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Abstract

In the framework of a multitype Bienaymé–Galton–Watson (BGW) process, the event
that the daughter’s type differs from the mother’s type can be viewed as a mutation event.
Assuming that mutations are rare, we study a situation where all types except one produce
on average less than one offspring. We establish a neat asymptotic structure for the BGW
process escaping extinction due to a sequence of mutations toward the supercritical type.
Our asymptotic analysis is performed by letting mutation probabilities tend to 0. The limit
process, conditional on escaping extinction, is another BGW process with an enriched set
of types, allowing us to delineate a stem lineage of particles that leads toward the escape
event. The stem lineage can be described by a simple Markov chain on the set of particle
types. The total time to escape becomes a sum of a random number of independent,
geometrically distributed times spent at intermediate types.
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1. Introduction

Recently, Iwasa et al. [5], [6] studied the probability that a virus placed in a hostile environ-
ment escapes extinction via a chain of mutations. As a population model, the authors suggested
using a multitype branching process with either continuous or discrete time. Branching
processes naturally arise in this context because viruses reproduce asexually and the assumption
of independence among coexisting particles is realistic provided that subcritical reproduction
conditions are assumed. Particle types, corresponding to various genome sequences of the
virus, are conveniently coded by vectors of 0s and 1s of length L, so that the set of 2L possible
types can be depicted as a graph, illustrated in Figure 1 (see the remark at the end of this section).
In the multitype setting, a mutation is a reproduction outcome when the daughter’s type differs
from the mother’s type [10].

A discrete-time version of the key result in [6] can be stated as follows. Consider a Bienaymé–
Galton–Watson (BGW) process with 2L types of particle labeled by 0-1 vectors of lengthL. Let
all the types with exactly i 1s in their vector labels have the same mean offspring number mi .
If we further assume that 0 < mi < 1 for i = 1, . . . , L while m0 > 1, and that the BGW
process starts from the subcritical form (1, . . . , 1), then, obviously, this reproduction process
is doomed to become extinct unless a sequence of mutations results in the supercritical form
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Figure 1: The network of 0-1 sequences of lengthL = 4. Here the edges represent single point mutations
of probability µ(1 − µ)L−1. More generally, mutation between two given sequences which differ at i

sites has probability µi(1 − µ)L−i .

(0, . . . , 0). Given that all point mutations have the same probability µ per site per generation,
what is the probability for such a BGW process to escape the extinction? According to [6],
the escape probability is asymptotically equal to a positive constant (which can be expressed
in terms ofm1, . . . , mL) times (1 − q)µL as µ → 0. Here, q ∈ (0, 1) stands for the extinction
probability of the branching process formed by the particles of the supercritical type in the
absence of mutations. The asserted order of smallness,O(µL), implies that, as µ → 0, we can
disregard the possibility of backward mutations, which would lead to terms of order o(µL).

Usually, asymptotic analysis of the BGW processes {Z(n)}n≥0 is performed as the time of
observation n goes to ∞, addressing the issue of long-term demographic patterns (see, for
example, [4] or [9]). On the contrary, the asymptotic approach as µ → 0, suggested by Iwasa
et al., turns to short-term demographic patterns, under the biologically relevant assumption that
mutations are rare events. In this paper we study a wide class of multitype BGW processes with
rare mutations conditioned on producing a certain type of particle. We obtain an asymptotic
BGW process with an enriched set of types, which allows us to delineate a sequence of successful
mutations leading to the desired type.

Our results are presented in the following manner. First, we consider the case in which
L = 1, where the BGW process has just two types of particle, 0 and 1. Sections 2 and 3
are devoted to a general two-type BGW process and there we introduce the main tool of our
approach—decompositions of so-called wild-type BGW processes. For a given multitype BGW
process starting from a single particle, the wild-type BGW process is a one-type BGW process
formed by particles of the original type. Whenever a mutant, a particle of another type, is
born, the mutant itself and all its forthcoming descendants are excluded from the wild-type
process. (Note that, throughout this paper, by descendants of a particle we mean not only
its direct offspring (daughters) but also its granddaughters, grand-granddaughters, and so on.)
Such a wild-type process can be viewed as a ‘first wave’ of the whole BGW process followed
by consecutive ‘waves’ of the wild-type process. This representation of the multitype BGW
processes appears to be very useful in the current context.

In Section 2 we demonstrate that the wild-type process can be viewed as a decomposable
two-type BGW process. These two subtypes are meant to distinguish between the original type
particles with different fates—those which have at least one mutant among their descendants and
those which do not. This should be compared with a refined decomposition of Section 3, where
the type-1 particles with mutant descendants are further classified into those which eventually
lead to nonextinction events and those which do not.
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Multitype Bienaymé–Galton–Watson processes escaping extinction 227

We use such decompositions as a framework for obtaining limit structures, as µ → 0,
of the BGW processes conditioned on escaping extinction. Note that in our limit theorems
the mutation rate parameter µ regulates different mutation probabilities in a rather flexible
way, allowing mutation probabilities to depend on the corresponding offspring number. It
can be biologically relevant to assume, for example, that particles with many siblings have
higher probability of undergoing mutation. In particular, in the two-type case we assume that
the forward mutation probability from type 1 to type 0 is asymptotically equal to µ times a
constant a10(k) which may depend on the corresponding family size k.

In Section 4 we present our first limit theorem (its proof is given in Section 5) which deals
with a two-type BGW process stemming from a type-1 particle withm1 ∈ (0, 1). We show that
its conditional limit can be regarded as a BGW process with immigration. The limit process
is effectively the same whether we condition just on a mutation event or we condition on a
successful mutation resulting in escape from extinction. The immigration source, corresponding
to a stem lineage leading to a desired mutation event, is turned on during a geometric time T1
with mean E(T1) = (1 −m1)

−1. The numbers of immigrants have the size-biased distribution.
(In an earlier paper [8], the geometric time to escape was obtained for a simpler version of the
two-type model using a more straightforward asymptotic analysis.)

Our careful treatment of the two-type case in Sections 2–5 confirms that the backward
mutations on the path to escape play a negligible role. Therefore, in the remaining sections
we disregard the possibility of backward mutations to simplify analysis of the BGW processes
with an arbitrary number of types. In Section 6 we introduce a sequential mutation model
and describe the corresponding wild-type BGW process. In the sequential mutation model,
mutations may occur along an interval of types starting from type L and ending at type 0. With
this model, the probability that a given daughter of a type-i particle mutates to type j < i is
assumed to be asymptotically equal to µi−j aij (k) as µ → 0, where k is the offspring number
of the mother in question. This is a natural intermediate step between the two-type case towards
the so-called network model described in Figure 1. Indeed, if in the network case we treat each
subset of 0-1 vectors with exactly i 1s as a single type i, then we arrive at a sequential mutation
model with the mutation probability between types i and j being asymptotically equivalent to(
i
j

)
µi−j , given that j < i.
The asymptotic results in Section 7 extend the theorem in Section 4 withL = 1 to sequential

mutation models with arbitrary L ≥ 1. In Section 8 we discuss the asymptotic distribution of
the total time to escape and its expected value. Finally, in Section 9 we apply the results of
Section 7 to the network mutation model.

Remark. A more realistic picture of various viral DNA sequences would distinguish among
the four bases A, C, T , and G at each of the L sites. The 0 and 1 coding system suggested
by Iwasa et al. [5], [6] describes a simplified view of the way the DNA sequences change over
time. It is well known that transitions A ↔ G and C ↔ T are much more frequent than the
transversions A ↔ C, A ↔ T , G ↔ C, and G ↔ T . If we assume that all point mutations
are transitions then it would be sufficient with the binary coding. For example, given the initial
sequence, say ACGT , and its binary code 1111, it is straightforward to recover the mutant
DNA sequence ATAT from the binary sequence 1001.

2. The wild-type BGW process in the two-type case

Consider a BGW process with two types of particle, labeled by 0 and 1, which starts from
a single particle to be called the progenitor. If Zi(n) is the number of type-i particles in
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generation n then the vector {Z0(n), Z1(n)}n≥0 forms a Markov chain describing the population
size and type structure evolving generation wise. The transition probabilities of this Markov
chain are determined by a pair of generating functions,

fi(s0, s1) = Ei (s
Z0(1)
0 s

Z1(1)
1 ), (s0, s1) ∈ [0, 1] × [0, 1], i = 0, 1,

defining the reproduction laws for the particles of types 0 and 1.
Proposition 2.1, below, deals with the corresponding wild-type process involving only those

descendants of the progenitor which did not undergo mutation. The proposition says that the
wild-type process can be viewed as a decomposable BGW process recognizing two subtypes
of the progenitor’s type 1. This construction was inspired by the well-known decomposition of
a supercritical single-type BGW process into a two-type BGW process distinguishing between
particles with infinite and finite lines of descent (see [1, p. 47]).

There are two possibilities from which to choose the type of progenitor:

B0 = {Z0(0) = 1, Z1(0) = 0},
B1 = {Z0(0) = 0, Z1(0) = 1}.

The eventB1, in turn, is the union of two disjoint events: B1m , the event that at least one mutation
occurs, and B1u , the event that the progenitor’s type will be inherited unchanged by all of its
descendants. This suggests a refined classification of type-1 particles into two subtypes, 1m
and 1u, leading to the following relations:

B1m = {Z1m (0) = 1, Z1u(0) = 0},
B1u = {Z1m (0) = 0, Z1u(0) = 1}.

We will denote by P0, P1, P1m , and P1u the probabilities conditioned on the type or subtype of
the progenitor and by E0, E1, E1m , and E1u the respective expectation operators. Set

Q1m = P1(B1m ), Q1u = P1(B1u) = 1 −Q1m .

Assume that the progenitor of type 1 has produced k = k0 + k1 daughters, with Z0(1) = k0
among them being of type 0 and Z1(1) = k1 among them being of type 1. We will label the
type-1 daughters by the numbers 1, . . . , k1 and the type-0 daughters by k1 + 1, . . . , k. Within
the particles of each type, the labeling is done uniformly at random. For an eventA concerning
the original BGW process, we will denote by A(i) its analog associated with the BGW process
stemming from the progenitor’s daughter number i. For example, the event B(i)1m

simply means
that the ith daughter of the progenitor has subtype 1m.

The next lemma is analogous to Lemma 2.1 of [3]. It concerns a random variable R taking
values 1, 2, . . . ,∞. If among the k1 progenitor’s daughters of type 1 there is at least one particle
of subtype 1m, then R is defined as the smallest number j labeling a 1m-daughter. Otherwise,
we set R = ∞. That is, for j = 1, 2, . . . ,

{R = j} = {Z1(1) ≥ j} ∩
j−1⋂
i=1

B
(i)
1u

∩ B(j)1m

and

{R = ∞} = B1u =
{Z1(1)⋂
i=1

B
(i)
1u

∩ {Z1(1) > 0}
}

∪ {Z1(1) = 0}.
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Lemma 2.1. Consider the random variable R defined above. Its conditional distribution is
given, for 1 ≤ j ≤ ∞, k0 ≥ 0, and k1 ≥ 0, by

P1(R = j | Z0(1) = k0, Z1(1) = k1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Q
j−1
1u

Q1m , 1 ≤ j ≤ k1,

Q
k1
1u
, j = ∞, k1 ≥ 1,

1, j = ∞, k1 = 0,

(2.1)

implying that

E(sR 1{R<∞}) = sQ1m

1 − sQ1u

(1 − f1(1, sQ1u)), s ∈ [0, 1),

and
Q1u = f1(0,Q1u). (2.2)

Proof. Observe that

{R = j, Z0(1) = k0, Z1(1) = k1} = {Z0(1) = k0, Z1(1) = k1, C
(i)
i , 1 ≤ i ≤ k},

where k = k0 + k1, j ∈ [1, k1], and

Ci =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
B1u , 1 ≤ i ≤ j − 1,

B1m , i = j,

B1, j + 1 ≤ i ≤ k1,

B0, k1 + 1 ≤ i ≤ k.

(2.3)

According to the key branching property, the offspring of the progenitor generate independent
trees. Therefore,

P1(Z0(1) = k0, Z1(1) = k1, C
(i)
i , 1 ≤ i ≤ k)

= P1(Z0(1) = k0, Z1(1) = k1)

k1∏
i=1

P1(Ci)

k∏
i=k1+1

P0(Ci), (2.4)

implying that
P1(R = j | Z0(1) = k0, Z1(1) = k1) = Q

j−1
1u

Q1m . (2.5)

Now it remains only to note that

P1(R = ∞ | Z0(1) = k0, Z1(1) = k1) = Q
k1
1u

for k1 ≥ 1,

P1(R = ∞ | Z0(1) = k0, Z1(1) = 0) = 1,

and that (2.2) follows from

B1u = B1 ∩ {Z0(1) = 0, R = ∞}. (2.6)

Lemma 2.2. Let {Ai}ki=1 be random events concerning the BGW process generated by a single
progenitor particle, when this particle has k daughters. The daughter versions of these events,
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{A(i)i }ki=1, are conditionally independent given that R = j , Z0(1) = k0, Z1(1) = k1, and
k0 + k1 = k with

P1(A
(i)
i | R = j, Z0(1) = k0, Z1(1) = k1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

P1u(Ai), 1 ≤ i ≤ j − 1 ∧ k1,

P1m (Ai), i = j,

P1(Ai), j + 1 ≤ i ≤ k1,

P0(Ai), k1 + 1 ≤ i ≤ k.

Proof. Let j ∈ [1, k1]. In terms of the system of events (2.3),

{R = j, Z0(1) = k0, Z1(1) = k1, A
(i)
i , 1 ≤ i ≤ k}

= {Z0(1) = k0, Z1(1) = k1, A
(i)
i ∩ C(i)i , 1 ≤ i ≤ k}.

The stated conditional independence now follows from (2.4), with events C(i)i replaced by
A
(i)
i ∩ C(i)i , and (2.5):

P1(A
(i)
i , 1 ≤ i ≤ k, R = j | Z0(1) = k0, Z1(1) = k1)

=
j−1∏
i=1

P1(Ai ∩ B1u)P1(Aj ∩ B1m )

k1∏
i=j+1

P1(Ai)

k∏
i=k1+1

P0(Ai)

= P1(R = j | Z0(1) = k0, Z1(1) = k1)

×
j−1∏
i=1

P1u(Ai)P1m (Aj )

k1∏
i=j+1

P1(Ai)

k∏
i=k1+1

P0(Ai).

Proposition 2.1. Consider a two-type BGW process starting from a single type-1 particle.
The corresponding wild-type process can be represented as a decomposable BGW process
{Z1m (n), Z1u(n)}n≥0 with two types of particle: 1m and 1u. The progenitor’s type has distri-
bution (Q1m ,Q1u) satisfying (2.2) and Q1m +Q1u = 1. The two-type reproduction law of the
{Z1m (n), Z1u(n)}n≥0 process has probability generating functions

E1u(s
Z1m (1)tZ1u (1)) = f1(0, tQ1u)

Q1u

, (2.7)

E1m (s
Z1m (1)tZ1u (1)) = f1(1, sQ1m + tQ1u)− f1(0, tQ1u)

Q1m

. (2.8)

Proof. Since

E1u(s
Z1m (1)tZ1u (1))Q1u + E1m (s

Z1m (1)tZ1u (1))Q1m = E1(s
Z1m (1)tZ1u (1)),

and due to the basic branching property,

E1(s
Z1m (1)tZ1u (1)) = f1(1, sQ1m + tQ1u),

to prove (2.7) and (2.8), it suffices to verify that

E1(s
Z1m (1)tZ1u (1) 1{B1u }) = f1(0, tQ1u).
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But this readily follows from (2.1) and (2.6):

E1(s
Z1m (1)tZ1u (1) 1{Z0(1)=0, R=∞}) = E1(t

Z1(1) 1{Z0(1)=0, R=∞})
= f1(0, tQ1u).

Finally, the claimed independence of particles in the framework of the new two-type system
follows from Lemma 2.2.

3. A refined decomposition of the wild-type BGW process

With the same two-type BGW process as in the previous section, let us now distinguish
between two kinds of type-0 particles which will be labeled as 0e and 0d, depending on
whether the BGW process steming from a given 0-particle escapes extinction (0e) or dies
out (0d). We wish to refine our earlier classification of type-1 particles and divide the subtype
1m into sub-subtypes 1e and 1d. A 1e-particle is by definition a 1m-particle which has at
least one 0e-descendant. Similarly, a 1d-particle is a 1m-particle which has no 0e-descendants,
i.e. only 0d-descendants. LetZ1e(n) andZ1d (n) stand for the numbers of particles of subtypes 1e
and 1d in generation n. Set

Q1e = P1(Z1e(0) = 1, Z1d (0) = 0, Z1u(0) = 0),

Q1d = P1(Z1e(0) = 0, Z1d (0) = 1, Z1u(0) = 0),

so that Q1e +Q1d = Q1m .

It is well known that the extinction probabilities

qi = Pi
(

lim
n→∞(Z0(n)+ Z1(n)) = 0

)

satisfy the following pair of equations (see [1, p. 186]):

q0 = f0(q0, q1), q1 = f1(q0, q1).

Observe that Q1e = 1 − q1, given that there is a possibility for type-1 particles to produce
particles of type 0 and that m0 > 1. Indeed, if a BGW process escapes extinction, it grows
exponentially and, therefore, produces lots of type-0 particles, some of which will be classified
as 0e-particles. On the other hand, if the type-1 progenitor is classified as a subtype 1e-particle,
it will produce a 0e-descendant guaranteeing escape from extinction. This observation yields
the following equation to be used in Section 5:

1 −Q1e = f1(q0, 1 −Q1e). (3.1)

Proposition 3.1. Consider a BGW process with types 0 and 1 particles starting from a single
type-1 particle. The corresponding wild-type process can be represented as a decomposable
BGW process {Z1e(n), Z1d (n), Z1u(n)}n≥0 with the three types of particle, 1e, 1d, and 1u,
described above.
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The progenitor’s type in this representation has distribution (Q1e ,Q1d ,Q1u) and the new
three-type reproduction law is defined by

E1u(s
Z1e (1)vZ1d (1)tZ1u (1)) = f1(0, tQ1u)

Q1u

, (3.2)

E1d (s
Z1e (1)vZ1d (1)tZ1u (1)) = f1(q0, vQ1d + tQ1u)− f1(0, tQ1u)

Q1d

, (3.3)

E1e(s
Z1e (1)vZ1d (1)tZ1u (1)) = f1(1, sQ1e + vQ1d + tQ1u)− f1(q0, vQ1d + tQ1u)

Q1e

. (3.4)

Proof. It is easy to adjust Lemma 2.1 and Lemma 2.2 to verify the branching property of
the three-type process, and it directly follows from Proposition 2.1 that (3.2) holds. Now, in
view of the branching property of the three-type process,

E1(s
Z1e (1)vZ1d (1)tZ1u (1)) = f1(1, sQ1e + vQ1d + tQ1u),

and because of

E1(s
Z1e (1)vZ1d (1)tZ1u (1)) = Q1e E1e(s

Z1e (1)vZ1d (1)tZ1u (1))

+Q1d E1d (s
Z1e (1)vZ1d (1)tZ1u (1))

+Q1u E1u(s
Z1e (1)vZ1d (1)tZ1u (1)),

to prove (3.3) and (3.4), it suffices to show that the sum of the last two terms equalsf1(q0, vQ1d +
tQ1u). But this is equivalent to

E1(s
Z1e (1)vZ1d (1)tZ1u (1) 1{limn→∞ Z0(n)=0})
= E1(v

Z1d (1)tZ1u (1) 1{all 0-daughter processes die out} 1{Z1e (1)=0})
= f1(q0, vQ1d + tQ1u).

4. Limit theorem in the two-type case

In the previous two sections we considered a two-type BGW process with a general
reproduction law described by a pair of generating functions, f0(s0, s1) and f1(s0, s1). In this
section we deal with a family of two-type BGW processes labeled by a parameter 0 < µ < 1
regulating communication rates between types 0 and 1. We will assume a particular kind of
reproduction law for the type-1 particles:

f
(µ)
1 (s0, s1) =

∞∑
k=0

p1(k)(s1(1 − µa
(µ)
10 (k))+ s0µa

(µ)
10 (k))

k

=
∞∑
k=0

p1(k)(s1 + (s0 − s1)µa
(µ)
10 (k))

k. (4.1)

Here {p1(k)}∞k=0 is the distribution of the total offspring number for a type-1 particle. According
to (4.1), each out of k offspring independently chooses its type: type 1 with probability
(1 − µa

(µ)
10 (k)) or type 0 (mutation event) with probability µa(µ)10 (k). Note that the offspring

number k is independent of the mutation rateµ, while, on the other hand, mutation probabilities
may depend on the offspring number.
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In our asymptotic analysis, µ goes to 0, making mutations rare events. We will assume
uniform convergence, i.e.

sup
k≥0

|a(µ)10 (k)− a10(k)| → 0, µ → 0, (4.2)

where the limit sequence is uniformly bounded, i.e.

C ≡ sup
k≥0

a10(k) < ∞. (4.3)

Obviously, as µ → 0, f (µ)1 (s0, s1) → φ1(s1), where

φ1(s) =
∞∑
k=0

p1(k)s
k.

We assume a similar convergence for the offspring numbers of the type-0 particles:

f
(µ)
0 (s0, s1) → φ0(s0), (4.4)

where the limit generating function φ0(s) describes the limit reproduction regime of type 0 with
no mutation to type 1.

The mean of the total offspring numbers mi = φ′
i (1), i = 0, 1, is always supposed to be

positive and finite. Condition (4.4) implies that q(µ)0 → q, where q = 1 if m0 ≤ 1 (unless
φ0(s) ≡ s), and q ∈ [0, 1), q = φ0(q) if m0 > 1. In terms of the generating function,

ψ10(s) =
∞∑
k=1

kp1(k)a10(k)s
k−1, s ∈ [0, 1],

condition (4.3) ensures that ψ10(1) < ∞.

Theorem 4.1. Consider the µ-labeled two-type BGW process stemming from a type-1 particle
which satisfies conditions (4.1)–(4.4). If m1 < 1 and ψ10(1) > 0, then the probability of at
least one mutation event Q(µ)

1m
has the asymptotic behavior

lim
µ→0

Q
(µ)
1m
µ−1 = ψ10(1)(1 −m1)

−1, (4.5)

and, conditioned on at least one mutation, the process {Z1m (n), Z1u(n)}n≥0 converges in
distribution to a limit process {X1∗

m
(n),X1∗

u
(n)}n≥0, which is a decomposable two-type BGW

process described below.
Furthermore, if m0 > 1 then the probability of escaping from extinction Q(µ)

1e
has the

asymptotic behavior

lim
µ→0

Q
(µ)
1e
µ−1 = (1 − q)ψ10(1)(1 −m1)

−1, (4.6)

and, conditioned on the escape event, the process {Z1e(n), Z1d (n), Z1u(n)}n≥0 converges in
distribution to {X1∗

m
(n), 0, X1∗

u
(n)}n≥0.

Because the stated weak convergence results concern Markov chains with discrete time and
the set {0, 1, 2, . . .} as the state space, it suffices to verify convergence of the corresponding
transition probabilities (see [2]). Thus, in view of Propositions 2.1 and 3.1, this theorem is a
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consequence of three relations:

E(µ)1u
(sZ1m (1)tZ1u (1)) → φ1(t), (4.7)

E(µ)1m
(sZ1m (1)tZ1u (1)) → m1s

φ′
1(t)

φ′
1(1)

+ (1 −m1)
ψ10(t)

ψ10(1)
, (4.8)

E(µ)1e
(sZ1e (1)vZ1d (1)tZ1u (1)) → m1s

φ′
1(t)

φ′
1(1)

+ (1 −m1)
ψ10(t)

ψ10(1)
, (4.9)

as µ → 0, proved in the next section. The limit generating functions in (4.7)–(4.9) imply the
following reproduction rules in the limit process.

The limit {X1∗
m
(n),X1∗

u
(n)}n≥0 is a BGW process with types 1∗

m and 1∗
u corresponding to the

escape (stem) lineage and extinct (side) lineages, respectively. It starts with a single 1∗
m-particle,

whose reproduction law is described by the limit generating function in (4.8)–(4.9). At the time
of death, this particle either produces one 1∗

m-particle with probability m1 or zero 1∗
m-particles

with probability (1 −m1). In both cases, it also produces a random number of 1∗
u-particles: in

the former case, the generating function for the number of 1∗
u-offspring is φ′

1(s)/m1 and, in the
latter case, it is ψ10(s)/ψ10(1). It follows that, asymptotically, the stem lineage stays alive for
a geometric time T1 with mean E(T1) = (1 −m1)

−1 (cf. [8]).
Relation (4.7) says that the 1∗

u-particles reproduce themselves according to the generating
function φ1(s). Therefore, the process X1∗

u
(n) can be viewed as the number of particles in

a BGW process with a stopped immigration. Think of the stem lineage described above as
the immigration source, with every immigrant initiating an independent BGW process with
the offspring generating function φ1(s). At times 1, . . . , T1 − 1, the independent numbers of
immigrants have a common distribution with the generating function φ′

1(s)/m1. At the time T1,
when the stem lineage stops, the number of immigrants has a possibly different distribution
with the generating function ψ10(s)/ψ10(1).

Note that if the mutation probability is independent of the family size, i.e. a10(k) ≡ c,
then ψ10(s) = cφ′

1(s) and ψ10(1) = cm1, so that even the last number of immigrants has
the generating function φ′

1(s)/m1. Observe that this generating function corresponds to the
so-called size-biased version of the offspring distribution φ1(s); see, for example, [7]. In this
case, {X1∗

m
(n),X1∗

u
(n)}n≥0 becomes a size-biased version of the single-type BGW process with

the offspring generating function φ1(s), whose distinguished line is stopped at the geometric
time T1.

The three-dimensional limit process {X1∗
m
(n), 0, X1∗

u
(n)}n≥0 in the second part of the state-

ment describes conditioning on the escape event when the particle system manages not only
to produce a type-0 particle but also to escape extinction due to the supercritical reproduction
rate of type-0 particles (m0 > 1). The fact that the first component of the limit process is the
same as in the first part of the assertion confirms a common sense expectation that conditioning
on the mutation event is asymptotically equivalent to conditioning on the escape event. The
zero second component simply means that there are no particles of type 1∗

e . In other words,
the following scenario is impossible: a type-1 particle manages to produce at least one type-0
particle, but all of the mutant lineages die out.

5. Proof of Theorem 4.1

Throughout this section, we assume that (4.1)–(4.4) hold and that m1 < 1. We prove
(4.5)–(4.9) (where relations (4.6) and (4.9) additionally require thatm0 > 1) using the following
lemma.
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Lemma 5.1. As µ → 0 uniformly over (s0, s1) ∈ [0, 1] × [0, 1),

f
(µ)
1 (s0, s1) = φ1(s1)+ µ(s0 − s1)ψ10(s1)

+ o(µ(s0 − s1))+O

(
µ2(s0 − s1)

2 η(s1)

1 − s1

)
,

where η(s) = m1 − φ′
1(s) is such that η(s) ↘ 0 as s → 1.

Proof. If a �= 1 and 0 ≤ a ≤ a + b ≤ 1 then, for any k ∈ N,

0 ≤ (a + b)k − ak − kak−1b ≤ b2
k−1∑
i=1

(k − i)ai−1 ≤ kb2 1 − ak−1

1 − a
. (5.1)

These inequalities become obvious in the light of the representation

(a + b)k − ak − kak−1b = b

k−1∑
i=1

((a + b)k−i − ak−i )ai−1

= b2
k−1∑
i=1

ai−1
k−i∑
j=1

(a + b)k−i−j aj−1.

It follows from (5.1) that, for any (s0, s1) ∈ [0, 1] × [0, 1),

∣∣∣∣
∞∑
k=0

p1(k)[s1 + µ(s0 − s1)a10(k)]k − φ1(s1)− µ(s0 − s1)ψ10(s1)

∣∣∣∣
≤

∞∑
k=1

p1(k)|[s1 + µ(s0 − s1)a10(k)]k − sk1 − kµa10(k)(s0 − s1)s
k−1
1 |

≤
∞∑
k=1

p1(k)

(
µ2(s0 − s1)

2a2
10(k)

k−1∑
i=1

(k − i)si−1
1

)

≤ C2µ2(s0 − s1)
2

∞∑
k=1

p1(k)k
1 − sk−1

1

1 − s1

= C2µ2(s0 − s1)
2m1 − φ′

1(s1)

1 − s1
,

where C is as in (4.3). On the other hand, (4.1) implies that

∣∣∣∣f (µ)1 (s0, s1)−
∞∑
k=0

p1(k)[s1 + µ(s0 − s1)a10(k)]k
∣∣∣∣

≤ µ|s0 − s1|
∞∑
k=1

p1(k)k|a(µ)10 (k)− a10(k)|,

which gives the o(µ(s0 − s1)) term due to the uniform convergence condition.
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Proof of (4.5)–(4.6). The probability Q(µ)
1m

that a 1-particle will have at least one type-0
descendant is bounded from below by

p1(k)kµa
(µ)
10 (k)[1 − µa

(µ)
10 (k)]k−1

for all k = 1, 2, 3, . . .. Since ψ10(1) > 0, there exists a k such that p1(k)a10(k) > 0. Thus, in
view of condition (4.3) we can conclude that

lim sup
µ→0

µ

Q
(µ)
1m

< ∞. (5.2)

By Lemma 5.1,

f
(µ)
1 (0,Q(µ)

1u
)− φ1(Q

(µ)
1u
)+ µQ

(µ)
1u
ψ10(Q

(µ)
1u
) = o(µ)+O

(
µ2
η(Q

(µ)
1u
)

Q
(µ)
1m

)
,

which combined with (2.2) and (5.2) yields

Q
(µ)
1u

− φ1(Q
(µ)
1u
)+ µQ

(µ)
1u
ψ10(Q

(µ)
1u
) = o(µ)+O(µη(Q

(µ)
1u
)).

It follows immediately that Q(µ)
1u

→ 1 and, therefore,

φ1(Q
(µ)
1u
)−Q

(µ)
1u

µ
→ ψ10(1).

This implies (4.5), since φ1(s)− s ∼ (1 −m1)(1 − s) as s → 1.
Applying Lemma 5.1 once again we obtain

f
(µ)
1 (q

(µ)
0 , 1 −Q

(µ)
1e
)− φ1(1 −Q

(µ)
1e
)

= µ(q
(µ)
0 − 1 +Q

(µ)
1e
)ψ10(1 −Q

(µ)
1e
)+ o(µ)+O

(
µ2η(1 −Q

(µ)
1e
)

Q
(µ)
1e

)
,

where q(µ)0 → q with q ∈ [0, 1) given m0 > 1. Using (3.1), we can derive

1 −Q
(µ)
1e

− φ1(1 −Q
(µ)
1e
)

= µ(q − 1 +Q
(µ)
1e
)ψ10(1 −Q

(µ)
1e
)+ o(µ)+O(µη(1 −Q

(µ)
1e
)),

since Q(µ)
1e
/µ is bounded away from 0. Dividing by µ gives

φ1(1 −Q
(µ)
1e
)− (1 −Q

(µ)
1e
)

µ
→ (1 − q)ψ10(1),

and this implies (4.6), since φ1(s)− s ∼ (1 −m1)(1 − s) as s → 1.

Proof of (4.7)–(4.9). In view of Proposition 2.1, relation (4.7) is obvious. The other two
relations have similar proofs—here we give a proof of (4.9) based on the next observation. If
0 ≤ si ≤ si + δi ≤ 1 for i = 0, 1 and s1 < 1 then, according to (5.1),

0 ≤ f
(µ)
1 (s0 + δ0, s1 + δ1)− f

(µ)
1 (s0, s1)− R(µ)(s0, s1, δ0, δ1)

≤
∞∑
k=1

kp1(k)(δ1 + µ(δ0 − δ1)a
(µ)
10 (k))

2 1 − (s1 + µ(s0 − s1)a
(µ)
10 (k))

k−1

1 − s1 − µ(s0 − s1)a
(µ)
10 (k)

, (5.3)
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where

R(µ)(s0, s1, δ0, δ1)

=
∞∑
k=1

kp1(k)(s1 + µ(s0 − s1)a
(µ)
10 (k))

k−1(δ1 + µ(δ0 − δ1)a
(µ)
10 (k)).

Relations (3.4) and (5.3) yield

0 ≤ Q
(µ)
1e

E(µ)1e
(sZ1e (1)vZ1d (1)tZ1u (1))− R(µ)(q

(µ)
0 , s(µ), 1 − q

(µ)
0 , sQ

(µ)
1e
)

≤
∞∑
k=1

kp1(k)(sQ
(µ)
1e

+ µ(1 − q
(µ)
0 − sQ

(µ)
1e
)a
(µ)
10 (k))

2

× 1 − (s(µ) + µ(q
(µ)
0 − s(µ))a

(µ)
10 (k))

k−1

1 − s(µ) − µ(q
(µ)
0 − s(µ))a

(µ)
10 (k)

with s(µ) = tQ
(µ)
1u

+ vQ
(µ)
1d

→ t . It remains to observe that the right-hand side is O(µ2) and

R(µ)(q
(µ)
0 , s(µ), 1 − q

(µ)
0 , sQ

(µ)
1e
)

Q
(µ)
1e

=
∞∑
k=1

kp1(k)(s
(µ) + µ(q

(µ)
0 − s(µ))a

(µ)
10 (k)t)

k−1
(
s + µ

(
1 − q

(µ)
0

Q
(µ)
1e

− s

)
a
(µ)
10 (k)

)

→ m1s
φ′

1(t)

φ′
1(1)

+ (1 −m1)
ψ10(t)

ψ10(1)
.

6. The sequential mutation model

Suppose that we can distinguish between L+ 1 types of particle, labeled 0, . . . , L. Type-i
particles can only produce particles of the types 0, . . . , i, for all i ∈ [0, L]. Note that this
sequential mutation model only partially extends the previous two-type model. We prohibit
the reverse mutations for the sake of simplicity. As the asymptotic analysis of the two-type
case shows, the more general sequential model with reversed mutations should lead to the same
asymptotic behavior.

Let Zj (n) be the number of type-j particles existing at time n given that the branching
process stems from a single particle whose type is specified by the index of the probability
measure Pi . Adjusting the notation of the two-type case, set

fi(s0, s1, . . . , si) = Ei (s
Z0(1)
0 s

Z1(1)
1 · · · sZi(1)i ), (s0, s1, . . . , si) ∈ [0, 1]i+1,

and
Qiu = Pi (Z0(n) = 0 for all n ≥ 0), Qim = 1 −Qiu .

Then
Qiu = fi(0,Q1u ,Q2u , . . . ,Qiu), (6.1)

since, to avoid descendants of type 0, the progenitor itself should not have daughters of type 0
and the progenitor’s daughters should not have descendants of type 0. We split each type into
two subtypes in a way similar to the decomposition of Section 2. Consider the future of a
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particle of type i: with probability Qim , it will eventually manage to produce a particle of
type 0, in which case the particle is labeled im, otherwise, with probabilityQiu , it is labeled iu.
Arguing as in Lemma 2.1, we see that the process {ZLm (n), ZLu(n), . . . , Z1m (n), Z1u(n)}n≥0
is a decomposable 2L-type BGW process.

To describe the reproduction law in the 2L-type BGW process, observe that

Ei (s
Zim (1)
i t

Ziu (1)
i · · · sZ1m (1)

1 t
Z1u (1)
1 )

= Qim Eim (s
Zim (1)
i t

Ziu (1)
i · · · sZ1m (1)

1 t
Z1u (1)
1 )

+Qiu Eiu(s
Zim (1)
i t

Ziu (1)
i · · · sZ1m (1)

1 t
Z1u (1)
1 ),

where the left-hand side is equal to

fi(1, s1Q1m + t1Q1u , . . . , siQim + tiQiu)

and
Qiu Eiu(s

Zim (1)
i t

Ziu (1)
i · · · sZ1m (1)

1 t
Z1u (1)
1 ) = fi(0, t1Q1u , t2Q2u , . . . , tiQiu).

It follows that

Eiu(s
Zim (1)
i t

Ziu (1)
i · · · sZ1m (1)

1 t
Z1u (1)
1 ) = fi(0, t1Q1u , . . . , tiQiu)

Qiu

,

Eim (s
Zim (1)
i t

Ziu (1)
i · · · sZ1m (1)

1 t
Z1u (1)
1 )

= fi(1, s1Q1m + t1Q1u , . . . , siQim + tiQiu)− fi(0, t1Q1u , . . . , tiQiu)

Qim

. (6.2)

Our asymptotic analysis below is an extension of the two-type case, (4.1):

f
(µ)
i (s0, s1, . . . , si) = E(µ)i (s

Z0(1)
0 s

Z1(1)
1 · · · sZi(1)i )

=
∞∑
k=0

pi(k)

(
si

(
1 −

i−1∑
j=0

µi−j a(µ)ij (k)

)
+

i−1∑
j=0

µi−j a(µ)ij (k)sj

)k

=
∞∑
k=0

pi(k)

(
si +

i−1∑
j=0

µi−j a(µ)ij (k)(sj − si)

)k
, (6.3)

which says that each out of the k offspring of an i-particle independently chooses its type: it
mutates to a type j ∈ [0, i−1] with probability µi−j a(µ)ij (k) or retains the maternal type i with
probability 1 − ∑i−1

j=0 µ
i−j a(µ)ij (k). Observe that, similar to the two-type case, the quantities

a
(µ)
ij (k) allow us to have mutation probabilities depending on the family size, k, on the mother’s

type, i, and on the daughter’s type, j . Here again parameter µ controls mutation rates so that,
as µ → 0, mutations become rare and

f
(µ)
i (s0, s1, . . . , si) → φi(si), φi(s) =

∞∑
k=0

pi(k)s
k. (6.4)

Set mi = ∑∞
k=1 kpi(k). We will assume that all types, possibly except 0, are asymptotically

subcritical, i.e.
0 < mi < 1, i = 1, . . . , L, 0 < m0 < ∞. (6.5)
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As in Section 2, we will assume uniform convergence, i.e.

sup
0≤j<i≤L

sup
k≥0

|a(µ)ij (k)− aij (k)| → 0, µ → 0, (6.6)

where the limit sequences are uniformly bounded, i.e.

sup
0≤j<i≤L

sup
k≥0

aij (k) < ∞. (6.7)

Set

ψij (s) =
∞∑
k=1

kpi(k)aij (k)s
k−1, 0 ≤ j < i ≤ L, (6.8)

and define a matrix A = [Aij ]Li,j=0 by

Aij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, i = j = 0,
ψij (1)

1 −mi
, 0 ≤ j ≤ i − 1,

0, otherwise.

Define a vector (χ0, . . . , χL) recursively:

χi =
i−1∑
j=0

Aijχj , χ0 = 1. (6.9)

If all ψij (1) > 0 then all components of this vector are strictly positive.
In terms of the matrix powers An = [A(n)ij ]Li,j=0, we can write

χi = Ai0 +
i−1∑
j=1

Aijχj

= Ai0 +
i−1∑
j=1

Aij

(
Aj0 +

j−1∑
k=1

Ajkχk

)

= A
(2)
i0 +

i−2∑
j=1

A
(2)
ij χj

= · · ·
= A

(i)
i0

=
i−1∑
k=0

∑
0=j0<j1<j2<···<jk<i

Aijk · · ·Aj10.

It follows from (6.9) that the ith row of the matrix B = [Bij ]Li,j=0, where

Bij = χj

χi
Aij , (6.10)

defines a probability distribution on the set {0, . . . , i− 1}. Note that the matrix powers An and
Bn are connected by B(n)ij = (χj /χi)A

(n)
ij .
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7. Limit theorem for the sequential mutation model

The following result partially extends the two-type Theorem 4.1. It is clear what a full
extension would look like.

Theorem 7.1. Consider the µ-labeled 2L-type BGW process described in Section 6 that starts
from a type-L particle and satisfies conditions (6.3)–(6.7). Let all ψij (1) > 0. The probability
QLm that the process produces at least one particle of type 0 has the asymptotic behavior

lim
µ→0

QLmµ
−L = χL. (7.1)

Conditioned on the event that a 0-particle is produced, the process

{ZLm (n), ZLu(n), . . . , Z1m (n), Z1u(n)}n≥0

converges in distribution to a limit process {XL∗
m
(n),XL∗

u
(n), . . . , X1∗

m
(n),X1∗

u
(n)}n≥0, which

is a decomposable 2L-type BGW process described below.

The limit process {XL∗
m
(n),XL∗

u
(n), . . . , X1∗

m
(n),X1∗

u
(n)}n≥0 starts with a single particle of

type L∗
m. This particle lives a geometric number TL of generations with

P(TL = n) = mn−1
L (1 −mL).

At times 1, 2, . . . , TL − 1, the stem L∗
m-particle gives birth to particles of type L∗

u according
to a size-biased distribution with generating function φ′

L(s)/mL. Each particle of type L∗
u

initiates an independent single-type subcritical BGW process with the offspring generating
function φL(s). At time TL, the stem particle of type L∗

m is replaced by a stem particle of type
i∗m, where the index i is chosen from the set {0, 1, . . . , L − 1} according to the distribution
{BL0, . . . , BL,L−1}; see (6.10). The number of L∗

u-particles born at time TL has a different
distribution: its probability generating function is given by ψLi(s)/ψLi(1).

If i = 0 then the stem lineage stops at time TL, but otherwise, after time TL, the scheme
above is repeated with L being replaced by i. The particle of type i∗m lives a geometric time Ti
with mean (1 −mi)

−1, in that

Xi∗m (n) =
{

1, n ∈ {TL, . . . , TL + Ti − 1},
0, otherwise.

At times TL + 1, . . . , TL + Ti − 1, particles of type i∗u appear from the stem particle according
to the size-biased distribution φ′

i (s)/mi and each one of them initiates an independent single-
type subcritical BGW process with offspring generating function φi(s). At time TL + Ti , the
stem particle changes its type to j∗

m, where j is chosen from {0, 1, . . . , i − 1} according to
the probability measure {Bi0, . . . , Bi,i−1}. The distribution of the number of type-i∗u particles
produced at time TL + Ti has generating function ψij (s)/ψij (1). The process proceeds in the
same manner until index 0 is generated by the stem lineage algorithm.

Proof of Theorem 7.1. The proof is similar to the proof of Theorem 4.1; therefore, here
we will outline only the major changes. Lemma 5.1 can be extended to: uniformly over
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(s0, s1, . . . , si−1, si) ∈ [0, 1] × [0, 1] × · · · × [0, 1] × [0, 1),

∣∣∣∣f (µ)i (s0, s1, . . . , si)− φi(si)−
i−1∑
j=0

µi−j (sj − si)ψij (si)

∣∣∣∣
= o

( i−1∑
j=0

µi−j |sj − si |
)

+O

(
µ2i ηi(si)

1 − si

( i−1∑
j=0

|sj − si |
µj

)2)
, (7.2)

where the ψij are the functions defined in (6.8) and ηi(s) = mi − φ′
i (s).

Convergence (7.1) is proven by induction over L. The case in which L = 1 is covered by
Theorem 4.1. Now assume that, for any j ∈ {1, . . . , i − 1}, it is known that Qj0µ

−j → χj .
We prove that Qi0µ

−i → χi using (6.1). First observe that Qi0µ
−i is bounded away from 0,

since ψi,i−1(1) > 0, there exists a k ≥ 1 such that pi(k)ai,i−1(k) > 0, and the inequality

Qim ≥ pi(k)kµa
(µ)
i,i−1(k)Q(i−1)m(1 − µa

(µ)
i,i−1(k))

k−1

implies that limµ→0µ
i/Qim < ∞ due to the induction assumption. Therefore, (7.2) gives

∣∣∣∣f (µ)i (0,Q1u , . . . ,Qiu)− φi(Qiu)−
i−1∑
j=0

µi−j (Qju −Qiu)ψij (Qiu)

∣∣∣∣
= o

( i−1∑
j=0

µi−j |Qju −Qiu |
)

+O

(
µiηi(Qiu)

( i−1∑
j=0

|Qju −Qiu |
µj

)2)
,

which combined with (6.1) yields Qiu → 1 and

1 −Qim − φi(1 −Qim )−
i−1∑
j=0

µi−j (Qim −Qjm)ψij (1)

= o

( i−1∑
j=0

µi−j |Qim −Qjm |
)

+ o

(
µi

( i−1∑
j=0

|Qim −Qjm |
µj

)2)
.

It follows that

φi(1 −Qim )− 1 +Qim = µi
i−1∑
j=0

χjψij (1)+O(µQim ),

and (7.1) for L = i is derived from (6.9).
In order to obtain the generating functions of the reproduction law of the limit process, we

need an extension of (5.3): if 0 ≤ sj ≤ sj + δj ≤ 1 for j ∈ {0, 1, . . . , i} and si < 1, then

0 ≤ f
(µ)
i (s0 + δ0, . . . , si + δi)− f

(µ)
i (s0, . . . , si)− R

(µ)
i (s0, . . . , si , δ0, . . . , δi)

≤
∞∑
k=0

kpi(k)d
2
k,µ(δ0, . . . , δi)

1 − dk−1
k,µ (s0, . . . , si)

1 − dk,µ(s0, . . . , si)
, (7.3)
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where dk,µ(s0, . . . , si) = si + ∑i−1
j=0 µ

i−j (sj − si)a
(µ)
ij (k) and

R
(µ)
i (s0, . . . , si , δ0, . . . , δi) =

∞∑
k=1

kpi(k)d
k−1
k,µ (s0, . . . , si)dk,µ(δ0, . . . , δi).

From (6.2) and (7.3), it follows that

Qim Eim (s
Zim (1)
i t

Ziu (1)
i · · · sZ1m (1)

1 t
Z1u (1)
1 )

= R
(µ)
i (0, t1Q1u , . . . , tiQiu , 1, s1Q1m , . . . , siQim )+O(µ2i ),

and it remains to check that

Q−1
im
R
(µ)
i (0, t1Q1u , . . . , tiQiu , 1, s1Q1m , . . . , siQim )

→ siφ
′
i (ti )+

i−1∑
j=0

sj
χj

χi
ψij (ti)

= misi
φ′
i (ti )

mi
+ (1 −mi)

i−1∑
j=0

Bij sj
ψij (ti)

ψij (1)
.

8. The total time to escape

For application purposes, it is important to study the waiting timeWL to produce the escape
type along an asymptotically viable path of mutations. For the sequential mutation model
studied in Sections 6 and 7,WL is a sum of a random number of independent geometric random
variables. In terms of a Markov chain {Y (n)}n≥0, with the transition matrix

D = [Dij ]Li,j=0, Dij = (1 −mi)Bij +mi 1{i=j},

where the Bij are given by (6.10), this is the waiting time until absorption at state 0:

P(WL ≤ n) = P(Y (n) = 0 | Y (0) = L).

The last probability is the element D(n)L0 of the nth step transition matrix Dn, which can be
computed from the Chapman–Kolmogorov equation:

D
(n)
L0 = DL0D

(n−1)
00 + · · · +DLLD

(n−1)
L0

= (1 −mL)(BL0 + BL1D
(n−1)
10 + · · · + BL,L−1D

(n−1)
L−1,0)+mLD

(n−1)
L0 .

Subtracting a similar formula for D(n−1)
L0 we obtain a recursion for the probability PL(n) =

P(WL = n):

PL(n) = mL PL(n− 1)+ (1 −mL)

L−1∑
j=1

BLj Pj (n− 1).

Turning to the expected waiting time,

ML = E(WL) =
∞∑
n=1

nPL(n),
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we derive

ML = 1

1 −mL
+
L−1∑
j=1

BLjMj

= 1

1 −mL
+
L−1∑
j=1

BLj

1 −mj
+
L−2∑
j=1

B
(2)
Lj Mj

= 1

1 −mL
+
L−1∑
j=1

BLj + B
(2)
Lj + · · · + B

(L−j)
Lj

1 −mj

= 1

1 −mL
+
L−1∑
j=1

χj (ALj + · · · + A
(L−j)
Lj )

χL(1 −mj)
.

Observe that the last formula is a weighted sum of the individual waiting times E(Tj ) =
(1 −mj)

−1. The corresponding weight

χj

χL
(ALj + · · · + A

(L−j)
Lj ) = ALjA

(j)
j0 + · · · + A

(L−j)
Lj A

(j)
j0

A
(L)
L0

= P(Y (n) = j for some n) (8.1)

gives the probability that the chain Y (n) visits the state j before it is absorbed at 0. Note that
in the case of ‘neutral mutation’ with mj = m, j = 1, . . . , L, we obtain

ML = 1

1 −m
+ 1

1 −m

L−1∑
j=1

χj (ALj + · · · + A
(L−j)
Lj )

χL

= 1

1 −m

(
1 + χL − AL0 + · · · + χL − A

(L−1)
L0

χL

)

= 1

1 −m

(
L− AL0 + · · · + A

(L−1)
L0

χL

)
.

Finally, we describe a case where there is a simple formula for the coefficients χi . Suppose
that aij (k) ≡ ai(k) is the same for all daughter types j given the mother type i. Then, with the
simplified notation ψij (1) = ci , we obtain

χi = ci

1 −mi

(
1 +

i−1∑
k=1

∑
0<j1<j2<···<jk<i

cjk

1 −mjk
· · · cj1

1 −mj1

)

= ci

1 −mi

(
1 + ci−1

1 −mi−1

)
· · ·

(
1 + c1

1 −m1

)
.

In this case we can also compute the asymptotic probability (8.1) that the random path from
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type L towards type 0 visits type j :

P(Y (n) = j for some n)

= χj

χL

cL

1 −mL

(
1 +

L−j∑
k=1

∑
j<j1<j2<···<jk<L

cjk

1 −mjk
· · · cj1

1 −mj1

)

= cj

1 −mj

(
1 + cL−1

1 −mL−1

)−1

· · ·
(

1 + cj

1 −mj

)−1

×
(

1 + cL−1

1 −mL−1

)
· · ·

(
1 + cj+1

1 −mj+1

)

= cj

1 + cj −mj
.

Thus, the expected total time to escape becomes

ML = 1

1 −mL
+
L−1∑
j=1

cj

(1 + cj −mj)(1 −mj)
.

In particular, if aij (k) ≡ 1 then cj = mj and

ML = 1

1 −mL
+
L−1∑
j=1

mj

1 −mj
.

If, furthermore, mj ≡ m then χj = m(1 − m)−j and P(Y (n) = j for some n) = m. In this
special case the number of intermediate types has a binomial distribution Bin(L− 1,m) and

ML = 1 + (L− 1)m

1 −m
.

9. The network mutation model

We now return to the network model described in the introduction. This model was intro-
duced in [5] and [6]. Here particles are coded with binary sequences u = (u1, . . . , uL) of
length L. A mutation occurs if one of the L sites changes from 1 to 0 or 0 to 1. Therefore, there
are 2L possible sequences which we will group into L + 1 types, each containing sequences
u with the same number of 1s. Observe that, given a sequence u = (u1, . . . , uL), the number
of 1s is equal to |u| = u1 + · · · + uL. Assuming that all sequences within a type i have the
same offspring number distribution described by the generating function φi(s), we arrive at an
important example of the sequential mutation model allowing for backward mutations.

Let mi = φ′
i (1) ∈ (0, 1) be the mean offspring number for the virus of type i whose

sequence contains i ∈ [1, L] 1s and (L − i) 0s. The sequence with all 0s, 0 = (0, . . . , 0),
will be assigned a supercritical reproduction number m0 ∈ (1,∞). Given the mutation rate µ
per site per generation, the mutation probability between two sequences which differ in j sites
becomes µj (1 − µ)L−j . Clearly, for j < i, the mutation probability between types i and j is
asymptotically equivalent to

(
i
j

)
µi−j and does not depend on the family size. Thus,

ψij (s) =
(
i

j

)
φ′
i (s), ψij (1) =

(
i

j

)
mi,
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implying that

Aij = mi

1 −mi

(
i

j

)
1{0≤j≤i−1} + 1{i=j=0}, Bij = χj

χi
Aij ,

where (χ0, . . . , χL) is defined recursively by (6.9).
A proper extension of Theorem 7.1 allowing for backward mutations provides an asymptotic

picture of the network mutation model conditional on escape. On the sequence level the
limit process starts with the sequence 1 = (1, . . . , 1) initiating a ‘stem lineage’. Each next
generation, the stem sequence either remains 1 with probabilitymL or switches to a 0-1 sequence
u1 = (u11, . . . , u1L) with probability

P(1 → u1) = (1 −mL)BL,i1

/(
L

i1

)
, i1 = |u1|.

For a geometric number of generations, TL ∼ Geom(1−mL), including the time it switches to
u1, the stem sequence 1 produces random numbers of side lineages of mutation-free 1-viruses.
The number of such lineages per generation has generating functionφ′

L(s)/mL. Each mutation-
free 1-lineage is a single-type BGW process with the offspring generating function φL(s).

The mutant stem sequence u1 follows the same pattern but with L replaced by i1, which is
strictly less than L, unless i1 = 0, in which case the system stops after hitting the escape form
0 of the virus. Thus, the sequence dynamics from 1 towards 0 is described by a random path
1 → u1 → · · · → uk = 0 of a random length k ∈ [1, L+ 1] through intermediate sequences
with strictly decreasing numbers of 1s L > i1 > · · · > ik = 0, ij = |uij |. The random path
forms a Markov chain with transition probabilities

P(uj → ul ) = (1 −mij )Bij ,il

/(
ij

il

)
.

The stem lineage spends at the type uj a geometric number of generations with mean λ(ij ),
where λ(i) = (1 − mi)

−1. During this time, it generates mutation-free uj -lineages. The
number of such lineages per generation has generating function φ′

ij
(s)/mij . Each mutation-

free uj -lineage is a single-type BGW process with the offspring generating function φij (s).
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