
Adv. Appl. Prob. 17, 231-233 (1985)
Printed in N. Ireland

© Applied Probability Trust 1985

AN AVERAGE-CASE ANALYSIS FOR A CONTINUOUS
RANDOM SEARCH ALGORITHM

DIETMAR PFEIFER,* Technical University Aachen

Abstract

We give an upper bound for the average complexity (i.e. the
expected number of steps until termination) for a continuous random
search algorithm using results from renewal theory. It is thus possible
to show that for a predefined accuracy e, the average complexity of
the algorithm is O(-log e ) for e ~ 0 which is optimal up to a
constant factor.
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1. Introduction

In recent years, attempts have been made to develop appropriate probabilistic tools
and models for a unified treatment of an average-case analysis for certain classes of
algorithms such as combinatorial algorithms (Barth (1983)) or searching algorithms
covering for instance the famous simplex algorithm of linear programming (Ross (1983),
Chapter 4.6) and others. The main tool there is the theory of finite-state Markov chains.
This approach, however, is no longer applicable if continuous algorithms are considered,
i.e. algorithms involving uncountable state spaces. In the present paper we want to show
that a renewal-theoretic approach can be useful in such cases. For this purpose, we
consider a random search algorithm which is shown to be asymptotically optimal up to a
constant factor, i.e. the average complexity is of the same order as that of the best
possible deterministic (i.e. binary) searching algorithm. For the sake of simplicity, the
algorithm will be formulated only for the special case that the root of a monotonically
increasing continuous function h on the unit interval with h(O)< 0 < h(l) has to be
approximated. All other possible applications including the determination of extrema of
suitable convex or concave functions or more generally, the approximation of a
(random) point in the unit interval with the possibility of exclusion of 'bad' solutions (as
is typical in the above examples) can easily be derived from this.

2. The algorithm.

We shall recursively construct random intervals [Um Vn]~[O, 1] with Un~Vn and
[Un+ b Vn+d~[Um Vn], nEN such that h(Un)~O~h(Vn), and n:=l[Um Vn]=x* a.s.
where x* denotes the (unique) root of h in [0, 1].
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To start with, let [Uo, Yo] = [0, 1], and {Yn ; n EN} be an i.i.d. sequence of uniformly
distributed random variables on (0, 1) which are especially easy to generate by computer
methods. 0 < e < 1 will denote the required accuracy of calculation.

Continuous random search algorithm

(a) If h(Un) < 0 < h(Vn) and D; = V n - U«> e, let

U = {Um if h(Un+DnYn+1»0
n+l u,+o,Y n + }, otherwise

V
n+ 1

= {Vm if h(Un+DnYn+l~<O
o; + D;Y n + }, otherwise;

then go to (a) with n being replaced by n + 1. Otherwise,
(b) terminate.

As can be seen from the above construction, either U; or V n is changed within a
single step of the algorithm, depending on whether the conditionally uniformly (over
[Um VnD distributed random variable U; +DnYn+ h given (Um V n), leads to a non
positive or non-negative value under h. Clearly, {CUm Vn); n EN} represents a two
dimensional Markov chain with uncountable state space, having the following con
vergence property.

Theorem 1. With probability 1, h(Un)<O<h(Vn) for all nEN, and

(1) n [Um Vn]=x*.
n=l

Proof. The first part is obvious from the continuity of the distributions involved. For
the second part, note that by induction,

(2)
n

o, ~ I1 z, with z, = max (Yb 1- Y k )

k=l

(3)

which is uniformly distributed over [i, 1]. Alternatively, for Wk = 2(1- Zk), which
provides an i.i.d. uniformly distributed sequence over [0, 1], we have

Dn~Dl(l-~Wd~DleXP(-~Wk)=exp(-~kt Wk),

hence D';~ 0 a.s. (n ~ 00) which is equivalent to (1).

Note that (2) provides an upper bound for E(Dn) given by (3/4)n while a direct
calculation via the conditional distribution shows that

(4) E(D ) = !E(D ) + E((X* - Un)(Vn - X*)) ~ !E(D )n+l 2 n D
n

- 2 n

for n EN, giving a lower bound of (1/2)n for E(Dn). With respect to the average-case
behaviour of the algorithm, the random variable of interest will be the stopping time

(5) T = inf {n; D; ~ e ],

gIvIng the almost surely necessary number of steps until termination. Here, the
right-hand side of (3) suggests that an application of renewal theory as in Russell (1983)
or Jensen (1984) could give the desired result. In fact, we have the following theorem.
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Theorem 2. With probability 1, T < 00, and
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(6)

Proof. We have

(7)

E(T)<-410ge+1.

T ~ inf {n; i w, ~ - 2 log e} = T*,
k=l

E(T*)<-410ge+1

say, which is almost surely finite with

(8)

and

(9) E(T*) = -4 log e + ~ + 0(1) (s ~ 0)

(see Russell (1983) and Jensen (1984)).

It is possible to show by information-theoretic arguments that, under the above
conditions, a lower bound for the average complexity of any deterministic searching
algorithm based on comparisons is roughly -log e/log 2:::::: -1.4410g e (see Knuth
(1973), Chapter 6, p. 410), which can be achieved by a binary search algorithm with the
unit interval being subdivided into intervals of length roughly e, or by a modified
continuous binary search algorithm with consecutive bisection of the remaining intervals
(similar to the above algorithm) until the predefined accuracy e is obtained. This shows
that the algorithm under consideration is asymptotically optimal up to a constant factor
with an average complexity of O(-log e).

3. Concluding remarks

From a probabilistic point of view, the above result implies that an appropriate
'guessing' strategy (due to the subdivision of consecutive intervals according to a
uniform distribution) can be an (almost) optimal searching technique. We conjecture
that a corresponding result also holds for a larger class of searching algorithms,
including those mentioned in the introduction.
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