewidwr O =n+1,...,N).

Hence we have shown that any solution of equation (2.1) must be of the
form (2.12). Conversely one may readily verify that any tensor of the form (2.12)
satisfies equation (2.1) for arbitrary T)', provided only that o, satisfies

(2.13) [ + Tk — 0, Tojr = 0.

The most general tensor which satisfies these conditions is given by the’
second part of (2.12’), where the scalars 4,° are arbitrary (0 = n + 1,..., N,
w=1,2,...,n). Since it requires n® scalars to form the arbitrary tensor
T,", it would appear that the most general solution of equations (2.1) con-
tains n? 4+ n(N — n) scalars. However, not all of the components of 77
contribute to X ;;z. To prove this consider the expression 2 loyr (A sj,r — Lido;,,
+ 1;A40i,, — Ligr; + 1;g-4) which would occur in the third term of the right
member of (2.12) if 7',” were expanded in terms of the basis vectors. It is
obvious that when u = 1, this is zero, since 4 ;;,0 vanishes. If it were to vanish
for u # 1, we would find, on multiplication by /%, and summation over
1, k, that 0 = /;(Aoo,rdw”) — lw; Since the basis vector /; is not co-direc-
tional with /; this is impossible. Thus the coefficient of /" in the expansion
of T3" contributes nothing to X ;;; and we may assume that

(2.14) Ty, = 0.
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Hence the number of unspecified scalars in a solution of (2.1) is

(2.15) No=nn—1) 4+ uninin —1)4+1—un] = in2(n —1)
and we can, in general, impose this number of new conditions on such a
solution.

It should be emphasized, however, that, in specifying a solution of (2.1)
by means of (2.12), we may choose the tensor 73" arbitrarily. This situation
is clearly advantageous from a practical standpoint and it would be desirable
to have the solution (2.12) expressed entirely in terms of arbitrary tensors. In
particular, it would be rather difficult to specify the tensor ¢;;; by means
of the latter relation of (2.12") since the basis vectors would first have to
be constructed. This difficulty may be avoided by the use of the following
lemma.

LEmMmA 1. Suppose that §(x, x) is any scalar € H, and suppose that the
matrix ((Bi;)), where
e O e
(2.16) B =% o B8 siad,
is of rank n — 1. Then, a tensor o, € I, satisfies (2.13), if and only if it
has the form

(2.17) oig = (BiBjs — ByBj,) Sk’

Proof. That the right-hand side of (2.17) satisfies conditions (2.13) is

evident from the homogeneity of §§. To prove the converse we may assume
that S, + S;*" = 0, S5;°¢ = 0, since these parts of the tensor S;"* will con-
tribute nothing to the sum. But then (2.17) reduces to
(2.17") Yo = BuBsSi'.
These relations are solvable for S;"%. Indeed let us assume that b,z are the
scalar components of the tensor B;; under expansion in terms of the basis,
that is, Bi; = bagl ilsy;- In view of the homogeneity of §, we have By, = bis
l@; = 0 and, since the basis vectors are linearly independent, it follows that
the b5 all vanish. By the symmetry of B;;, a similar result holds for &4. Fur-
thermore, the matrix ((lw):)) is non-singular. In fact, from the second part
of equations (2.8), we have

(2.18) g = lwil*

and, in the light of (1.4), the left-hand side here does not vanish. Consequently,
the matrix ((bas)) has the same rank as the matrix ((B;)), namely n — 1.
Since the entries in the first row and column of ((b.g)) are all zero, it follows
that the cofactor of &y is non-singular and therefore, considered as a matrix,
it has an inverse, say ((b,)) (p,o = 2,3,...,n). A new tensor B may
now be defined by B = b,,l.,"l,)’. From the definition of the b,, and (2.7)
it then follows that

(2.19) B,B"* =& — I'l,.
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With these remarks in mind (as well as the conditions (2.13)), we find
that the solution of equations (2.17") is S = %¢.;B"*B™, which proves
the lemma.

In order that the rank of ((B;;)) be n — 1 it is sufficient that the matrix
of second derivatives of §? be non-singular. For it can be shown (12, pp. 8-9)
that

%ii;’;i %11
B 0

where the determinant on the right-hand side has (# + 1)? entries. Now, if
((B) has rank less than # — 1, then there exists a non-trivial solution X*

of the corresponding homogeneous linear equations other than A&? Therefore
there must exist a solution say 2% such that

Zi%ii = 01

as well. But then the (n 4+ 1)? determinant of (2.20) vanishes which is a
contradiction.

In the light of (1.2) and (1.4’) it follows that the function F(x, %) is a
suitable choice for §. For future reference we note that the associated space
whose metric tensor is given by «v,; is of the Finsler type and we shall refer
to it in the sequel as the associated Finsler space.*

On application of Lemma 1 it follows that

THEOREM 1. Any solution of equations (2.1) can be expressed in the form

(2.20) [(F)pias] = =2

b

(2-21) Xijlc = X?jk + (Zij,k - liZOj,k + ljZOi,k) -
—T;(A ij.r liAOj,r -+ leOi,r - ligjr + ljgn) +
+(Bi;Bjs — Bj;:Bis) S,

and, conversely, any expression of this form, where T and Sy’ are completely

arbitrary temsors, is a solution of (2.1).

If, in addition to conditions (2.1), we demand that the X ;; be symmetric
in 7 and % we obtain 3n2(n — 1) new conditions. In view of (2.15), then, the
solution would appear to be unique. We shall obtain necessary and sufficient
conditions for the uniqueness of a symmetric solution. Equations (2.1),
together with

(2.22) X = Xeji
may be explicitly solved for X, in terms of X,7;:
(223) Xip= Yuyr+ Vigo— Vi) — Ay Xos + Axp o Xo™s — Au i Xo'y).

If we multiply this equation by /% sum over 7, and collect the coefficients
of X, we find

(2.23") X0, (8305 + Aoj 0 + Apil’ — Aoy 03) = (Yoju + Yiso — Yorg).

*See (12, chapter 1) for the set of conditions defining a Finsler space.
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Adopting the notation of Mobr, we call the tensor in the left member of
(2.23") H;;™* and state

THEOREM 2. In order that equations (2.1) and (2.22) should define a unique
solution X i, it 1s necessary and sufficient that there exists a tensor K,,’* such
that

(2.24) HuKyy = om;.
This result follows directly from equations (2.23’), for, under the stated con-

dition, these equations can be solved for X, which, in view of (2.23), yields
X iy uniquely.*

3. Determination of ;3. We are now in a position to determine the
parameters L;% (and hence L) since the defining equations (1.27) (a) are
of the form (2.1) with Y, = $9g,;/0x" and 4, given by (1.23). The
right-hand side of equation (2.21) then yields L;j in its most general form.
A more precise specification involves the choice of a suitable X% and this
choice should be governed by the particular problem under consideration.

Problems in which the extremals of F(x, %) occur suggest the use of the
Berwald connection parameters G’ which are defined byt

C_ 06 1 m< SF 6F2>
(3.1) TET adlaxt T T 47 \ai"ex™ T T ax"/
The extremals of F(x, %) are the solutions of the differential equations
d’x’ i
¢ 2G1 5) —
(3.2) s G'(x, &)

Having formed the G, we may choose X ;;;* to be g,,G .

The Cartan connection parameters I';% for a Finsler space (3, equation
(2.8)) are defined by
(3.3) T = 3v" (v + Yentsy — Yiewn)s

where, for arbitrary ¢,
(3.3") by = 7R

If a comparison with the associated Finsler space is desired, then we may
use gth'ihk fOr the X”k*.

*Cf. (7, pp. 92-93). Moér does not appear to have realized that the assumption of the
existence of K, /* insures the uniqueness of a symmetric L;%.

1See, for example, (3, equation (2.1) ef seq.). The equations (3.2) above are equivalent to the
Euler-Lagrange equations, namely,

A (ypmen _ OF _

**This type of derivative was introduced by Berwald. It is obtained as the coefficient of
I* = dx'/ds in the derivative of ¢ with respect to the arc-length of the extremal through the
line-element (x, ).
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On the assumption that the tensor K,,”* of equation (2.24) exists, we may
obtain a third choice for X%, namely, the result of solving (2.23") for X,
and substituting in (2.23). (Note that here

(3.4) YVir+ Yp,o— Yu,; = %‘(‘g%%l + %%IIE - Qg%) = [ik],

the Christoffel symbol of the first kind.) Following Moér (7, p. 92,) we denote
this quantity by I'};. It has the required transformation law, as may be
seen by a somewhat lengthy calculation based on the transformation law of
the Christoffel symbols. It is noteworthy that not all solutions of (1.27) (a)
do possess the proper transformation properties, a fact which is exemplified
by the solution [ijk] — 1;]0jk] + 1,[02k].

For a general discussion it is most convenient to choose X% = gul'
since the Cartan parameters have well-known properties and are capable
of explicit expression in terms of the g,; by means of (1.1), (1.2), and (3.3).
Condition (c) of § 1 shows that v% (the inverse tensor of v;;) is well defined.
We have adopted this assumption in preference to the existence of K"/ in
view of its importance for the associated Finsler space.

Having chosen X7, we see from (2.4) that Z,;, represents one-half of
the covariant derivative of g,; with respect to the connection parameters
X* 4. For example, if X*;, = T',%, we have

ag; d , .
22 = —ifl T o (gi])PSkxs - gn-I‘?k - girF;k = Lijlks

the Cartan covariant derivative of g;; (12, p. 70). Also we note that if
X* 7 = I'J, then Z,,, vanishes identically.

The discussion following Lemma 1 of § 2 indicates that a suitable choice
for B;; will be given by (2.16) with § = F. In view of these remarks and the
identity

(3.5) i, =0"

we see that equation (2.21) can be written

(3.6) Lun = gnln + (3w — AusrTh) — Lllu — (€5 + Ao, T
+1,030iu — (g + Aoi)THl 4+ (BirBys — B1iB i) Sk -

This is the most general connection parameter for which the Ricci lemma (1.27) (a)
holds. 1t follows from (2.14) and (3.5) that

(3.6") Loy = T + T5(67 = 'de,,).

Particular cases are immediately obtainable by specializing the (arbitrary)
tensors 7" and S;."%. The simplest example is

3.7) Ly = gjhr’;k + 3(gon — Ll + Lilaw),

*See, for example, (12, p. 74, equation (2.12)). Compare also with (1.29) in the present
work.
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where both 7" and S;”® have been taken to be zero. Although this expression
differs from T';j; in that it is not, in general, symmetric in ¢ and &, it does
have the property that L¢’; = T'¢%. Thus we expect that a theory based on
this connection would bear some resemblance to the theory of Finsler spaces.

Another simple solution may be obtained when the matrix ((g:; + 4o:,;))
is non-singular, for then there exists a tensor J*? satisfying

(3.8) (2o + Aor) T = 84,7

and hence, choosing 7" = 3J" L, S = 0, we find that equation (3.6)
becomes

(3.9) Liw = gnl + 3@ — Ay d Lite).

It follows from (3.6") and (3.8) that Lo’y = T'¢/y + 31J%l,;x. This relation is

slightly more complicated than the previous one but it is still manageable.
If we assume the existence of K% then, as was previously remarked,

when X*,;; is set equal to T*,;, the Z;;; vanish and equation (2.21) becomes

(310) L”k = P:‘jk - (A ij.k T lfAOj,r + leOi,r - l‘igjr + l]gu)TI: +
+ (BirBjs - BisBjr)Slzs-

Particular solutions similar to those described above may again be found
from this form for L.

The advantage of solutions of the form exhibited in equation (3.6) over
solutions in the form (3.10) lies in the fact that the former are determinable
explicitly from the g;; and its derivatives while the latter are obtained
implicitly by the inversion of matrices.

4. Determination of /5. In view of §3 it is only necessary to specify
M ;. to complete the evaluation of the invariant differential (1.12). This
tensor must satisfy equations (1.16) and (1.27) (b) which we now proceed
to solve. The latter equations may be solved by the theory developed in § 2
if Xy, Yijnand Ay, of (2.1) are interpreted as M, Ay, and A, re-
spectively. As in § 3 we must now choose X*,;. In this case, however, X* ;.
is a tensor and so may be taken to be zero. We then find that Z,; ;, as given
by (2.4), is 44; and hence, by (2.21), the most general solution of (1.27) (b)
may be written

4.1) M= Ay, — Lidos. + L;A0s.7) (6r — T%) + LT — LT 4 ouy

where o, is defined by (2.13) with the same value for B, as in § 3.
The tensors 7' and S;"® may be chosen in an arbitrary manner, the simplest
choice being zero for both:

(4.2) Mip = Ay — Lidoje + 1iAdois.

*An equivalent tensor Ji¢ was introduced by Moér (7, §2, equation (2.15)), but for an
entirely different purpose. In fact, this tensor occurs in Moér’s solution for the connection
parameters.
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Other tensors may of course be used for X*,; in (2.21) but in view of
the relative simplicity of (4.1) we shall adopt the above choice in the sequel.

We now consider the effect of superimposing conditions (1.16). Note that
(1.27) (b) implies that A;x = Mune + (M, + Ay sMo®,) Moy, the last
term of which vanishes, by (1.16) (b). Inner multiplication with the tensor
1'l7 then yields

(4-3) AOO,k = MOOky

and hence Aoy, "Mo"x, = 0. Now the most general solution of (1.27) (b) has
the form (4.1), where T';; is arbitrary, while ¢;;; satisfies (2.13). Condition
(1.16) (a) is therefore equivalent to

(4.4) - (A ij,r T liAOj,r + leOi,r)Tg + liTjO - leio + gij0 = 0,

by virtue of (1.23"). If we multiply this by /!, summing over 7, and then
repeat the process with /7, we obtain successively — ;4 0,,T0" + Tj0 — £; To
=0, — A,,To =0, in view of (2.13). Substitution from the latter relation
in the former then yields

(45) Tjo = lj]‘(](h
and hence, by (1.23’), equation (4.4) reduces to
(4:6) gij0 = 0.

Turning again to (4.1), we multiply by /* and sum, thus deriving
4.7) Moy = Ao, (8 — T7) + Ty — LT o,
again by (2.13). Consequently, we have Mooy, = Ao, (6" — T%") = Aoox by
(4.3). It therefore follows that
(4.8) Ao, Ty = 0.
Combining (4.7) and (4.8) we find Moy = {;(Aoor — Tox) + Ty, to which
we apply conditions (1.16) (b). In the light of (4.5) and (4.8), this leads to
4.9) (T — I'To)T = 0.
The above results yield

THEOREM 1. In order that a temsor M, satisfy conditions (1.27) (b) and
(1.16), it is necessary and sufficient that M ;. be given by (4.1) where T;; is a
tensor satisfying (4.5), (4.8), and (4.9) while o, is a tensor satisfying (2.13)
and (4.6).

Proof. We have just seen the necessity of these conditions. Their sufficiency
follows by direct substitution.

The problem of determining the connection parameters M, is therefore
reduced to the problem of representing tensors T';; and o;; which satisfy
the above conditions. This problem, as regards o;;;, is completely resolved by
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LEMMA 1. The class of tensors o, satisfying (2.13) and (4.6) is identical to
the class of tensors of the form

(BirBjs - BjrBis) VTHB thy

where V7*! is arbitrary and B; is any tensor which fulfils the conditions of
Lemma 1, §2.

Proof. 1t is evident from the homogeneity properties of such B, that tensors
of the above form satisfy equations (2.13) and (4.6). Conversely if a tensor
o is given, subject to these conditions, there exists a corresponding tensor
Vst namely 1B7iB%g,,B*, as may be verified using (2.19).

Since the tensor ¢, of Theorem 1 is determined by choosing V7"**arbitrarily,
we need only find a tensor 77, satisfying the conditions of Theorem 1, to
complete the specification of M ;. The non-linearity of equation (4.9) indi-
cates that a simple representation of 7°;; in terms of arbitrary tensors would
be quite difficult to construct. Special solutions are, however, easily derived.
The simplest of these is, of course, when 7';; is taken to be zero. A second
choice would be T°;; = N;A¢,;, where \; is any vector, other than /,, ortho-
gonal to Ao, ;.

It is worthy of note that, although [;V; (arbitrary V) is a suitable 7,
it gives the same value to M ;; as the zero solution. Hence, in order to obtain
distinct values for M,;;, we may assume (as in §2) that equation (2.14)
holds. In the light of this remark the conditions on 7';; become
(4.10) Tw=0,T3=0,A60,TF=0, T/ =0.

In summary, then, the work of this and the preceding section allows us to
express the most general metric invariant ditferential in terms of explicitly
defined quantities.

5. Uniqueness theorems. The results of §§ 2, 3, and 4 lead to several
theorems concerning the uniqueness of the connection parameters of a metric
invariant differential.

TaEOREM 1. There are 3n*(n — 1) unspecified scalars in the most general
metric connection L,y of an n-dimensional space. This will be uniquely defined
by the further condition of symmetry in i and j if and only if the tensor K"
of equation (2.24) exists.

Proof. These results are immediate consequences of equation (2.15) and
Theorem 2, § 2, as applied to condition (1.27) (a).
Before proceeding further, let us note that, by (1.1) and (1.2), we have

v 9 v 9 1 ors 90
(5.1) Yis = g+ & g+ X &ﬁgjr+§xx35x—i%;7.

Hence, using (1.3’) and (1.23) we obtain
(52) ‘Yij]j = F;,i = li + 41(»0,1'.
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It is also readily deduced from (5.1) that a necessary and sufficient condition
that the space be a Finsler space (g;; = v4;) is

(53) xloi'j = 0*

THEOREM 2. The connection defined by equation (3.3) is the only metric con-
nection i a Finsler space which is symmetric in j and k.

Proof. According to (5.3), the tensor Hy,"7 of § 2 reduces to 6,%;7 + A, 17
in a Finsler space. From (2.24), then, the tensor K, exists and is given by

(5'4) K’;].S = 6?6§ - Arsyhlk'

Using this form for K, to solve (2.23") and making the appropriate replace-
ments in the right-hand side of (2.23) (see (3.4)), we find, after some calcu-
lation, that the resultant quantity (with middle index raised) coincides with
the right-hand side of (3.3).

Uniqueness theorems for M ;. present a great deal more difficulty than
the corresponding theorems for L, since the auxiliary conditions (1.16) must
be taken into account. It is clear, for example, that a symmetry condition
together with (1.27) (b) may completely determine an M, for which (1.16)
is not fulfilled. It is possible, however, to obtain several special results before
considering the above problem in full detail.

One such result is embodied in

THEOREM 3. In a Finsler space, the only solution Mz of equations (1.16)
and (1.27) (b), which is either (a) symmetric in i and k or (b) symmetric in
j and k, 1’5 A if. ke

Proof. In a Finsler space the tensor K,/ exists and is given by (5.4). Hence,
when assumption (a) is applied it follows from Theorem 2 of § 2 that there
is an unique solution M ;.. The identity (5.3) shows that 4., is this solution.

To prove the second part, we consider the explicit form of M, in a Finsler
space, which, by (4.1) and (5.3) is

(5.5) Mg = Ay, (6r — Tr) + LTy — LT o + o
Condition (b) then yields
(5~6) -4 ij,rle + lilec - leik + Tijg = -4 il:,rT; + liTkj - ZkTij + T ijke

Multiplying this by /* and summing over 7, we deduce that T';, = T3, by
virtue of (5.3), (4.10), and (2.13). After substituting this in (5.6) we multiply
by I/ and sum, thus obtaining — Ty = o400 = 0, by (4.6). We substitute
again in (5.6) and find that o, is symmetric in j and k. But this result together
with (2.13) implies that ¢, vanishes. Finally, then, (5.5) reduces to M ;=4 ;; 1
which completes the proof.

We return now to the question of the uniqueness of M ;. as specified by
the original conditions (1.16) and (1.27) (b) (or, equivalently, by (4.1) sub-
ject to (2.13), (4.6), and (4.10)). If we expand o in terms of its components

*For a comple te proof of this see 7, §4.
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with respect to the basis introduced in § 2 and apply (2.13) and (4.6) we

find that it has the form ey idwr W =2,..., 7,0 =n+1,...,N =
sn(n + 1) 4+ 1). Thus the number of undetermined components of o, is
(5.7) N=3%n—1)2(n—2).

The corresponding number for 7°;; may be found with the help of

LemMa 1. If A is an m X m matrix whose square is the zero matrix and
whose rank is p, then

(i) p < im,
and

(i1) A s determined by 2p(m — p) of its entries.

Proof. Part (i) follows from a theorem of matrix algebra (1, p. 87) to the
effect that a nilpotent m X m matrix of index 2, rank p is similar to

Op Iy Oy
Op, Op, Op, g =m—2p,
OG:P’ O'I'T’Y OQ:(I
where I, is the p-dimensional unit matrix and the other entries are all zero.

Turning to (ii) we remark that, since 4 has rank p, (1, p. 49) there exist
non-singular m X m matrices P and Q such that

rro= ({1 9)-r

It follows that any matrix . of rank p may be obtained from £, by choosing
P and Q to be non-singular and forming PE,Q. No loss in generality results
from the assumption that the first p rows and columns of 4 form a non-
singular matrix. Accordingly, if we let P and Q be given by

p=((Bm2e)) 0= ((392)).

where Py and Qu are p X p matrices, we find that the general matrix of
rank p can be represented in the form

P X Qu, P X Q12>> *
A = PE,Q = << .
v P X Qu, Pai X Qi2
Hence the matrix A is determined by the three matrices «, 8, and v where

a= Py X Qu, B = PuX Qv = Pa X Qi1, since the lower right-hand block
in A4 is given by P X Q12 = yQ1u P11~ 18 = ya~'B3, that is,

(58) A= <<i 50716))

*This follows by the process of block multiplicaticn for matrices, also explained in (1).
I am indebted to E. Liberman for suggesting this approach to me.
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where «, 8, and v are arbitrary apart from the condition that « be non-singu-
lar. It then follows that

s (< @ +6y) (@t aaB >>
’ 'YC!_I(O[ + 67)y ’Ya_l(a2 -+ B‘y)a_lﬁ .

Thus A% = 0 if and only if a?> + By = 0. This relation provides p equations
for the p(m — p) entries of . Accordingly any matrix 4 satisfying the con-
ditions of the lemma is completely specified by «, 8 and the remaining entries
of v, that is, by 2p(m — p) of its entries. This proves the lemma.
Returning to the tensor T';; occurring in (4.1) ,we expand in terms of the
basis of §2: T';; = thloyduw s In view of the first two parts of (4.10) all the
scalars t,, whose indices involve a 1 vanish. The last part of (4.10) implies
? = 0, where 4 is the matrix of the remaining f,,. Assuming that the rank
of A is p, we apply the above lemma with m = n — 1. Consequently the
rank p may not exceed 4(# — 1) and the number of components , (\, u = 2,
., n) necessary to specify 4 is 2p(m — 1 — p). The third part of (4.10)
provides 0 or p further conditions on the #, depending on whether or not
the vector Ao ; vanishes identically.
Combining these results with (5.7) we see that the total number of arbitrary
components of M is

(5.9) Nip) = 2(n = 1)’(n = 2) + 2p(n — 1 —p) —p 2p <n — 1),
if Ao,; is non-zero, and

(5.9 Na(p) = 5(n — 1)*(n — 2) +2p(n — 1 — p) 2p<n-—1),
if Ago,; vanishes. In either case p is the rank of the matrix 4 defined above
and hence satisfies 0 < p < 3(n — 1).

It is easily seen that both N; and N, are increasing functions for this
range of p. Thus we have

THEOREM 4. The most general My is obtained when the rank of ((T:;))
assumes 1its greatest value, namely, ¥(n — 2) when n is even, and i(n — 1),
when n is odd. In both these cases

(510) (Nl)max = %’ﬂ(’ﬂ - 1) (n - 2)
On the other hand,

(5.10") (N2)max = {(k — 1)k — 2k + 1) (n = 2k)

4R (n=2k+1).

From this result it is clear that the solution is unique only if # = 2. In fact
the unique solution is given by (4.2). In general, (5.9) and (5.9’) show that
the order of magnitude of Ny and N, is $#%. For (N1)n., we find the values
3, 12, and 30 when # is 3, 4, and 5, respectively, while the corresponding
numbers for (Ng2)max are 4, 13, and 32.
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6. Autoparallels and extremals. Consider the set of line-elements (x, %)
defined by a curve Cix? = x(s) and a vector field %*(s) given along it. The
parameter s of C is the arc-length of C with respect to these line-elements.
Thus ds? = g4;(x, #)dxidx? and dx?/ds = x'* is the unit tangent to C, while
I*(x, %) is defined by (1.5).

DEFINITION. A4 vector £ is said to be transported by parallel displacement
with respect to X' along C if it satisfies

D 1 k
6.1) 5~Dg—s +5[M,k<m)d +L,k(xx)x:l=0,
where DI¥ is given by putting X* = 1" in (1.12) and solving with the aid of
(1.16) (b):
(6.1" DI* = [6% + M, (x, [l (x, &) + Lo s(x, 2)dx"].

Since (6.1) is a system of first-order linear differential equations for &7, it
is clear that parallel displacement yield a bi-unique map between tangent
spaces at points of C.

Curves whose tangent vectors are transported by parallelism with respect
to themselves are called autoparallels. Their equations therefore follow from
(6.1), (6.1") by identifying the three vector fields &%, %! and x’'® Thus,
denoting the unit vector x’* by [, and using (1.16) (b), we have DJ* =
(I'" 4 Loo") (8, + M,t,) = 0 or, equivalently,

(6.2) "4+ Lo'g = 2"+ L ;(x, xx’ %" = 0.

It is of interest to compare the autoparallels, thus defined, with the geo-

desics of the space. These curves give extreme values to the integral
fF(x, dx) = fds = f[g”(x, dx/dt)dx'dx’]* and hence are defined by the Euler-
Lagrange equations:

(6.3) Ly -Loo

It is possible to write these equations in a form suitable for comparison
with (6.2).

First we remark that the covariant derivatives (1.18) may be formally
applied to tensors which do not belong to H, For example,

(6.4) %Y, =0, &% = Fsl
by (1.5) and (1.19). Hence, putting #* = FI* and using (1.25) and (1.26),

we obtain expressions for F|; and F.;:

65) () Fiy=a5-

Also it follows from (5.2) that

Fi,Lo'; =0, (b) Fij= F,(8; — Mo'y) =

6.6) D,(Fs) =2 d_ - i

E} (F;“) ]\li j x’Dl - Lz szT

= Dy; 4+ DsAoo,s.
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In the identities (6.5) (a), (6.6) we replace %! by the unit vector x’* (hence-
forth written as /%) and substitute in (6.3), using the fact that Dg;; = 0:

(67) (gij + F_:chirj)Dslj + DsAOO,i + FH(LirO - LOTi) = 0

Comparison of this equation for the geodesics with equation (6.3) for the
autoparallels yields

TueOREM 1. (a) If C, is an autoparallel along which the conditions
(6.8) DAdoo,i + Fyr(LiTo — Lo"y) =0

are satisfied, then C, is also a geodesic.

(b) If C.isa geodesic along which the conditions (6.8) and |g:; + F,,M, ;)| #0
are satisfied, then C, is also an autoparallel. A theorem of Modr (incorrectly
stated) follows from this result when Lz = T*,; (7, p. 101).

TaEOREM 2. The class of autoparallels defined by a metric invariant differ-
ential coincides with the class of geodesics defined by a metric function F(x, %)
if and only if the tensor T; occurring in (3.6) satisfies

(6.9) Ty =0.

Proof. Equations (6.3) are equivalent to (3.2) which in turn are equivalent
to &'t 4 T;%(x, x")x’ix’ = 0 (12, equation (3.1.26)). Thus (6.3) coincides
with (6.2), for all (x,«’), if and only if Ty = L’. Calculating L% from
(3.6") we find that this condition reads 77,(5," — /¢40,,) = 0 or, on inner
multiplication with 6,7 4 #4404, 77 = 0, which is the stated result.

THEOREM 3. Conditions (6.8) and (6.9) are equivalent along an autoparallel.

Proof. That (6.8) implies (6.9) follows from Theorem 1 and the analysis
of Theorem 2. The following identities are used to prove the converse.

(6.10) Fisji = FurLy o 1,

(6.11) F,r (Lo — To's) = 0,

(6.12) 1%, = 68 — I'Fsi,

(6.13) Tyl = Ty — 270 + 2FuTo’= 0.

The first of these is obtained by differentiating (6.5) with respect to %* and
rearranging terms. The second follows from (3.6"), (5.2), and (2.14). The
third is a simple consequence of (1.5) and the last is a well-known identity of
Finsler geometry (12, p. 63).

Now, along an autoparallel, we have DAqo,; = Aoo, ;) dx’ + Ao, ;DI =
Ago j1dxt by (6.2). In view of (5.2) and (1.29), Aoo,j: is the left side of
(6.10) and hence, using (6.12) repeatedly, we find D4 0,; = Fyr[Lo"oy; — Lo;
— L;7 4 2F,;L¢’0]. But (6.9) implies that Lo’y = I'¢’¢. Substitution from
(6.13) and (6.11) then leads to (6.8) as required.
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Theorem 2 shows that the connection parameter L;;; of (3.6) can always
be chosen so that geodesics are identical with autoparallels. For some pur-
poses it may not be desirable to do so. For example, the geometry of paths
is concerned with curves which may not be expressible as the extremals of a
function F(x, x). It is possible, however, for them to occur as the autoparallels
of a connection L, of the form (3.6).

7. Commutation formulae. In this section we consider the effect of
commuting the various tensorial derivatives introduced in § 1. This leads to
the curvature tensors which relate to the integrability of various displace-
ments of the element of support and which are basic to such studies as ‘“‘geo-
desic deviation.”

For convenience we introduce two preliminary differentiation processes
defined for all functions of (x, x):

ad r r r
(7.1) (@) o¢wm= ;3% — ¢11:Lo’c (b) oy = ¢1:(87 — Myy).

For tensorial ¢, these are the parts of the covariant derivatives (1.18) which
do not involve summation over the indices of ¢. Two useful identities are

(7.2) (@) ¢1i= oni+ M), (b) ¢ =il =0 (¢ € Ho).

The first of these follows from (7.1) (b) and (1.16) (b) while the second
follows from the first by (1.16) (a). It is also noteworthy that ¢y = ¢y
when n = 2, (¢ € H,) since M, is then given uniquely by (4.2).

The commutation formulae for the derivatives (1.19) and (7.1), are found
by straightforward calculations using the identities (1.25), (1.26), (4.3), (5.2),
(6.5), and (6.12):

(7.3) @) (1w — (dw) i = — éndLowe — Li"]

(b) ($1m)m — ()i = — éi1 1Mo — My + Findy — Ly

(©) (em)w — (dw)m = — ¢11-Ro m

(d) () — (Bu)aw = — &11:Po e + L' (85 — My'y)]

) (o) — (b)) = — 1180w — (My"x — My"n)+ (hdr— 1:d) ]
The barred quantities here (which are easily seen to be tensors) are defined
by
(74) (a) I-Jirhk = - Lirkllh

(b) ]uirhk = - ]l[irkllh

(c) Rirhk = Li,h(k) — Li'vaw + LWLy — LLy,

(d) Pi7hk = Lirh[k] - ]Wirklh

(e) S = M — Mo + MO5MT — MM
From (7.3) it is a relatively simple matter to deduce the corresponding formulae
for the tensorial derivatives (1.18) and (1.19) of a contravariant vector X
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73) (@ X' — X 'Win=—=X"1Liw+ XL

(b) (Xillh);k - (Xi;k)llh = - Xlilr(MOThk + Fa;hﬁi - lkal:) +XT -rihk

© X'wWw— X'Win=—XIRm—2X10"% + XR.

d) X'wa— X'Dn=—X"1Pow— XM + X Py

© (X'wa— X'Da= = X"1,I80m — 2007 + bo] — bl —

2X° e + XS

In these relations we have introduced, for brevity, the torsion tensors
(7.6) Qijk = %(Lijk - iji); ‘//ijk = %(szk - ]l’[kji)~
It is convenient to have the right sides of (7.5) expressed entirely in terms
of the covariant derivatives (1.18). To this end we note that X, = (X’
— XkM, ) (8,0 + Mo®,) by (1.18) (b), (7.1) (b), and (7.2) (a). Thus (7.5)
becomes
(7'7) (a) (Xillh>lk - (Xilk)llh = - Xi:TLOrhk + XTLrihk

(b) (Xillh);k - (Xi.'k)lih = - Xi;r(iwornk + Fihfskf - lkGZ) + XTMrihk

(C) (Xilh)lk - (Xilk)lh = - ZXiIrQth - Xi;rROThk + XTRrihl:

(d) (Xilh);k - (Xi.'k)lh = - Xilrj[)zrk - Xt,'rPOThk +XrPrihlc

(e) (th)k - (Xi;k);h = - Xi.'T(S(lrhk + Lo — lkéhr) ‘*1 XrSrihm
where
(7.8) (a) Lrihk = Lrihk + Mris(‘s'; + MOSt)LUthk

(b) M, = M, + M, (8% + Mo"\) (Mo + Fundy — Lidy)

(C) Rrihk = Rrihk + xMris(Bsz + ]l’jost)ROlhk

d) Pl =P+ M6+ Mo )Po'u

(e) Srihk = Srin/c + A/[ris(ai + ﬂlosz) (SOlhk + lhakl - lkant - 2¢hlk)~
Identities similar to (7.7) are valid for arbitrary tensors. For example,
X — X = — XY Lo'w + XL — X% L. The quantities
defined by (7.8) are called the curvature tensors. The barred curvature
tensors (7.4) are uniquely determined by the unbarred ones. For example,
inner multiplication of (7.8) (c) with [ yields Ry = Ro'w(8,* + Mot),
which, when substituted back into (7.8) (c), leads to

(7.9) Rrihk = Rrihk — M, Ro’n.

The last three tensors of (7.8) may be shown to be identical to those derived
by Moér (7, §7) in a different manner.
The curvature tensors satisfy several identities. Clearly

(7.10) (a) Rij(hk) =0, (b) Rijomy =0, () Sij(hk) =0, (d) Sij(hl;) =0.
Also, applying the commutation formulae to g;;, it follows that

(7~1]) ('d) L(ij))zk = —4 ijhlk (b) AM(ij)/zk = — Aij,h;k
©) Ripme =0 (d) Papme =0 () Sipm = 0.
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In view of (1.25), (7.2) (b), and (1.16) (a), the definitions (9.4) yield
(7.12) @ L' =0 () M0 =0 (c) Piuo=0.

Also, since Iy = ¥4 — Mo*, we have, by (1.26),

(7.12") (d) Siwo= =M yml" = + M Jm = M5 — M5,
The corresponding equations for the unbarred tensors are

(7~13) (a) LiTOk = O, (b) MiTOIc = Mirs<6l§ + Mﬂslc) (C) PrihO =0

(d) Srihﬁ = 0.
Another set of identities is obtained by straightforward calculation from the
definitions:
(7.14) (a) [Rjrkh - 291'7]‘;]), + 49]'3]0937).] + (Cyc')jkh = O,

(b) [Sjrkh - 2¢jrk;h + 4¢5 s m + (cyc)m = 0,
where (cyc.) i denotes the sum of the two terms derived from the quoted
one by cyclic permutation of j, 2, and 4. Similar formulae for the unbarred
tensors follow from these by means of relations typified by (7.9).
Finally we mention the Bianchi identities:

(7.15) (a) [Rir]‘k[h + QRiTstZh - I_l_irsz()skh] + (cyc)n =0

(b)  [8{ e + 28 j¥in — M ;(So’kn + Ldn — Lidi — 2¢ia)] +

(cye.)un = 0

(c) [Rirjklh + 2R, ;@ + Py R’ + (cyc)jm = 0

(d) [Sirjk;h - ZSiTjklh + SirjsSOShlc] + (cyc.) n = 0.
These formulae may all be established by an adaptation of the method given
in (12, pp. 109-111). We shall outline this approach in the derivation of

(7.15) (d).
The commutation formula (7.7) (e) for a covariant vector X; reads
Xijn — Ximey = — Xaon (S + 160" — d;”) — XS I we apply the

operation ‘‘;;”" to this, permute the indices 7, &, # and add, the left side be-
comes (X jxm — Xijma) + (cyc.)m To this, the commutation formula
for the tensor X;.; may be applied. We combine the result with the right
side to obtain an equation involving linearly the terms X,, X;.,, and X ,.,.;
— X ;. etc. The latter forms may be simplified again by the commutation
formula for X ;. In the resulting relation the left side of (7.15) (d), which we
denote by S;";m, appears as the coefficient of X,, while the coefhcient of
X, is, by (1.26), (1.27) (b),

[—(So"ss + 185 — 1;80) (So"un + Lidn — Lide) + So s — Si'en + (g — Liln)di —

~ (g — Lln)d3] + (cve.) s

After some simplification, based on the identities (7.10) (d) and (7.11) (e),
this coefficient assumes the form Sy, and hence the resulting equation reads
Xi:rSo jen + XS = 0. Since X ; is an arbitrary vector, S;";, vanishes and
(7.15) (d) is proved. The other formulae of (7.15) follow from the process
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described above applied to the commutation relations (7.7) (c), (7.5) (a),
and (7.5) (d).

In a Finsler space it is customary to assume that the connection parameters
are symmetric and hence, by Theorems 2 and 3 of § 5, we have L%, = T';%,
and M,y = A Since we also have g;; = v,; in this case, 4;;,; is com-
pletely symmetric and satisfies (5.3). The derivative ‘‘(;"’ then reduces to
“4&."" In view of these remarks, the results of this section imply corresponding
ones for Finsler geometry. For example, (7.15) (a) and (c) reduce to the
Bianchi identities of (12, pp. 110-111). The Finslerian forms of (7.15) (b)

and (d) are of some interest since they have not appeared in the literature.

They are
(7.16) (a) [Sirjkllh + Air,y‘[ls(lkaisz — o)l + (cyc)jm =0
() [Si i — 28 aha] + (cyc)jm = 0,
where S/ = — (4 Sl — A4 sr,h)r Sirhlc =S+ Al — Air,klh-

8. Applications of the curvature tensors. A large number of structural
theorems follow from the work of § 7. Some of these will be proved in this
section.

THEOREM 1. If M ,; is independent of &%, the space is Riemannian.

Proof. By hypothesis M, = 0. It then follows from (7.8) (b), (1.16) (b),
and (7.11) (b) that — A = A4y, (Fird™ — 1:8,7). Inner multiplication with
¥ leads to — Ay, = 0, in view of (1.21), and since this is equivalent to
gi; = gi;(x*), the theorem is proved.

A second result follows immediately from (7.4) (a), (7.8) (a),and (7.11) (a):

THEOREM 2. If L is independent of the &%, then A i;x\n vanishes.

TaEOREM 3. T™*,% is independent of the % if and only if A 1n vanishes.

Proof. The existence of T'*;% implies the existence of K% (cf. § 3 and
Theorem 2 of § 2). Also I'*,;; is a member of the family (3.6) and hence may
replace Lz in the formulae of § 7. The necessity of A, = 0 then follows
from Theorem 2. To prove the sufficiency we note that Liiym = — Agjan
— Ay Lo, by (7.8) (a), (7.11) (a) and (1.27) (b). Denoting L, when
Ly = T*,4, by L*, ;. we solve the above relations together with

L* i = L*kjhi:
(8'1) Etjhk = - (A ij.hlk + Ajk,h|i - A ik,h]j) - Aij,f-z';l;t;c - 4_1k,rig;iri +
+A 1'k,TLO;zj-
On inner multiplication by %, it follows that

(8.2) I_/:msH;lsc =~ (Aojnix + Apnro — Aowps)-

Since K" exists, we can find L*1s from (8.2) (cf. (2.24)) and, substituting
in (8.1), we will have L*,;, expressed as a linear combination of the 4,z
The second part of the theorem follows at once. The special case of this
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expression for L*,;,; when the space is Finslerian is well known (12, p. 81,
equation (3.13)).

A vector field £(x), defined throughout a region, whose elements are
obtained from each other by parallel displacement with respect to themselves
(see § 6) must satisfy the system of partial differential equations £¢; = 0,
(L;% = L% (x, £)) whose integrability conditions are easily seen to be
£ R, i (x, £) = 0. Similarly, the integrability conditions for # linearly inde-
pendent vector fields n¢)‘ (u = 1,...,n), parallel with respect to £¢, are
nw R, u(x, £) = 0, that is, RB,%;(x, £) = 0. But if this condition is satisfied,
there exists a co-ordinate system (dependent on £Y) in which T'*;%; vanishes
(see (12, pp. 135-136)). In order that this special co-ordinate system be
independent of ¢? it is sufficient that I'* ;% be independent of direction. These
remarks lead to

THEOREM 4. If T*,% exists, and if both R,'; and A ;.. vanish identically,
the space is Minkowskian, that is, g;; = gi; (&%).

Proof. The proof, based on Theorem 3, is formally identical to that given
in (12, p. 136).

The general theory of curve deviation is another example of the applic-
ability of the work of § 7. We begin by considering a subspace L. defined
by xt = x%(%, v), rank ((8x%/du, 0x/dv)) =2, (1 =1,2,...,n).* The tan-
gent vectors to the parameter curves of L, satisfy

axi i i 6x1

83) @ &= =wlat=

=x; (b)) &=
Having chosen a vector field #* = 2%(x) on L, we introduce the derivatives
(8.4) (a) V, X' = X1, (b) V,.X* = X¥m",

defined for all vectors X* attached to the line-element (x, x). For example,

we have V., &' = ¢!, 4+ L, % (x, )&™y" and a similar equation for V,p’. Com-

bining these and using (8.3) (b) and (7.6), we find

(8.5) Vg = Van' = 20u(x, )&

It is also easily seen from (7.5) (¢) and (8.5) that

(8.6) Vint' — Vat' = (Elen — En)En" + ER(VE — V') = R ux, $)EE .
Now let ¢, e (small) be constants and consider the neighbouring curves

C:v=cand C':v = ¢ + e A natural correspondence between points 4 of

C and B of C' is given by A (u,c) <> B(u,c + ¢). We adopt, however, a

general correspondence A (u,¢) <> B(u', ¢ 4 €), where u' = u + f(u), [(u)

being of the same order as e. If 27(x) represents the displacement vector from
A = A(u, ¢) to B(x' 4+ dx*) CB(u', ¢ + ¢ we therefore have

(8.7) 2i(x) = dx? = Eldu + n'dv = f(u)¢' 4+ en’,

“T'he method of approach here is essentially that of Rund. See (12, pp. 111-118).
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neglecting quantitites of the order ¢2. The differential equation satisfied by
z' is known as the deviation equation. To find it, we apply the operator V,
to (8.7), noting (8.5) and the skew-symmetry of Q,%: V2! = V,(f§) —
20, 58"" 4 €V,£. Thence, a second differentiation, together with (8.6) and
(7.10) (b), yields
(8.8) Vuz' + 20uE'V,z" + [R,'wt’E" + 2V,(Qut")]s" = eVig' + Vi(fE),
or, since eVt = (Vu&') (2" — f&),
(8.9) Vis' + 20m&"Voe" + [R,WwE'E" + 2V (@t") — (Vut)ule® = f78' +

+ 2f'V,.E"
This second-order differential equation involving arbitrary f(u) and %' is the
most general deviation equation for the family of curves v = constant.

If we assume that u represents arc-length s and that the members of the
family v = constant have tangent vectors which satisfy V* = 0, we have,

by (7.1) (a),
0 = (9.8, = [ 5 (089 + F o )50, 2 | = o +
s§ ) axh s , s 17 axh n s§ )M
FT(VED 1,V

For such curves v = constant we also have V, %' = (VD w + (VE)L5I"
= (V&) mn® and (V£Y), = — L, s8¢, by (7.4) (a). Finally, if we assume
that the fields x* and &? coincide, then %% is a unit vector and the curves
v = constant become autoparallels (cf. (6.2)). When the line elements are
(x, &), with V' = 0, we may replace the symbol V, by D,. In view of the
above remarks, the right-hand side of (8.8) becomes e(D %) mn" + f(s)&!
= el (x, EEVE + fE = L' w88 [Ds (37 — fE) + 29,7827 + f'E,
where (8.5) and (8.7) have been used. Thus the equation of autoparallel deviation is
(8.10) Dzzi + (293;C — Loiok)Dszk + (Ro'ox + 2D Q0% — 2L0i07907k)zk = f"(s)fi,
in which we have put Q,%&/ = Q% etc. This special case of (8.9) has been
given in (8, equation (3.7)).

The following lemma will be useful in the sequel.

LEMMA. Let Lo be defined by x' = x(s, v), where s is the arc-length of the
curves v = constant. Then ,2with ' = £°, 9%, and V, defined as above,
B11) (@) F@HVE=0 (@) F(Va' +200° = 0.

Proof. Since ds* = F(x, dx), we have F(x, £) = 1 and hence

= dF = Fi(§'ds + n'dv) + Fii(Eids + £dv).

Substituting for F,i from (6.5) and using the definitions of V; and ;% (cf.
(7.6)) we obtain the parts of (8.11) as coefficients of the arbitrary du, dv.
It follows from this lemma, (8.7), and the fact that F € H,; that

(8.12) Fii(Da' + 2042 = f'(s)
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is a first integral of the equation of autoparallel deviation (8.10). It is some-
times convenient to assume that the variation vector 2! is normal, that is,
gi;(x, £)&%7 = 0. If this condition is imposed on 2, then (8.12) must be con-
sidered as a definition of f(s).

Equation (8.9) may also be used to obtain the equations of geodesic devia-
tion. This is, however, essentially a problem of Finsler space (cf. § 6) and
the results of (13) give a simpler description.

The Bianchi identities of § 9 may be used to obtain results analogous to
the Schur Theorem of Riemannian geometry. However the close relationship
between isotropic spaces and spaces for which the Schur theorems hold, which
extends to Finsler geometry, seems to break down here.

We hope to consider the extensions of these and related problems at a
later date. For the present we remark that the preceding work provides a
generalization of the requisite analytical tools.

To conclude, I wish to express my deep gratitude to Professor H. Rund,
who supervised this thesis work and to whom I am indebted for many con-
structive suggestions and criticisms.
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