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Abstract

In the present work, neural networks are applied to formulate parametrized hyperelastic constitutive models. The
models fulfill all common mechanical conditions of hyperelasticity by construction. In particular, partially input
convex neural network (pICNN) architectures are applied based on feed-forward neural networks. Receiving two
different sets of input arguments, pICNNs are convex in one of them, while for the other, they represent arbitrary
relationships which are not necessarily convex. In this way, themodel can fulfill convexity conditions stemming from
mechanical considerations without being too restrictive on the functional relationship in additional parameters, which
may not necessarily be convex. Two different models are introduced, where one can represent arbitrary functional
relationships in the additional parameters, while the other ismonotonic in the additional parameters. As a first proof of
concept, the model is calibrated to data generated with two differently parametrized analytical potentials, whereby
three different pICNN architectures are investigated. In all cases, the proposed model shows excellent performance.

Impact Statement

Constitutive models relate the strain inside a material body to the stress it evokes. In this work, the excellent
flexibility that neural networks offer is exploited to formulate hyperelastic constitutive models, which describe
large, reversible deformations. The models are physics-augmented, that is, they fulfill all common mechanical
conditions of hyperelasticity by construction. This results in highly flexible yet physically sensible neural
network models. These models will be applicable to a wide range of materials, particularly to the representation
of microstructured materials, for example, fiber-reinforced composites, metamaterials, textiles, or tissues. By
that, computationallymore expensivemethods can be avoided, thus accelerating the simulation and optimization
of engineering components made of microstructured materials.

1. Introduction

Convexity is a convenient property of mathematical functions in many applications. However, it also
constrains the function space a model can represent. While for some applications, this constraint is well
motivated, it is too restrictive for other use cases.Moreover, there are applications where a function can be
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motivated to be convex in some of its arguments, while it should not necessarily be convex in the other
arguments. The latter is usually the case for hyperelastic material models with parametric dependencies,
such as process parameters in 3D printing which influence material properties (Valizadeh et al., 2021), or
microstructured materials with a parametrized geometry (Fernández et al., 2022). In the framework of
hyperelasticity, the polyconvexity condition introduced by Ball (Ball, 1976, 1977) requires the associated
energy potentials to be convex functions in several strain measures. However, there is generally no
mechanical motivation for a hyperelastic potential to be convex in additional parameters onwhich it might
depend. To reflect this, a modeling framework for parametrized polyconvex hyperelasticity should
provide potentials which are convex in the arguments of the polyconvexity condition and can represent
more general functional relationships in the additional parameters. Finally, in some cases, further
conditions such as monotonicity of the hyperelastic potential in some parameters can be motivated by
physical considerations (Valizadeh et al., 2021).

In finite elasticity theory, convexity of the energy potential in the primary deformation measure alone
(the deformation gradient F) would be too restrictive. In particular, this would be incompatible with
growth and objectivity conditions, and it would not allow to represent certain phenomena such as
buckling (Ebbing, 2010; Section 5.2). Polyconvexity circumvents these problems by formulating energy
potentials which are convex in an extended set of arguments, namely the deformation gradient, its
cofactor, and its determinant, making this convexity condition compatible with aforementioned physical
considerations. When the energy potential is convex in these strain measures (and thus polyconvex) and
an additional coercivity condition is fulfilled,1 the existence of minimizers of the underlying variational
functionals of finite elasticity theory is guaranteed (Kružík and Roubíček, 2019). Indeed, this coercivity
condition makes assumptions on the hyperelastic potential which lie far outside a practically relevant
deformation range, making the practical relevance of this existence theorem questionable (Klein et al.,
2022a).

Apart from that, from an engineering perspective, polyconvexity is desirable since it implies ellipticity
(or rank-one convexity) of hyperelastic potentials (Zee and Sternberg, 1983; Neff et al., 2015). Ellipticity,
in turn, is important for a stable behavior of numerical applications such as the finite element method.
Without polyconvexity, the ellipticity of a hyperelastic potential is cumbersome to check, and practically
impossible to fulfill by construction. Overall, from an engineering perspective, polyconvexity is desirable
since it implies ellipticity, rather than for its significance in existence theorems.

In constitutive modeling, neural networks (NNs) can be applied to represent hyperelastic potentials.
These highly flexible models are usually formulated to fulfill mechanical conditions relevant to hyper-
elasticity, thus combining the extraordinary flexibility that NNs offer with a soundmechanical basis. Such
models are precious in fields where highly flexible yet physically sensiblemodels are required, such as the
simulation of microstructured materials (Gärtner et al., 2021; Kumar and Kochmann, 2022; Kalina et al.,
2023). Furthermore, including mechanical conditions improves the model generalization (Klein et al.,
2022b), allowing for model calibrations with sparse data usually available from real-world experiments
(Linka et al., 2023). For the construction of polyconvex potentials, several approaches exist (Chen and
Guilleminot, 2022; Klein et al., 2022a; Tac et al., 2022), where the most noteworthy approaches are based
on input-convex neural networks (ICNNs). Proposed by Amos et al. (2017), this special network
architecture has not only been successfully applied in the framework of polyconvexity, but is also very
attractive in, for example, other physical applications which require convexity (Huang et al., 2021; As’ad
and Farhat, 2023; Rosenkranz et al., 2023) and convex optimization (Calafiore et al., 2020). Besides this
particular choice of network architecture, using invariants as strain measures ensures the fulfillment of
several mechanical conditions at once, for example, objectivity and material symmetry. This is well-
known from analytical constitutive modeling (Schröder and Neff, 2003; Ebbing, 2010) and also
commonly applied in NN-based models (Klein et al., 2022b; Kalina et al., 2023; Linka and Kuhl,
2023; Tac et al., 2023). Finally, by embedding the NN-potential into a larger modeling framework, that is,

1 For a coercive function, f xð Þ!∞ as xk k!∞ holds.
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adding additional analytical terms, all common constitutive conditions of hyperelasticity can be fulfilled
by construction, which was at first introduced for compressible material behavior by Linden et al. (2023).
Therein, models that fulfill all mechanical conditions by construction are denoted as physics-augmented
neural networks (PANNs).

In the literature, also parametrized models were proposed for different applications, both in the
analytical (Wu et al., 2018; Valizadeh and Weeger, 2022) and in the NN context (Baldi et al., 2016;
Shojaee et al., 2023). In particular, also parametrized hyperelastic constitutive models were proposed. In
Valizadeh et al. (2021), an analytical model is proposed which maps process parameters of a 3D printing
process to material properties, by formulating parametrized hyperelastic potentials. In Linka et al. (2021)
and Fernández et al. (2022), parametrized hyperelastic potentials based on NNs are proposed and applied
to different homogenized microstructures. However, to the best of the authors’ knowledge, none of the
existing parametrized hyperelastic models based on NNs fulfills all constitutive conditions at the same
time. In particular, no model fulfills the polyconvexity condition.

To conclude, while parametrized and polyconvex models are well-established in the framework of
NN-based constitutive modeling, the link between both still needs to be made. In the present work, this is
done by applying partially input convex neural networks (pICNNs) as proposed by Amos et al. (2017).
Receiving two sets of input arguments, pICNNs are convex in one while representing arbitrary relation-
ships for the other. With the model proposed in this work being an extension of Linden et al. (2023), all
common constitutive conditions of hyperelasticity are fulfilled by construction. In particular, the model
fulfills several mechanical conditions by using polyconvex strain invariants as inputs, while the pICNN
preserves the polyconvexity of the invariants. Furthermore, growth and normalization terms ensure a
physically sensible stress behavior of the model. Two cases are considered, one with an arbitrary
functional relationship in the additional parameters and the other being monotonic in the additional
parameters. To formulate the functional relationships, three different pICNN architectures with different
complexities are applied. The proposed model will be valuable for the representation of microstructured
materials. In particular, the model can represent materials with a parametrized microstructure, for
example, lattice-metamaterials with varying radii (Fernández et al., 2022), fiber-reinforced elastomers
where the volume fraction of the fibers might vary (Kalina et al., 2023), microstructures with spherical
inclusions, where the stiffness of the inclusions might vary (Klein et al., 2022b), or knitted textiles with
graded stitch types and knitting parameters (Do et al., 2020). The parametrization allows for both
simulation and optimization of such materials, while the polyconvexity of the model ensures a stable
behavior of the numerical simulations required for this.

The outline of the manuscript is as follows. In Section 2, the convexity of function compositions is
discussed. In Section 3, the fundamentals of parametrized hyperelasticity are briefly introduced, which are
then applied to the proposed PANNmodel in Section 4. The applicability of the parametric architectures is
demonstrated by calibrating it to data generated with two differently parametrized analytical potentials in
Section 5, followed by the conclusion in Section 6.

1.1. Notation

Throughout this work, scalars, vectors, and second-order tensors are indicated by a, a, andA, respectively.
The second-order identity tensor is denoted as I . Transpose and inverse are denoted as AT and A�1,
respectively. Furthermore, trace, determinant, and cofactor are denoted by tr A, det A, and
cof A≔ det Að ÞA�T . The set of invertible second-order tensors with positive determinant is
denoted by GLþ 3ð Þ≔ X ∈ℝ3× 3 j det X > 0

� �
and the special orthogonal group in ℝ3 by

SO 3ð Þ≔ X ∈ℝ3× 3 j XTX ¼ I ,det X ¼ 1
� �

. For the function composition f g xð Þð Þ the compact notation
f ∘ gð Þ xð Þ is applied. The Softplus, Sigmoid, and ReLu functions are denoted by s xð Þ¼ ln 1þ exð Þ,
sm xð Þ¼ 1

1þe�x, and x½ �þ ¼ max x,0ð Þ, respectively. The element-wise product between vectors is denoted
as ∗.

Data-Centric Engineering e25-3

https://doi.org/10.1017/dce.2023.21 Published online by Cambridge University Press

https://doi.org/10.1017/dce.2023.21


2. Convexity of function compositions

To lay the foundational intuition for constructing convex neural networks, we first consider the univariate
function

f :ℝ!ℝ, x ↦ f xð Þ≔ g ∘ hð Þ xð Þ, (1)

where f is composed of two functions g, h :ℝ!ℝ. Given that all of these functions are twice
continuously differentiable, convexity of f in x is equivalent to the nonnegativity of the second derivative

f 00 xð Þ¼ g00 ∘ hð Þ xð Þ h0 xð Þ2þ g0 ∘ hð Þ xð Þ h00 xð Þ≥ 0: (2)

A sufficient, albeit not necessary condition for this is that the function h is convex (h00 ≥ 0), while the
function g is convex and nondecreasing (g0 ≥ 0, g00 ≥ 0). Conversely, if a function acting on a convex
function does not fulfill these conditions, the resulting function is not necessarily convex, see Figure 1 for
an example. The recursive application of equation (2) yields conditions for arbitrary many function
compositions. The innermost function, here h, must only be convex, while every following function must
be convex and nondecreasing to preserve convexity.

The generalization to compositions of multivariate functions is also straightforward. For this, we
consider the function

f :ℝm !ℝ, x↦ f xð Þ≔ g ∘ hð Þ xð Þ, (3)

with h :ℝm !ℝn and g :ℝn !ℝ. Given that all of these functions are twice continuously differentiable,
convexity of f in x is equivalent to the positive semi-definiteness of its Hessian. Similar reasoning as
above leads to the sufficient condition that h must be component-wise convex, while g must be convex
and nondecreasing, see Klein et al. (2022a) for an explicit proof. Again, the recursive application of this
yields conditions for arbitrary many function compositions. Here, the innermost function must be
component-wise convex, while every following function must be component-wise convex and nonde-
creasing to preserve convexity.

In the same manner, the composite function f , compare equation (1), is monotonically increasing
(or nondecreasing) when its first derivative

f 0 xð Þ¼ g0 ∘ hð Þ xð Þ h0 xð Þ≥ 0 (4)

Figure 1. Compositions of univariate convex functions. h xð Þ¼ 0:2x2�1, g1 xð Þ¼ s xð Þ, g2 xð Þ¼ s �xð Þ.
Note that g1 xð Þ is convex and nondecreasing, thus the composite function g1 ∘ hð Þ xð Þ is convex. g2 xð Þ is

convex but decreasing, and the composite function g2 ∘ hð Þ xð Þ is not convex.
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is nonnegative, which is fulfilled when both g and h are nondecreasing functions (g0 ≥ 0,h0 ≥ 0). The
recursive application of this yields again conditions for arbitrary many function compositions. When all
functions within a composite function are nondecreasing, the overall function is nondecreasing, see
g1 ∘ hð Þ xð Þ for x≥ 0 in Figure 1 for an example. In this case, the generalization to compositions of vector-
valued functions leads to the condition that all functions must be component-wise nondecreasing.

These basic ideas will be applied in both the mechanical requirements of the proposedmodel, compare
Section 3.2, and in the construction of suitable network architectures, compare Section 4.2.

3. Parametrized hyperelastic constitutive modeling

Hyperelastic constitutive models describe the behavior of materials such as rubber for large, reversible
deformations. For this, a hyperelastic potential is formulated which corresponds to the strain energy
density stored in the body due to deformation. In this work, the hyperelastic potential depends both on the
strain and additional parameters characterizing thematerial. In Section 3.1, themechanical conditions that
the constitutive model should fulfill are introduced. The general framework for a model formulated in
strain invariants which fulfills these conditions is introduced in Section 3.2.

3.1. Constitutive requirements for parametrized hyperelasticity

The mechanical conditions of hyperelasticity are now briefly discussed. For a detailed introduction, the
reader is referred to Holzapfel (2000) and Ebbing (2010). The parametrized hyperelastic potential

ψ :GLþð3Þ ×Rn !R, ðF; tÞ↦ ψðF; tÞ (5)

corresponds to the strain energy density stored in the bodyℬ⊂ℝ3 due to the deformation φ :ℬ!ℝ3. It
depends on the deformation gradient F ¼Dφ and the parameter vector t ∈ℝn. With the stress being
defined as the gradient field

P¼ ∂ψ F; tð Þ
∂F

, (6)

the (i) second law of thermodynamics is fulfilled by construction. The principle of (ii) objectivity states
that a model should be independent of the choice of observer, which is formalized as

ψ QF; tð Þ¼ψ F; tð Þ ∀F ∈GLþ 3ð Þ, Q∈SO 3ð Þ, t ∈ℝn: (7)

Also, the model should reflect the materials underlying (an-)isotropy, which corresponds to the
(iii) material symmetry condition

ψðFQT ; tÞ¼ψðF; tÞ ∀F ∈GLþð3Þ, Q∈G⊆SOð3Þ, t ∈Rn, (8)

whereG denotes the symmetry group under consideration. The (iv) balance of angularmomentum implies
that

∂ψ F; tð Þ
∂F

FT ¼F
∂ψ F; tð Þ
∂FT ∀F ∈GLþ 3ð Þ, t ∈ℝn: (9)

Furthermore, we consider (v) polyconvex potentials which allow for a representation

ψ F; tð Þ¼P ξ; tð Þwith ξ ≔ F,cofF,detFð Þ, (10)

where P is a convex function in ξ. Note that polyconvexity does not restrict the potential’s functional
dependency on t. While the notion of polyconvexity stems from a rather theoretical context, it is also of
practical relevance as it is the most straightforward way of fulfilling the ellipticity condition

a⊗ bð Þ : ∂
2ψ F; tð Þ
∂F∂F

: a⊗ bð Þ≥ 0 ∀a, b∈ℝ3: (11)
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Also known as material stability, this condition leads to a favorable behavior in numerical applications.
Finally, a physically sensible stress behavior requires fulfillment of the (vi) growth condition

ψ!∞ as det F! 0þ ∨ det F!∞ð Þ, (12)

as well as a stress-free reference configuration F ¼ I , also referred to as (vii) normalization

P I ; tð Þ¼ 0 ∀t ∈ℝn: (13)

In the most general case, no mechanical condition restricts the functional dependency of the potential
ψ F; tð Þ in the parameters t. However, for some applications, it may be well motivated to assume that the
potential is a monotonically increasing function in the parameters. This (viii) monotonicity condition is
formalized as

∂ψ F; tð Þ
∂ti

≥ 0 ∀i∈ℕ≤ n, F ∈GLþ 3ð Þ, t ∈ℝn: (14)

Note that this does not implymonotonicity of the components ofPðF; tÞ in t, whichwouldmean that every
component of the mixed second derivative

∂P F; tð Þ
∂t

¼ ∂
2ψ F; tð Þ
∂F∂t

(15)

would have to be nonnegative. However, formulations which fulfill equation (15) could easily become too
restrictive. For example, theymight lead to potentials which are convex inF alone instead of the extended
set of arguments of the polyconvexity condition, compare equation (10). However, convexity of the
potential in F is not compatible with a physically sensible material behavior (Yang Gao et al., 2017).
Thus, the monotonicity condition equation (14) is applied throughout this work.

Note that additional conditions on a physically sensible behavior of the hyperelastic potential can be
formulated, for example, the energy normalization ψðI ; tÞ¼ 0 ∀t ∈Rn (Linden et al., 2023). However,
throughout this work, we focus on the representation of the stress, meaning the gradient of the potential.
Still, most conditions presented in this section are formulated in the hyperelastic potential, mainly for a
convenient, brief notation.

3.2. Invariant-based modeling

By formulating the potential ψ in terms of invariants of the right Cauchy–Green tensor C¼FTF,
conditions (ii–iv) can be fulfilled. Throughout this work, isotropic material behavior is assumed, that
is, G¼ SO 3ð Þ in equation (8). In this case, three polyconvex invariants

I1 ¼ tr C, I2 ¼ tr cof Cð Þ, I3 ¼ det C, (16)

are considered. Then, the potential can be reformulated as2

ψ :Rm ×Rn !R, ðI; tÞ↦ ψðI; tÞ, (17)

with

I¼ðI1, I2, I3, I∗3Þ∈R4, I∗3 ¼� ffiffiffiffi
I3

p
, (18)

where the additional polyconvex invariant I∗3 is important for the model to represent negative stress
values, compare Klein et al. (2022a). The invariants are nonlinear functions in the arguments of the
polyconvexity condition, compare equation (10). Thus, following Section 2, the potential ψ must be
convex and component-wise nondecreasing in I to preserve the polyconvexity of the invariants. By this,
the overall potential fulfills the (v) polyconvexity condition. Note that this general form of the potential
does not yet fulfill conditions (vi–vii), which ensure a physically sensible stress behavior of the model.

2 Note that ψ F; tð Þ and ψ ℐ; tð Þ are different functions, but in the interest of readability, the same symbols are used.
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In the analytical case, an explicit choice of functional relationship for the hyperelastic potential has to
be made, which fulfills all above-introduced conditions. One such choice is the Neo–Hookean model

ψnh I1, I3; tð Þ¼ μ tð Þ
2

I1�3�2 ln
ffiffiffiffi
I3

p� �þ λ tð Þ
2

ffiffiffiffi
I3

p �1
� �2

: (19)

Here, the Lamé parameters λ tð Þ,μ tð Þ are parametrized in terms of t∈ℝ. We remark that there exist
different representations of material parameters, for example, the Lamé parameters can be calculated by
the Young’s modulus E and the Poisson’s ratio ν by

μ¼ E
2 1þ νð Þ , λ¼ Eν

1þ νð Þ 1�2νð Þ : (20)

While some analytical models base their functional relationship on physical reasoning, such as the
Henckymodel (Hencky, 1928; Neff et al., 2016), most constitutive models are of heuristic nature. Simply
put, the fulfillment of the objectivity condition by the Neo-Hookean model has a solid mechanical
motivation, while its linear dependency on I1 has not and is simply a man-made choice. The following
section discusses how such limitations can be circumvented by applyingNNs as highly flexible functions.

4. Parameterized, physics-augmented neural network model

As discussed in the previous section, the formulation of parametrized polyconvex potentials requires
functions that are convex and nondecreasing in several strain invariants. At the same time, the functional
relationship in the additional parameters should be either a general one or monotonically increasing,
respectively, compare equation (14). Instead of making an explicit choice for such a formulation, we
represent it by a neural network (NN), which can generally represent arbitrary functions (Hornik, 1991).

4.1. Physics-augmented model formulation

To incorporate the constitutive requirements introduced above in Section 3, the NN is only a part of the
overall PANN material model given by

ψPANNðI; tÞ¼ψNNðI; tÞþψgrowthðJÞþψstressðJ; tÞ, (21)

which is an extension of the model proposed by Linden et al. (2023) with parametric dependencies. The
overall flow and structure of the model are visualized in Figure 2.

In equation (21), ψNN ℐ; tð Þ denotes the partially input-convex neural network (pICNN), which is
convex and nondecreasing in I and arbitrary (or monotonically increasing) in t. In Section 4.2,

Figure 2. Illustration of the PANN-based constitutive model. The pICNN is convex and nondecreasing in
the invariants I while representing arbitrary (or monotonically increasing) functional relationships in

the additional parameters t.
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different pICNN architectures are discussed. To this point, ψNN is treated as a general, sufficiently
smooth function. The remaining terms in equation (21) ensure a physically sensible stress behavior of
the model. In particular, they ensure the growth and normalization conditions, compare equations
(12) and (13). With the analytical growth term

ψgrowth Jð Þ≔ Jþ1
J
�2

� �2

(22)

and the normalization term introduced by Linden et al. (2023)

ψstress J; tð Þ≔ �n tð Þ J, (23)

the polyconvexity of the model is preserved, compare Linden et al. (2023) for a discussion. Here,

n tð Þ≔ 2
∂ψNN

∂I1
tð Þþ2

∂ψNN

∂I2
tð Þþ∂ψNN

∂I3
tð Þ�∂ψNN

∂I∗3
tð Þ

� �				
F = I

∈ℝ (24)

is a weighted sum of derivatives of the pICNN potential with respect to the invariants for the undeformed
state F ¼ I .

In most applications, the stress, meaning the gradient of the potential, compare equation (6), is of
interest rather than the potential itself. Here, the gradient of the potential can be evaluated either by using
automatic differentiation, or by calculating the derivatives of the NN potential in an explicit way, compare
Franke et al. (2023).

4.2. pICNN architectures

Different pICNN architectures applicable to the model are now discussed, which are all based on feed-
forward neural networks (FFNNs). From a formal point of view, FFNNs are multiple compositions of
vector-valued functions (Aggarwal, 2018). The components are referred to as nodes or neurons, and the
function acting in each node is referred to as activation function. The simple structure and recursive
definition of FFNNs make them a very natural choice for constructing convex functions. In a nutshell,
when the first layer is component-wise convex and every subsequent layer is component-wise convex and
nondecreasing, the overall function is convex in its input, compare Section 2. This can also be adapted to
partially convex functions, as proposed by Amos et al. (2017).

Definition 1 (pICNNs). The FFNN

P :ℝm ×ℝn !ℝ,ðx,yÞ↦Pðx,yÞ (25)

is called a pICNN, if P is convex w.r.t. x.

In the following, three different pICNN architectures are described. The interrelation between the
two inputs and the overall complexity gets gradually more pronounced from Type 1 to Type 3, with
Type 3 being a slightly adapted version of the architecture proposed by Amos et al. (2017). The more
complex pICNN architectures can be reduced to the simpler ones by constraining a subset of their
parameters to take on specific values. For explicit proofs of convexity, the reader is referred to Klein
et al. (2022a) and made aware of the fact that, when investigating convexity in x, the influence of the
nonconvex input y can be seen as an additional bias which does not influence convexity in x. In addition,
an adapted version of the simplest pICNN architecture, which is monotonically increasing in y, is
discussed. In general, the other two pICNN architectures could be adapted to be monotonically
increasing in y.

Note that for representing a parametrized polyconvex potential, the pICNN must be convex and
nondecreasing in x, as discussed in Section 3.2. This requires some adaptions to the general pICNN
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architectures. The adaptions are discussed after introducing the general architectures, and the
adapted architectures are visualized in Figure 3 architectures for one specific choice of nodes and
layers.

Proposition 1 (pICNN—Type 1). The pICNN with input x ¼: x0, y ¼: y0, output
Pðx, yÞ≔ xHxþ1 ∈ℝ, and Hx, Hy hidden layers

yhþ1 ¼ σh W ½yy�
h yhþb½y�h


 �
∈Rnh , h¼ 0,…,Hy,

x1 ¼ ~σ0 W ½xx�
0 x0þb½x�0 þW ½xy� yHyþ1


 �
∈Rm0 ,

xhþ1 ¼ ~σh W ½xx�
h xhþb½x�h


 �
∈Rmh , h¼ 1,…,Hx

(26)

is convex in x given that the weights W xx½ �
h are nonnegative for h≥ 1 and the activation functions ~σh are

convex and nondecreasing for h≥ 0. The remaining weights, all biases b, and the activation functions σh
can be chosen arbitrarily.

Figure 3. Different pICNN architectures for the representation of the neural network potential ψNN. For
Type 1–3, the NN is convex and nondecreasing inI, and can take arbitrary functional relationships in t. In

addition, for Type 1 M, the NN is monotonically increasing in t.
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Proposition 2 (pICNN—Type 2). The pICNNwith input x ¼: x0, y ¼: y0, outputPðx, yÞ≔ xHþ1 ∈ℝ,
and H hidden layers

yhþ1 ¼ σh W ½yy�
h yhþb½y�h


 �
∈Rnh , h¼ 0,…,H,

xhþ1 ¼ ~σh W ½xx�
h xhþW ½xx0�

h x0þW ½xy�
h yhþb½x�h


 �
∈Rmh , h¼ 0,…,H

(27)

is convex in x given that the weights W ½xx�
h , h ≥ 1 are nonnegative and the activation functions ~σh are

convex and nondecreasing for h≥ 0. The remaining weights, all biases b, and the activation functions σh
can be chosen arbitrarily.

Proposition 3 (pICNN—Type 3). The pICNN with input x≕ x0,y≕ y0, output P x, yð Þ≔ xHþ1 ∈ℝ,
and H hidden layers

yhþ1 = σh W yy½ �
h yhþb y½ �

h


 �
∈ℝnh , h= 0,…,H,

xhþ1 = ~σh W xx½ �
h xh ∗ ~W

xy½ �
h yhþ~b

x½ �
h

h i
þ

� �
þ

�

W xx0½ �
h x0 ∗ ~W

x0y½ �
h yhþ~b

x0½ �
h

h i
þ

� �
þ

W xy½ �
h yhþb x½ �

h

�
∈ℝmh , h= 0,…,H

(28)

is convex in x given that the weights W xx½ �
h , h≥ 1 are nonnegative and the activation functions ~σh are

convex and nondecreasing for h≥ 0. The remaining weights, all biases b, and the activation functions σh
can be chosen arbitrarily.

Proposition 4 (pICNN—Type 1 M). The pICNN with input x ¼: x0, y ¼: y0, output
P x,yð Þ≔ xHxþ1 ∈ℝ, and Hx, Hy hidden layers

yhþ1 ¼ σh W ½yy�
h yhþb½y�h


 �
∈Rnh , h¼ 0,…,Hy,

x1 ¼ ~σ0 W ½xx�
0 x0þb½x�0 þW ½xy� yHyþ1


 �
∈Rm0 ,

xhþ1 ¼ ~σh W ½xx�
h xhþb½x�h


 �
∈Rmh , h¼ 1,…,Hx

(29)

is convex in x and monotonically increasing in y given that the weights W ½xy�, W ½xx�
h , h≥ 1, and

W yy½ �
h , h≥ 0, are nonnegative, the activation functions ~σh, h≥ 0, are convex and nondecreasing, and

the activation functions σh, h≥ 0, are nondecreasing. If at least one activation function σh is not convex,
the pICNN is not convex in y. The remaining weights and all biases b can be chosen arbitrarily and the
activation functions σh.

To construct pICNNs which are convex and nondecreasing in x, also the weights acting directly on x
must be nonnegative. This means that for all types,W xx½ �

h has to be nonnegative for all h. Both Type 2 and
Type 3 use so-called passthrough layers, which pass the argument x into every hidden layer. In
conventional (p)ICNNs, passthrough layers have a significant benefit. Here, the NNmust not necessarily
be nondecreasing in the input, as naturally, convex functions can also be decreasing, compare Section 2.
Thus, the weights acting directly on the input may take positive or negative values. Using passthrough
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layers exploits this benefit in every layer of the NN. However, as in the application to polyconvexity, also
the weights of the passthrough layer W xx0½ �

h must be nonnegative, their benefit is limited.
Furthermore, as only the gradient of the potential is considered in this work, compare equation (6), all

contributions to the output layerwhich are independent of the invariants are omitted, such as the bias in the
output layer and the last two parameter layers of Type 2.

Throughout this work, the convex and nondecreasing Softplus activation function, compare Figure 1,
is applied in all hidden layers for both σh and ~σh, except for Type 1M, where themonotonically increasing
but nonconvex Sigmoid activation function is applied in the first layer of the parameter input. In the output
layer, a linear activation function is applied. By this, the potential is infinitely continuously differentiable
in x. Type 1 and Type 2 are also infinitely continuously differentiable in y. However, due to the application
of the ReLu function in Type 3, this architecture is not continuously differentiable in y. This could be
circumvented by applying any positive and continuously differentiable function instead of ReLu, for
example, the Softplus function. Note again that the adapted architectures are visualized in Figure 3 for one
specific choice of nodes and layers.

5. Numerical examples

In this section, the models proposed in this work are calibrated to data generated with analytical
parametrized potentials. In this way, generating datasets with a large variety of parameter combinations
and deformation scenarios is straightforward, which helps providing first insights to the behavior of the
parametrized PANN models. In Section 5.1, the models are calibrated to data generated with a Neo-
Hookean potential including one parameter. In Section 5.2, the models are calibrated to data generated
with a Neo-Hookean potential which includes two parameters which are inspired by a 3D-printing
process.

5.1. Scalar-valued parametrization

5.1.1. Data generation
As a first proof of concept, the models proposed in Section 4 are calibrated to data generated with the
parametrized Neo-Hookean potential introduced in equation (19). For this, three different parametrizations

μ tð Þ=
0:5þ2t, Case A

8t2�8tþ2:5, Case B

�8t2þ8tþ0:5, Case C

0
B@ , λ tð Þ= κ�2

3
μ tð Þ, t∈ 0,1½ �, (30)

of the Lamé parameters μ, λ with a constant bulk modulus κ¼ 100 are applied. The different parame-
trizations are chosen such that the hyperelastic potential has both convex and concave dependencies on
the parameter t, compare Figure 4. Thus, the pICNN Types 1–3 are examined, meaning the architectures
which represent arbitrary functional relationships in the parameter. Overall, discrete values for both the
deformation gradient F and the scalar parameter t have to be sampled for the data generation, resulting in
datasets of the form

D¼ 1F, 1t; 1P
� �

,… nFð , nt; nPÞ� �
, (31)

where in each tuple, the prescribed deformation gradient iF and the parameter it have a corresponding first
Piola–Kirchhoff stress iP. As the data is generated with an analytical potential, also the values of the
potential ψ iF, itð Þ are available and could be included in the dataset. However, as real-world experiments
only provide stress values, this would be a less general approach. Also, even when data on the potential is
available, including it in the calibration process does barely improve the model quality (Klein et al.,
2022a). Thus, the potential is calibrated only through its gradients, which is referred to as Sobolev training
(Vlassis and Sun, 2021).
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Following Fernández et al. (2022), the sampling of the stress–strain states is motivated by physical
experiments which could also be applied in experimental investigations. In particular, a uniaxial tension
stress state, a biaxial tension stress state, and a shear deformation state are applied, where each load case
consists of 101 datapoints, and the data is generated by numerically solving the underlying equation
systems for each load case. The uniaxial tension is applied in x-direction with F11 ∈ 0:5,1:5½ �, the
equibiaxial tension is applied in x� y-direction with F11 ¼F22 ∈ 0:5,1:5½ �, and simple shear is applied
with F12 ∈ �0:5,0:5½ �. Since hyperelastic potentials are usually formulated in terms of strain invariants,
compare Section 3.2, for the test dataset to be representative, the space of invariants should be considered
rather than the space of deformation gradients. Thus, for testing purposes, two general deformationmodes
are used, corresponding to an interpolation of the training cases in the invariant space. For this, the
deformation gradient

F¼
λ 0 0

0 λm 0

0 0 F33

2
64

3
75, P33 ¼ 0, λ∈ 0:5,1:5½ � (32)

is applied, where F33 is calculated by solving the corresponding system of equations. This deformation
gradient is inspired by Baaser et al. (2013), where a similar deformation is applied to sample the space of
isotropic invariants at incompressibility. Form¼�0:7, the deformation state, denoted as test α, represents
an interpolation of uniaxial tension and shear (cf. Figure 5, first column). Corresponding to m¼�0:18,
test β interpolates uniaxial and biaxial tension (cf. Figure 5, second column).

Furthermore, a mixed shear-tension deformation mode is investigated, compare “test 3” in Fernández
et al. (2021). Here, the deformation gradient

F ¼
1þ0:5λ 0:4λ 0

0 F22 0

0 0 F33

2
64

3
75, P22 ¼P33 ¼ 0, λ∈ �1,1½ � (33)

is considered, where F22,F33 are calculated by solving the corresponding system of equations. Surpris-
ingly, despite seeming like a more general deformation gradient than equation (32), in the invariant space,
this load case is almost identical to uniaxial tension (cf. Figure 5, third column). Thus, the mixed shear-
tension test as introduced in Fernández et al. (2021) for a metamaterial model with cubic symmetry, is not
as general for isotropic materials, and for most investigations to follow, test α and β are applied.

0 0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

(
)

A B C

0 0.2 0.4 0.6 0.8 1

98.5

99

99.5

(
)

A B C

Figure 4. Three different parametrizations (Cases A, B, C) of the Lamé coefficients μ tð Þ and λ tð Þ in the
Neo-Hookean model.
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It should be noted that in this work, only isotropic material behavior is considered, which allows for the
generation of general deformation modes using only main diagonal components of the deformation
gradient. For general anisotropic materials, compare Ebbing (2010), this strategymight not be applicable.
Then, other data generation strategies such as extracting deformation modes out of complex FE
simulations (Kalina et al., 2023), or sampling the space of physically sensible deformation gradients
(Kunc and Fritzen, 2019) could be applied. Nevertheless, the test cases applied in this work and
particularly Figure 5 demonstrates that the generality of a deformation mode should always be investi-
gated in the invariant space, rather than only investigating deformation gradients, compare Kalina et al.
(2022) and Kalina et al. (2023).

5.1.2. Model preparation and calibration
In this example, the pICNN architectures with an arbitrary functional relationship in the parameter t are
applied, that is, Type 1–3. The hyperparameters, that is, the number of nodes and layers, of the different
pICNN architectures described in Section 4.2 are chosen such that they are in the same order of magnitude
for all models. The number of nodes and layers are visualized in Figure 3. The total number of trainable
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Figure 5. Load paths of the test cases in the invariant space for μ¼ 1:5. First row: test α, second row: test
β, and third row:mixed shear-tension test. First column: I1� I2 plane, second column: I1� I3 plane, third

column: I2� I3 plane.
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parameters for the models using the Type 1–3 pICNNs are 272, 516, and 580, respectively. For the model
calibration, the loss function given as the mean squared error

MSE¼ 1
9lmn

Xl

i¼1

Xm
j¼1

1
wij

Xn
k¼1

ijkP�P ikF; j t
� ��� ��2 (34)

is minimized. Here, the outer loop over i corresponds to the l load paths in the calibration dataset. Each
load path is combined withm different, fixed t values, where the sum over j corresponds to the values of t.
Finally, for one fixed combination of load path and parameter t, the weight is calculated according to the
norm

wij ¼ 1
n

Xn
k¼1

ijkP
�� ��, (35)

and the innermost sum over k corresponds to the n different deformation gradients. For the evaluation of
the loss after the model calibration, all weights are set to one, that is,wij ¼ 1. The models are implemented
in TensorFlow 2.10.0, using Python 3.10.9. For the optimization, the Adam optimizer is used with a
learning rate of 0.002 and 7,000 epochs. The full batch of training data is used with TensorFlow’s default
batch size. Although the number of parameters is in the same order of magnitude for all model
architectures, it should be noted that the calibration process is affected by many hyperparameters
(Nakkiran et al., 2021), which suggests that the optimal calibration process for each pICNN architecture
might be different. Nevertheless, with the applied calibration strategy, all model architectures show
excellent results in the examples to follow.

Study I: For the calibration dataset, the uniaxial, biaxial, and shear loads are combined with
t∈ 0,0:2,0:4,0:6,0:8,1f g. Thus, the calibration dataset consists of 1,818 tuples. For the test dataset,
the test load cases (test α and test β) are combined with all remaining 195 values for t not included in the
calibration, thus consisting of 19,695 tuples. For this study, the PANNmodel as described in Section 4 is
applied, with three different versions using the pICNN architectures Type 1–3 as described in 4.2. Each
model is calibrated five times to each parametrization case, where the model with the worst test loss is
excluded.

Study II: For the calibration dataset, the uniaxial, biaxial, and shear-tension loads are combined with
t∈ 0,0:1,0:9,1f g, yielding a calibration dataset with 1,212 tuples. For the test dataset, the mixed shear-
tension test is combinedwith the 197 remaining values for t not included in the calibration, thus consisting
of 19,897 tuples. For this study, themodel as described in Section 4 is adapted in such away that it does not
include the normalization term equation (13). Here, the pICNN architecture Type 1 is applied. One model
instance with the normalization condition, and one without is calibrated. The models are calibrated one
time to the parametrization case A.

5.1.3. Results
Study I: In Table 1, theMSE values of the calibrated models are presented for all pICNN architectures and
all parametrization cases. In general, all pICNN architectures are able to interpolate the data for all

Table 1. Average log10 MSE for the scalar-valued parametrization

Calibration Test

Case A Case B Case C Case A Case B Case C

Type 1 �4.54 �4.44 �5.24 �3.63 �2.72 �2.47
Type 2 �4.55 �3.26 �4.31 �3.74 �2.99 �2.15
Type 3 �5.42 �4.74 �3.62 �5.90 �3.49 �3.75

Note. Four best-calibrated model instances for study I for all parametrization cases and pICNN types.
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parametrization cases and also show excellent performance on the test dataset for all parametrizations. In
general, the pICNN Type 3 performs better on the test dataset than the remaining architectures. However,
due to the simplicity of the examined data, no premature conclusions about the general performance of the
different architectures should be drawn. Even the architecture with the lowest complexity might be
sufficiently flexible in practical applications. Furthermore, the reduced complexity of Type 1 might be
advantageous in some applications, for example, when implementing the model in a finite-element code.
TheMSEswere evaluated for the test load cases (test α and β) and all values of t are visualized in Figure 6.
Not surprisingly, themodels perform better for values of twhichwere included in themodel calibration. In
particular for parametrization A and C, the pICNN Type 3 performs way better than the other architec-
tures. This superior performance of pICNN Type 3 might be explained by the multiplicative operations
between invariants and parameters in its architecture, which enables it to more accurately and easily
describe the Neo-Hookean potential used for data generation, compare equation (19). Note that, when
leaving the training values of t, theMSE increases quite quickly for Type 1 and 2, which could be a sign of
overfitting in the parameter t. For parametrization B, the pICNN architecture 3 shows a similar behavior
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(b) Parametrisation B
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(c) Parametrisation C

Figure 6. Evaluation of the test cases. Continuous lines denote the average of log10 MSE, while shaded
areas denote the standard deviation of log10 MSE.
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compared to the other pICNN architectures. While pICNN Type 1 and 2 have quite similar prediction
qualities between different calibration instances, pICNN Type 3 has a higher discrepancy between
different calibration instances, as indicated by the shaded areas.

For the following investigation, a random instance of the four trained models was chosen. In Figure 7,
some stress predictions of the models are visualized for the parametrization case C. On the top row, a
model using a Type 1 pICNN is evaluated on test α, while on the bottom row, a model using a Type
3 pICNN is evaluated on test β. On the left-hand side, the models are evaluated for values of t used in the
calibration, while on the right-hand side, the models are evaluated for values of t not used in the
calibration. In all cases, the model has to extrapolate in the load case. The interpolation is excellent for
both evaluated models. For Type 1, the evaluation for t¼ 0:3 shows some visible deviations from the
ground truth. This case has a log10 MSE of �2.66. Thus, with the MSEs of Figure 6 in mind, this is a
representative case for the less good model predictions. And still, the prediction quality might be good
enough for most practical applications. The pICNN Type 3 is able to also perfectly make predictions at
t¼ 0:5, although themagnitude of the stress components differs by a factor of ≈ 4 for different values of t.
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Figure 7.Results for parametrization case C, evaluated for the test cases. Dashed lines and points denote
the data, while continuous lines denote the model prediction.
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Study II: In Figure 8, a comparison is made between amodel which fulfills the normalization condition
of equation (13) by construction and one which only learns to approximate the condition through the
calibration dataset. This case includes values of t only on the edges of its parameter domain and is here
evaluated for the value in the middle. While for the model which fulfills the normalization condition by
construction, there are some significant deviations from the ground truth, it still fulfills the normalization
condition in an exact way. The model which does not fulfill the normalization condition by construction
has to learn it by the data which fulfill this property. While this indeed works out for the values of t
included in the calibration dataset, for the case visualized here it is violated quite obviously. This is despite
the used deformation mode, the mixed shear-tension test, being very close to the uniaxial deformation
mode contained in the training set, compare Figure 5. This example demonstrates the benefit of fulfilling
mechanical conditions by construction, in particular for the generalization of the model.

5.2. Vector-valued parametrization with monotonicity condition

5.2.1. Data generation
In the next example, the Neo-Hookean potential

ψnh I1, I3; tð Þ¼ μ tð Þ
2

I1�3�2 ln
ffiffiffiffi
I3

p� �þ λ

2

ffiffiffiffi
I3

p �1
� �2

(36)

is considered, where μ tð Þ is parametrized in t¼ G0,τ0
� �

∈ 0,1½ �2 and λ¼ 100¼ const. The paramet-
rization

μ tð Þ= 2:5 tanh Hv, Hv = 1:7G2 ln τ̂,

Ĝ = 0:6þ0:4G0, τ̂ = 1:5þ4:5τ0,
(37)

is inspired by a 3D printing process, where a liquid photopolymer resin is hardened by exposing it to
ultraviolet light for a given time, compareValizadeh et al. (2021). The properties of the final solidmaterial
depend on both the light intensity, which is determined through the greyscale value Ĝ, and the time τ̂
the light is applied on the resin. Here, these two parameters are parameterized in a physically sensible
range through G0, which is associated with the light intensity, and τ0, which is associated with the
exposure time for which the light is applied on the resin. The parametrization consists of three ideas. First
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Figure 8.Results for parametrization case C, evaluated for the mixed shear-tension case. In this case, the
model was only calibrated on the edges of the parameter domain of t, and evaluated in themiddle. Dashed

lines and points denote the data, while continuous lines denote the model prediction.
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of all, the shear modulus μ is influenced by both G0 and τ0. In particular, the same shear modulus can be
achieved by different combinations of G0,τ0

� �
. This is reflected by the intermediate quantityHv, compare

equation (37). Secondly, the shear modulus is bounded from above, which is reflected by the tanh
function which receives Hv as an input. Lastly, the shear modulus is a monotonically increasing function
in G0,τ0
� �

, which reflects the physical observation that the shear modulus increases when increasing the
light intensity or the light exposure time. In Figure 9, these characteristics are visualized.

The deformation gradients are sampled as described in Section 5.1.1. For the calibration dataset, nine
parameter combinations t¼ G0,τ0

� �
are sampled, compare Figure 9. For the test dataset, two μ-iso-curves

are considered for μ∈ 1:4,2:4f g, compare Figure 9. For each iso-curve, 100 G0,τ0
� �

tuples are sampled.
Overall, this results in a calibration dataset with 2,727 tuples and a test dataset with 20,200 tuples.

5.2.2. Model preparation and calibration
In this example, the pICNN architecture with a monotonically increasing functional relationship in the
parameter t is applied, that is, Type 1 M. The number of nodes and layers is visualized in Figure 3, where
the total number of trainable parameters is 280. For the model calibration, all stress values are normalized
by the inverse mean Frobenius norm of all tuples in the calibration dataset. Then, the loss function is given
as the mean squared error

MSE¼ 1
9n

Xn
i¼1

1
wi

iP�P iF; it
� ��� ��2 (38)

is minimized, where n is the number of tuples in the calibration dataset. The sample weight

wi ¼ iP
�� ��þ1≥ 1 (39)

is calculated for each single tuple and used to encourage better accuracy of the model when predicting
small stress values. For the optimization, the SLSQP optimizer is used.

5.2.3. Results
In Table 2, the average log10 MSE of the four model instances with the best test MSE, as well as the log10
MSE of the model instance with the best test MSE are presented. The performance on both the calibration
and the test dataset is excellent. In Figure 10, the stress predictions for the test cases forHv ∈ 1:4,2:4f g are
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Figure 9.Dependency of the shearmodulus μ on the vector-valued, 3D printing-inspired parametrization
in terms of G0, τ0
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visualized for the best model instance. The calibrated model is evaluated for 100 different G0,τ0
� �

combinations on each μ-iso-curve. For Hv ¼ 2:4, the model perfectly learns the invariance of Hv in
G0,τ0
� �

. Thus, the model predictions for different G0,τ0
� �

combinations are practically identical. For
Hv ¼ 1:4, the model predictions slightly differ for different G0,τ0

� �
combinations, which is indicated by

the (fairly small) shaded areas in Figure 10. This can be traced back to the larger sensitivity of the ground

Table 2. Average log10 MSE for the vector-valued parametrization

Calibration Test

Average of best four �4.37 �3.26
Best model �5.18 �3.73

Note. Four best-calibrated model instances.
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Figure 10.Model prediction for the test cases. Dashed lines and points denote the data, while lines and
shaded areas depict the calibrated model evaluated for different parameter combinations G0,τ0
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truth models material parameter μ at smallerHV values, compare equation (36) and Figure 9. Overall, the
model performs excellent, in particular with regard to the low amount of G0, τ0

� �
samples in the

calibration dataset.

6. Conclusion

In the present work, a NN-based constitutive model for parametrized hyperelasticity is proposed. The
model is formulated in such a way that it fulfills all common constitutive conditions of hyperelasticity by
construction, without being too restrictive in the parametric dependencies of the model. In particular, by
applying pICNNs, the model fulfills the polyconvexity condition, while still being able to represent
arbitrary functional relationships in the additional parameter. In addition, a polyconvex potential is
proposed which is monotonic in the additional parameters.

As a first proof of concept, the model is calibrated to data generated with an analytical potential which
depends on one scalar-valued parameter. Different pICNN architectures with different complexities are
examined, where all architectures performed excellent. However, due to the simplicity of the examined
data, no premature conclusions about the general performance of the different architectures should be
drawn. Even the architecture with the lowest complexity might be sufficiently flexible in practical
applications, while its easier and thus computationally more efficient model structure can be advanta-
geous. Furthermore, the proposed model is calibrated to data generated with an analytical potential which
depends on multiple parameters. In this case, the dependency of the ground truth potential in the
parameters is monotonic, and the NN-based potential which by construction is monotonic in the
additional parameters is applied. Again, the model shows excellent performance.

The extension of the proposed framework to multiphysical constitutive models, such as electro-
elasticity (Klein et al., 2022b), will be straightforward, as well as the application in finite-element analysis
(Franke et al., 2023) and optimization of microstructured materials (Ortigosa et al., 2023). Furthermore,
the application to real-world experimental data of composites or polymer materials with varying
constituents is targeted.
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