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A Note on Integer Symmetric Matrices and
Mahler’s Measure

Edward Dobrowolski

Abstract. We find a lower bound on the absolute value of the discriminant of the minimal polynomial

of an integral symmetric matrix and apply this result to find a lower bound on Mahler’s measure of

related polynomials and to disprove a conjecture of D. Estes and R. Guralnick.

This note was inspired by the work of J. McKee and C. J. Smyth on Mahler’s mea-

sure of Pisot and Salem numbers defined by graphs [3]. The adjacency matrix of a

graph is a symmetric integer matrix, thereby Cauchy’s interlacing theorem provides

a simple, but effective tool to study its characteristic polynomial. Unfortunately, as

we show below, many totally real integral polynomials cannot be represented by sym-

metric integral matrices. We use the following notation: Sn(Z) denotes the set of all

n × n integer symmetric matrices. For a square matrix M, pM(x) = det(xI − M)

denotes its characteristic polynomial. Mahler’s measure of a polynomial f is defined

by

M( f ) = |a0|
n
∏

i=1

max(1, |αi|),

where a0 is the leading coefficient of f , and the product runs over all its (possibly

multiple) zeros. The discriminant of f is denoted Disc( f ) = a2n−2
0

∏

i< j(αi − α j)
2.

We say that f is reciprocal if f (x) = ±xdeg f f (x−1). For a monic integral reciprocal

polynomial f satisfying an extra condition f (±1) 6= 0, we define

f̃ (x) =

n
∏

i=1

(x − αi − α−1
i ),

where α1, α
−1
1 , . . . , αn, α

−1
n is the multiset of zeros of f . Clearly f̃ ∈ Z[x]. Moreover,

the identity (αi + α−1
i −α j −α−1

j )2
= (αi −α j)(α−1

i −α−1
j )(αi −α−1

j )(α−1
i −α j),

implies that Disc( f̃ )2 divides Disc( f ). Further, if all zeros of f are either real or lie

on the unit circle then f̃ is totally real. In particular, f̃ is totally real when f is the

minimal polynomial of a Salem number.

If g and f are totally real polynomials, deg g = n−1, deg f = n, µ1 ≤ · · · ≤ µn−1

are the zeros of g, and λ1 ≤ · · · ≤ λn are the zeros of f , then we write g ≺ f if the

zeros are interlacing, i.e., λ1 ≤ µ1 ≤ · · · ≤ µn−1 ≤ λn.
Cauchy’s interlacing theorem says that pMi

≺ pM , for any submatrix Mi obtained

from a square matrix M by deleting its i-th row and column.
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Lemma 1 Let M ∈ SN (Z). If pM = f m, where f is an irreducible polynomial of

degree n, then |Disc( f )| ≥ nn.

Proof The lemma is trivial for n = 1. Suppose that n ≥ 2. Remove the first row

and column from M, and let ∆1(x) be the determinant of the resulting matrix. By

Cauchy’s interlacing theorem, the zeros of ∆1 interlace with the zeros of f m. Hence

f m−1|∆1. Let f1 = ∆1/ f m−1. Then f1 ∈ Z[x] is a monic polynomial of degree n−1,

and its zeros still interlace with the zeros of f . Since the zeros of f ′ also interlace with

the zeros of f , we must have f1(λ) f ′(λ) > 0 at every zero λ of f . Denote by sp( f )

the set of all zeros of f . Let tλ for λ ∈ sp( f ) be positive real numbers such that

f1(λ) = tλ f ′(λ), for λ ∈ sp( f ).

We have f ′(λ) = gλ(λ), where gλ(x) =
f (x)
x−λ . Consider the polynomial G(x) =

f1(x) −
∑

λ∈sp( f ) tλgλ(x). Since G(λ) = 0 for every λ ∈ sp( f ), and deg G ≤ n − 1,
we conclude that G is identically 0. Hence

(1) f1(x) =

∑

λ∈sp( f )

tλgλ(x).

Moreover,

(2)
∑

λ∈sp( f )

tλ = 1,

since all polynomials involved are monic. By using the fact that gλ(µ) = 0 for µ ∈
sp( f ) other than λ, and the arithmetic-geometric means inequality, we get

1 ≤ |
∏

f1(λ)| = |
∏

tλgλ(λ)| = |
∏

tλ f ′(λ)| ≤
(

∑

tλ

n

) n

|Disc( f )|,

where the products and the sum run over λ ∈ sp( f ). Thus, by (2), |Disc( f )| ≥ nn.

D. Estes and R. Guralnick [2, p.84] conjectured that every totally real separable

monic polynomial can occur as the minimal polynomial of a symmetric integral ma-

trix. Lemma 1 shows that without additional conditions this is not the case. We have

the following.

Corollary 1 There are infinitely many totally real monic polynomials that cannot oc-

cur as minimal polynomials of a symmetric integral matrix.

This conclusion is based on the fact that there are infinitely many totally real poly-

nomials of degree n with root discriminant smaller than n. For example, D. Simon [4,

Proposition IV.3.5] showed that if m is a product of consecutive primes, m =
∏

p<x p,

then

|Disc Φm|
1

φ(m) ∼ e2γφ(m)
log log φ(m)

log φ(m)
,
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where Φm denotes the m-th cyclotomic polynomial. To deal with totally real polyno-

mials it suffices to notice that |Disc Φ̃m| ≤ |Disc Φm|
1/2.

Another application of the Lemma is given by the following.

Theorem 1 Suppose that f ∈ Z[x] is a monic, irreducible, and reciprocal polynomial

that is not cyclotomic and its zeros α1, α
−1
1 , . . . , αn, α

−1
n are either real or lie on a unit

circle. If f̃ =
∏n

i=1(x−αi −α−1
i ) is a characteristic polynomial of an integer symmetric

matrix, then

M( f ) > 1.043.

Note: For the sake of simplicity no attempt was made to optimize the bound in

this theorem. In fact, a stronger result by the graph theory approach is expected.

Proof By Lemma 1, |Disc( f̃ )| ≥ nn. Hence, |Disc( f )| ≥ Disc( f̃ )2 ≥ n2n. Let A

be the 4n × 4n Vandermonde matrix with rows [1, αi, . . . , α
4n−1
i ], i = 1, . . . , 2n,

and [1, α
p
i , . . . , α

(4n−1)p
i ], i = 1, . . . , 2n, where p is a prime that will be determined

later. Consider the determinant of A. By Hadamard’s inequality on the left, and [1,

Lemma 2] on the right-hand side, we get

(4n)2nM( f )(4n−1)(p+1) ≥ | det(A)| ≥ |Disc( f )|p2n ≥ Disc( f̃ )2 p2n.

Hence, by Lemma 1,

M( f ) ≥ (
p

4
)

1
2(p+1) .

With p = 11, this gives M( f ) > 1.043.
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