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Finite-amplitude elastic waves in viscoelastic
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Using branch continuation in the FENE-P model, we show that finite-amplitude travelling
waves borne out of the recently discovered linear instability of viscoelastic channel flow
(Khalid et al., J. Fluid Mech., vol. 915, 2021, A43) are substantially subcritical reaching
much lower Weissenberg (Wi) numbers than on the neutral curve at a given Reynolds (Re)
number over Re ∈ [0, 3000]. The travelling waves on the lower branch are surprisingly
weak indicating that viscoelastic channel flow is susceptible to (nonlinear) instability
triggered by small finite-amplitude disturbances for Wi and Re well below the neutral
curve. The critical Wi for these waves to appear in a saddle node bifurcation decreases
monotonically from, for example, ≈ 37 at Re = 3000 down to ≈ 7.5 at Re = 0 at the
solvent-to-total-viscosity ratio β = 0.9. In this latter creeping flow limit, we also show that
these waves exist at Wi � 50 for higher polymer concentrations, β ∈ [0.5, 0.97), where
there is no known linear instability. Our results therefore indicate that these travelling
waves, found in simulations and named ‘arrowheads’ by Dubief et al. (Phys. Rev. Fluids,
vol. 7, 2022, 073301), exist much more generally in (Wi,Re, β) parameter space than
their spawning neutral curve and, hence, can either directly, or indirectly through their
instabilities, influence the dynamics seen far away from where the flow is linearly unstable.
Possible connections to elastic and elasto-inertial turbulence are discussed.

Key words: viscoelasticity, bifurcation, nonlinear instability

1. Introduction

It is now well known that even small concentrations of long-chain polymers in a Newtonian
solvent can give rise to interesting new behaviour (e.g. Larson 1988). Perhaps the most
extreme demonstration of this is the existence of ‘elastic’ turbulence (ET) at vanishingly
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small Reynolds numbers (Re) where inertia is minimal (Groisman & Steinberg 2000,
2001; Steinberg 2021). In 2013, a further multiscale, time-dependent state, ‘elasto-inertial’
turbulence (EIT), was found which differs from Newtonian turbulence (NT) in being
predominantly two-dimensional and seems to require finite Reynolds number (Re =
O(103)) and Weissenberg number Wi = O(10) to exist (Dubief, Terrapon & Soria 2013;
Samanta et al. 2013; Sid, Terrapon & Dubief 2018). Understanding exactly how these
different types of turbulence relate to each other remains an outstanding challenge. Work at
the NT–EIT interface has so far focussed on the possible sustenance of elastically modified
Tollmien–Schlichting waves at least for very dilute solutions and weak elasticity (Shekar
et al. 2019, 2020). Our focus here is the possible relationship between EIT and ET: are
they two extremes of one whole (Samanta et al. 2013; Qin et al. 2019; Choueiri et al.
2021; Steinberg 2021) or distinct flow responses (see, e.g., figure 30 of Chaudhary et al.
(2021) and figures 21 and 22 of Datta et al. (2021)). Finding the dynamical origin for either
could help in resolving this question.

The very recent discovery of a new linear instability in dilute viscoelastic rectilinear
flows at high Wi = O(20) (in pipes by Garg et al. (2018) and channels by Khalid et al.
(2021a)) seems highly relevant. Such ‘straight’ flows had always been believed linearly
stable due to the absence of curved streamlines (see, e.g., Chaudhary et al. (2019, 2021),
Datta et al. (2021) and Castillo-Sanchez et al. (2022) for extensive discussions of this)
although there had been some evidence of instability to finite-amplitude disturbances at
low Re (Bertola et al. 2003; Pan et al. 2013; Choueiri et al. 2021; Jha & Steinberg 2021).
Significantly, the neutral curve for this instability lies in a region of the (Wi,Re) parameter
space between where EIT and ET are believed to exist. The instability was initially only
found above Re ≈ 63 in pipe flow in the Oldroyd-B model (Garg et al. 2018; Chaudhary
et al. 2021), suggesting that it needs some inertia to function. However, the corresponding
instability in channel flow was found to have no such finite-Re threshold, although for
Oldroyd-B fluids, the instability is restricted to ultra dilute solutions with β � 0.99, and
very large Wi = O(103) (Khalid et al. 2021a; Khalid, Shankar & Subramanian 2021b).
Subsequently, these conditions have been relaxed to a more physically relevant critical
Wi � 110 at β ≈ 0.98, by limiting the maximum extension of the polymers (Lmax = 70)
in a FENE-P model (Buza, Page & Kerswell 2022). This suggests that a purely elastic
instability can smoothly morph into an elasto-inertial instability, where inertia plays a
role but the instability is found to only derive its energy through elastic terms. This
remains the case even as high as Re = O(1000) (Buza et al. 2022). While this new
instability is active for a wide range of parameter values, it does not appear to overlap
with areas where either EIT or ET have been found, consistently appearing at much
higher Wi at a given Re. Therefore, the question of its relevance to these nonlinear states
remains open.

A key issue is whether the branch of travelling wave (TW) solutions which emerge from
the neutral curve is subcritical and so exist down to some saddle node at Weissenberg
number Wisn below the critical value Wic, thereby potentially connecting the instability to
either EIT and/or ET in parameter space. Page, Dubief & Kerswell (2020) demonstrated
the existence of substantial subcriticality albeit at Re = 60 (and β = 0.9) where Wisn =
8.8 is much lower than Wic = 26.7. Despite EIT not existing at this low Re, the upper
branch TWs found there clearly resembled the ‘arrowhead’ states found in the simulations
of Dubief et al. (2022) at Re = 1000 when EIT was annealed by increasing the elasticity.
Weakly nonlinear analysis (in the channel by Buza et al. (2022) and pipe flow by Wan, Sun
& Zhang (2021)) has confirmed the general subcritical nature of the instability but cannot
give global information about how far Wisn(Re, β) is below Wic(Re, β). Our purpose here
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is to answer this by performing an investigation using branch continuation to track where
the TWs exist in (Wi,Re, β)-parameter space. This turns out to be feasible, as a branch
continuation procedure based on solving an algebraic set of equations derived directly
from the governing equations is much more efficient than branch continuing using a direct
numerical simulation (DNS) code as done in Page et al. (2020). There are two reasons
for this. First, the TW is highly symmetric: it is two-dimensional and has a symmetry
around the channel’s midplane. Second, far fewer degrees of freedom are needed to resolve
the flow algebraically compared with the number needed to keep a time-stepping code
stable. For example, the algebraic formulation needs only ≈50 Chebyshev modes in the
cross-stream direction for convergence at the parameters considered while the DNS code
needs ≈128 modes to remain time stable. There have been previous theoretical attempts
to generate nonlinear solutions to viscoelastic flow in channels and pipes but without an
anchoring bifurcation point. These have centred on constructing a high-order expansion
assuming the solution is dominantly streamwise and temporally monochromatic and taking
the leading state to be one of the least-damped linear modes of the base state (Meulenbroek
et al. 2003; Morozov & Saarloos 2005; Morozov & van Saarloos 2019).

This approach has produced some interesting signs of convergence with an increasing
number of terms included in the expansion. In particular, by taking expansions up to 11th
order in the amplitude, Morozov & Saarloos (2005) and Morozov & van Saarloos (2019)
(plane Couette and channel flow, respectively) see apparent convergence to non-trivial TW
solutions in creeping (Re � 1) flows of upper-convected Maxwell (UCM) fluids (β = 0)
as well as Oldroyd-B fluids at low β. The branch continuation used here is similar in spirit
but closer to classical weakly nonlinear theory, and differs in two significant ways: (1) it
is firmly rooted in the neutral curve found by Khalid et al. (2021a), i.e. the zero-amplitude
limit smoothly leads to the neutral curve (unknown in Morozov & van Saarloos 2019);
and (2) the order of the expansion is taken as high as necessary (typically 50–80 Fourier
modes) to obtain convergence.

The rest of the paper is organised as follows. Section 2 briefly recaps the formulation of
viscoelastic channel flow described in our earlier work (Buza et al. 2022). Section 3 then
outlines the branch continuation approach, with the technical details relegated to a series
of Appendices. The results are presented in two sections: § 4 considers finite inertia Re > 0
and § 5 deals with inertialess flows at Re = 0. Section 4 exclusively concentrates on β =
0.9 and considers how the subcritical TW branches behave as: (1) Re varies over the range
Re ∈ [0, 3000]; and (2) as the domain size varies at Re = 30. For the analysis of creeping
flow in § 5 at Re = 0, we explore the existence of the TWs over the (Wi, β) plane for β ∈
[0.5, 1) and Wi < 50 and Lmax ∈ {70, 100, 500}, the maximum polymer extensibility in the
FENE-P model. Morozov (2022) has concurrently found TWs in viscoelastic channel flow
at Re = 0.01 by the complementary approach of time stepping in the Phan–Thien–Tanner
model. These waves correspond to the attracting upper branch of the curves shown here.
Finally, a discussion follows in § 6.

2. Formulation

As in Buza et al. (2022), we consider pressure-driven flow of an incompressible
viscoelastic fluid in a channel bounded by two parallel, stationary, rigid plates separated by
a distance of 2h. We model viscoelasticity using the FENE-P model so that the governing
equations are

Re[∂tu + (u · ∇)u] + ∇p = βΔu + (1 − β)∇ · T (C)+
(

Fx
0

)
, (2.1a)
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∇ · u = 0, (2.1b)

∂tC + (u · ∇)C + T (C) = C · ∇u + (∇u)T · C + 1
ReSc

ΔC. (2.1c)

The constitutive relation for the polymer stress, T , is given by the Peterlin function

T (C) := 1
Wi
(f (tr C)C − I), where f (s) :=

(
1 − s − 3

L2
max

)−1

, (2.1d)

with Lmax denoting the maximum extensibility of polymer chains. Here C ∈ Pos(3) is
the positive-definite polymer conformation tensor and β := νs/ν ∈ [0, 1] denotes the
viscosity ratio where νs and νp = ν − νs are the solvent and polymer contributions to
the total kinematic viscosity ν. The equations are non-dimensionalized by h and the bulk
speed

Ub := 1
2h

∫ h

−h
ux dy, (2.2)

which, through adjusting the imposed pressure gradient Fx appropriately, is kept constant
so that the Reynolds and Weissenberg numbers are defined as

Re := hUb

ν
, Wi := τUb

h
, (2.3a,b)

where τ is the polymer relaxation time.
The Schmidt number Sc, appearing solely in the polymer diffusion term and defined

as the ratio between the solvent kinematic viscosity and polymer diffusivity (Sid et al.
2018), is typically of the order of O(106) in physical applications. In this work, enhanced
diffusion (i.e. lower Sc) had to be employed to regularize the hyperbolic equation (2.1c),
as is customarily done in other works involving viscoelastic DNS (Sid et al. 2018; Dubief
et al. 2022). This is also necessitated by the spectral methods embedded in our branch
continuation scheme, which behave slightly worse than finite-difference methods in this
respect, pushing the maximum admissible Schmidt number down to Sc = 250 from
typically 1000 (cf. Dubief et al. (2022) and Appendix C).

Equation (2.1) is supplemented with non-slip boundary conditions on the velocity field.
For the conformation tensor C, we impose

∂tC + (u · ∇)C + T (C) = C · ∇u + (∇u)T · C + 1
ReSc

∂xxC, (2.4)

at the wall, i.e. we minimize the deviation from the Sc → ∞ limit, where no boundary
conditions are necessary. In the streamwise (x) direction, periodic boundary conditions
are imposed on both u and C. Solutions to (2.1) of the form

ϕ(x, y, t; Wi,Re, β) = ϕb( y; Wi,Re, β)+ ϕ̂(X := x − ct, y; Wi,Re, β), (2.5)

(where ϕ = (uX, uy, p,CXX,Cyy,Czz,CXy) is the vector composed of all variables)
are sought in two consecutive steps. First, the steady, one-dimensional base state
ϕb( y; Wi,Re, β) is solved for numerically at a given Wi, Re and β (with other model
parameters such as Lmax suppressed for clarity). Then a possibly large, two-dimensional
perturbation ϕ̂(X, y; Wi,Re, β) is sought which is steady in a frame travelling at some a
priori unknown phase speed c in the x̂ direction.
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3. Numerical methods

For TWs, time derivatives can be replaced by −c∂X in the governing equations and the
problem then becomes elliptic with a ‘nonlinear’ eigenvalue c. This approach circumvents
the need for time integration but at the price of specialising to steady solutions viewed
from some Galilean frame. Writing the various terms of the governing equations (2.1) for
ϕ̂ according to their degree of nonlinearity gives

L[ϕ̂] + B[ϕ̂, ϕ̂] + N [ϕ̂] + F = 0, (3.1)

where

L[ϕ̂] :=

⎛
⎜⎝

Re(−c∂X û + (ub · ∇)û + (û · ∇)ub)+ ∇p̂ − βΔû
∇ · û

−c∂XĈ + (ub · ∇)Ĉ + (û · ∇)Cb − 2sym(Cb · ∇û + Ĉ · ∇ub)− 1
ReSc

ΔĈ

⎞
⎟⎠ , (3.2)

collects the linear contributions,

B[ϕ̂1, ϕ̂2] :=
⎛
⎝ Re (û1 · ∇)û2

0
(û1 · ∇)Ĉ2 − 2sym(Ĉ1 · ∇û2)

⎞
⎠ , (3.3)

forms the bilinear part of the nonlinearity and

N [ϕ] :=
⎛
⎝−(1 − β)∇ · T (Ĉ)

0
T (Ĉ)

⎞
⎠ and F :=

⎛
⎜⎝(1 − β)∇ · T (Cb)+

(
FX
0

)
0

−T (Cb)

⎞
⎟⎠ ,
(3.4a,b)

contain the remainder of the terms, with N representing the general nonlinearity that
originates from the constitutive relation (ub is the base flow and Cb is the base
conformation tensor which, along with the base pressure, make up ϕb). The channel
is the two-dimensional domain Ω = S1 × [−1, 1], with S1 = R/(2π/k)Z denoting a
2π/k-periodic domain that represents the streamwise (X) direction.

The bifurcating eigenfunction has a symmetry about the midplane, (uX,CXX,Cyy,Czz)

are symmetric in y and (uy,CXy) are antisymmetric, which is preserved at finite amplitude
in the subsequent ‘arrowhead’-type TWs. This is exploited in what follows by only solving
the flow in the lower half of the channel y ∈ [−1, 0] and assuming appropriate symmetry
conditions at the midplane y = 0.

3.1. Branch continuation
All dependent variables are approximated using a Fourier–Chebyshev basis {φn(X)
ψm( y)}n,m∈N, where

φn(X) :=
√

k/(2π) einkX and ψm( y) := cos[m cos−1(2y + 1)]. (3.5a,b)

Corresponding to this basis, a TW truncated at order NX × Ny may be written as

ϕ̂(X, y) =
NX∑

n=−NX

Ny∑
m=0

anmφn(X)ψm( y), (3.6)
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where anm ∈ C7 is the vector of coefficients satisfying

a(−n)m = ānm, (3.7)

(ānm is the complex conjugate of anm). Substituting (3.6) into (3.1), gives

∑
n,m

L[anmφnψm] +
∑
n,m

∑
p,q

B[anmφnψm, apqφpψq] + N
[∑

n,m

anmφnψm

]
+ F = 0.

(3.8)

A projection onto the jth Fourier mode now yields (L	[ϕ] is a slight abuse of notation that
stands for (vec(L[ϕ]))	)

∑
m

L j
	[ajmψm] +

∑
m

∑
q

∑
r

Bj−r
	 [armψm, a(j−r)qψq]

+
〈
N	

[∑
n,m

anmφnψm

]
, φj

〉
L2(S1;C)

+ F	δ0j = 0. (3.9)

where L j (and, similarly, B j) is the operator L (and B) modified such that derivatives
in the streamwise direction ∂X are replaced by multiplications with ikj. Thus, the X :=
x − ct dependence is now fully eliminated from the equations. To treat the y direction, a
collocation method is employed over the Gauss–Lobatto points given by

ys = 1
2

[
cos

(
sπ
Ny

)
− 1

]
∈ [−1, 0], s = 0, . . . ,Ny, (3.10)

Crucially, these are concentrated near both the channel boundary and the centreline where
the resolution is generally most needed. The exception is near the saddle node where the
‘arrowhead’ polymer structure significantly extends into the region between the midplane
and boundary of the channel and is therefore the most challenging to resolve (see, e.g.,
figure 7 later). The resulting system of complex algebraic equations are

∑
m

L j
	[ajmψm]( ys)+

∑
m

∑
q

∑
r

Bj−r
	 [armψm, a(j−r)qψq]( ys)

+
〈
N	

[∑
n,m

anmφnψm

]
( ys), φj

〉
L2(S1;C)

+ F	( ys)δ0j = 0, for j = 0, . . . ,NX, s = 0, . . . ,Ny, 	 = 1, . . . , 7, (3.11)

for the coefficients anm ∈ C7 with n,m ≥ 0. The remainder of the coefficients in (3.6) are
computed via (3.7).

Two further equations are needed to determine the wave speed c and the applied pressure
gradient FX . As indicated previously, FX is determined by ensuring the perturbation
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volume flux vanishes, ∫ 1

−1
ûX dy = 0, (3.12)

and

Im
∫ 2π/k

0
e−ikXûX(X, y15) dx = 0, (3.13)

is imposed to eliminate the phase degeneracy of the TW and thereby determine the wave
speed (the exact collocation point y15 is chosen arbitrarily; see, e.g., Wedin & Kerswell
(2004)). The resulting nonlinear, complex, algebraic system of equations comprising
(3.11), (3.12) and (3.13) reads

F(a, c,FX; k,Wi,Re, β, Sc) = 0, (3.14)

where a = vec((anm)	). System (3.14) gives rise to Q := 2 + 2 × 7 × NX × (Ny + 1)+
7 × (Ny + 1) ∼ 14NXNy real nonlinear equations to be solved simultaneously (by slight
abuse of notation we shall denote the real parts of F and a in (3.14) by the same letters
in what follows). Steady states of interest may now be extracted from (3.14) using a
Newton–Raphson root finding scheme given a good enough initial guess. The neutral curve
found by Khalid et al. (2021a) and the weakly nonlinear analysis in Buza et al. (2022) are
used to generate this initially. Then pseudo arclength continuation (see Appendix A) is
used to proceed along the solution branch to higher amplitudes away from the neutral
curve.

Simulations were typically run at (NX,Ny) = (50, 60) where Q ≈ 43 000 real degrees
of freedom or (NX,Ny) = (40, 50) (Q ≈ 29 000), depending on the complexity of the
tracked states, with occasional grid-convergence checks at much higher resolutions up to
(NX,Ny) = (80, 80) (Q ≈ 91 000); see Appendix B. In general, lower branch solutions
were less resolution dependent, and required about half the Fourier modes of their upper
branch counterparts. The minimum requirement for the number of Chebyshev modes,
Ny, was around 40 across all parameter regimes, with a slight increase to 50 around
saddle-node points due to the suboptimal placement of collocation points for this region.
Reducing the polymer diffusion increases the requirements both in NX and Ny, and
adjustments in k, the domain size, necessitate equivalent adjustments in NX .

3.2. Direct numerical simulations
The Dedalus codebase (Burns et al. 2020) was used to time step (2.1) in order to examine
the stability of the TWs found. To allow this DNS code to interface seamlessly with
the branch continuation code, the simulations were also performed on the half-channel
using exactly the same symmetry boundary conditions described previously and using the
same spectral expansions. This allowed an unstable lower branch solution of the branch
continuation procedure to be used directly as an initial condition for the DNS and the fact
that this remained steady under time-stepping provided a valuable cross-check of the two
approaches.

In the DNS, the full state ϕ was minimally expanded into Nx = 128 Fourier modes
in the periodic x-direction and into Ny = 128 Chebyshev modes in the wall-normal
direction with higher resolutions of 256 and 512 available in either or both dimensions
to check truncation robustness. The equations were advanced in time using a third-order
semi-implicit backward differentiation formula (BDF) scheme (Wang & Ruuth 2008) and
a constant timestep Δt = 5 × 10−3.
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Figure 1. (a) Linearly and nonlinearly unstable regions in the Wi–Re plane for β = 0.9, Lmax = 500 and
Sc = 250. The saddle-node Weissenberg numbers Wisn(Re, k) shown are Wisn(30, 1.6) = 7.6, Wisn(60, 1.8) =
8.7, Wisn(200, 2.7) = 14.3, Wisn(1000, 4.7) = 24.9 and Wisn(3000, 4.7) = 36.7. Coloured horizontal lines
correspond to branches on the right panel and symbols indicate the saddle-node points. (b) Solution branches
tracking TWs as Wi varies at constant Re ∈ {30, 60, 200, 1000} (note horizontal axis is Re = 20).

4. Results: TWs at finite Re for (β, Lmax, Sc) = (0.9, 500, 250)

As in Page et al. (2020) and Buza et al. (2022), we fix β = 0.9 and Lmax = 500 for the
initial set of computations. The Schmidt number had to be chosen slightly smaller than
that of Page et al. (2020) and Dubief et al. (2022) at Sc = 250 due to the considerations
given in § 2 and Appendix C.

Upon supplying the weakly nonlinear predictions as initial conditions to the continuation
routine, any branch of solutions emanating from the neutral curve can be tracked starting
directly from its bifurcation point. Three branches were launched downwards in Wi at fixed
Re = 1000, 200 and 60, starting from their respective bifurcation points at kopt = 4.7, 2.7
and 1.8. These wave numbers are optimal in the sense of marginal stability and so do
not necessarily minimise Wisn(Re, β), but do provide a good upper estimate of it. An
additional, fourth branch was initialized from the lowest point on the neutral curve at
Wi = 30 and kopt = 1.6, continued down to Re = 30 at fixed Wi, then, after a switch in
direction, towards decreasing Wi at fixed Re. A schematic depiction of these branches is
given in the left panel of figure 1.

The right panel of figure 1 shows the amplitude evolution of these four branches. As a
measure of amplitude, we chose the volume-averaged trace of the polymer conformation
relative to the laminar value, i.e.

A := 〈tr C〉Ω
〈tr Cb〉Ω , (4.1)

again, to remain consistent with Page et al. (2020). The lower Re branches of figure 1(b)
are reminiscent of the branch shown in Page et al. (2020) (in fact, the green branch is at the
same Reynolds number (Re = 60), albeit with different k and Sc), and the higher Re ones
are lower-amplitude variants of these. This shrink in relative amplitude can be attributed
to the increase in both Re and k, with the latter playing a non-negligible role through the
accompanying change in domain size (see § 4.2).

We explore one of these states (the saddle node from the Re = 200 branch) further
in figure 3, where we report the perturbation velocities as a fraction of the local base
streamwise velocity, ub,X . The arrowhead of polymer stretch close to the centreline is
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Figure 2. Snapshots of full states, in terms of tr C (contours), at the saddle-node bifurcation points from
figure 1. Lines correspond to level sets of the perturbation stream function. The noticeable thinning of the
arrowhead structure with increasing Re (from bottom right to top left) is partially due to the corresponding
increase in kopt (and decrease in domain length; see § 4.2 and compare with figure 5). The domain size is
2π/kopt in the X direction, with kopt ∈ {4.7, 2.7, 1.8, 1.6} in panel order.
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Figure 3. (a) Contours of ûX/ub,X at the saddle-node point of the Re = 200 branch (blue triangle in
figures 1 and 2). The domain length is 2π/2.7 as in figure 2. (b) Same as (a) but with ûy/ub,X displayed.
(c) Mean velocity profiles uX/ub,X at the saddle-node points marked on figures 1 and 2, with colour codes
matching that of figure 1.

associated with a backwards ‘jet’ in the perturbation streamwise velocity where the
horizontal flow is locally slower than the base parallel solution. Both this and the contours
of vertical velocity are consistent with the counter-rotating vortex pair observed by
Morozov (2022) in the co-moving frame, and include a change in sign of ∂yûy across a
stagnation point leading to a locally extensional flow.
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Figure 4. (a) The Re = 60 branch from figure 1, with edge states indicated by the dashed line. (b) Results of
the independent edge-tracking algorithm at Wi = 20. The blue/red lines indicate evolutions which start close
to the lower branch state and converge to the laminar/upper branch state, respectively.

4.1. General interpretation of solution branches
Qualitatively, all solution branches behave in a similar way. A sample case is depicted in
figure 4, showcasing the main features. The lower branches emanating from the neutral
curve are all unstable until reaching their respective saddle-node points, labeled by a
variety of symbols in figure 1 (circle for our sample branch in figure 4), with the
corresponding states shown in figure 2. Points on the (unstable) lower branches are found
to be edge states which are attracting states on a codimension-one manifold separating two
different basins of attraction (Skufca, Yorke & Eckhardt 2006; Duguet, Willis & Kerswell
2008; Schneider et al. 2008). This is illustrated by figure 4(b) at Wi = 20 and Re = 60
where an edge-tracking procedure, applied between the upper branch and laminar states,
converges on the lower branch state. The lower branch state is a saddle but with only one
unstable direction either pointing to the laminar or upper branch state. Upper branch states,
at least Re = 60 (Page et al. 2020), start as stable nodes as Wi increases away from Wisn but
quickly experience Hopf bifurcations to tertiary states (if the base state is the ‘primary’).
These bifurcations and where these tertiary states lead are interesting questions beyond the
scope of this paper.

Based on these observations, we have the following picture: if the laminar state is
disturbed with a perturbation large enough to reach a certain threshold, determined by
the minimal amplitude of approach of the stable manifold of a lower branch state, the flow
will evolve towards the upper branch, forming a stable TW. The threshold amplitude to
trigger growth is bounded above by the amplitude of the lower branch state itself, which
remains A < 1.05 across the domain of existence of TWs. In other words, this domain
(shaded bright grey on figure 1) is nonlinearly unstable when subjected to finite but small
amplitude disturbances.

4.2. Influence of domain length
This section is dedicated to studying the effect of k, and thus the influence of domain size
[0, 2π/k], on the TWs. Figure 5 shows how a single branch of TWs at Re = 30 (purple in
figure 1) changes with k. It has already been established that the steady arrowhead structure
is highly sensitive to domain length in the EIT regime (Dubief et al. 2022). There, through
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Figure 5. (a) Branches of TWs at different wave numbers, and thus domain sizes, at k = 1 (full line), k (=
kopt) = 1.6 (dashed line) and k = 2 (dotted line) with fixed Re = 30 (k = 1.6 is also shown coloured purple
in figure 1). (b) Snapshots of k = 1 and k = 2 upper branch TWs at fixed Wi = 19.814 (note the difference in
domain size). Contours correspond to tr C and lines correspond to level sets of the perturbation stream function.
All visible differences are contained in the superimposed wave solutions: the laminar state does not depend
on k.

capturing larger-scale motions, an increase in domain length was found to unveil structures
of increasing complexity, with the possibility of inducing chaotic dynamics at certain
parameter combinations. Similar tendencies can be observed in our case (cf. figure 5): An
increase in k (and, thus, decrease in domain length) has a considerable weakening effect
on the arrowhead structure, eventually resulting in a complete eradication of TWs and
a subsequent relaminarization. Despite this observation, the location of the saddle-node
points seems largely unaffected by k (cf. figure 5), making the marked ‘nonlinearly
unstable’ region on figure 1 robust to changes in the assumed periodicity and domain
size.

4.3. High-elasticity regime: Re → 0
The high-elasticity regime is difficult to access using time-stepping as it becomes
increasing stiff as Re → 0. The algebraic approach taken here suffers no such problems
and we can approach and even consider Re = 0 (see the next section) without difficulty.

The existence of the centre-mode linear instability at Re = 0 is already known in the
limit of very dilute polymer solutions (β → 1) for Wi = O(103) in Oldroyd-B fluids
(Khalid et al. 2021b) and for Wi = O(102) in FENE-P fluids at finite extensibility (Lmax)
(Buza et al. 2022). To substantiate its connection to ET, the time evolution of these growing
modes has to be tracked to see whether they are able to produce turbulent behaviour,
presumably after transitioning through a cascade of intermediate states. Our goal here is
to see where the first level of intermediate state, the TWs, exist at low and vanishing Re.

Weakly nonlinear theory predicts supercritical behaviour in the high elasticity (Wi/Re)
regime, i.e. along the lower boundary of the linearly unstable region. To probe this,
a fifth branch was initiated at fixed Wi = 60, starting upwards in Re as indicated by
the weakly nonlinear analysis (Buza et al. 2022) from a marginally stable point in this
region (indicated by orange on figure 1). The resulting branch of solutions is shown in
figure 6. Given the supercriticality, this branch starts off as a stable node, moving up in
Re. Almost immediately after leaving the initial bifurcation point (of linear stability), it
reaches a saddle-node bifurcation point, turns around and proceeds to advance towards
decreasing Re, maintaining a relatively low amplitude until reaching a second saddle
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Figure 6. Solution branch at fixed Wi = 60, indicated by orange on figure 1 (k = 1). The solid black line
shows the weakly nonlinear prediction of supercriticality. In orange are the results from branch continuation
with the 1/(Re Sc) formulation (full line) and with the λ formulation (dashed line) (λ = 0.005 and Sc = 250)
which shows that the branch of TWs quickly turns around and heads to lower Re, i.e. the TWs are substantially
subcritical.

node and transitioning to the upper branch. This is an example of how local information
provided by weakly nonlinear analysis can be misleading. In fact, the neutral curve gives
rise to TWs which reach to lower Wi at fixed Re and lower Re at fixed Wi as shown
by figure 1. Upon further inspection, it turns out that the lower (secondary) fold shown
in figure 6 at Re ≈ 30 is purely a feature of the polymer diffusion term 1/(Re Sc)ΔC
growing artificially large (as Re is decreased), the effect of which is already known to
destroy small-scale dynamics (Dubief et al. 2022). It turns out that the point at which the
saddle-node bifurcation occurs can be delayed arbitrarily by adjusting Sc in accordance
with the variations in Re to keep the polymer diffusion finite. Numerical experimentation
suggested a revised polymer diffusion term of the form

λ

Wi
ΔC, (4.2)

for some fixed number λ. The choice of an inverse scaling with Wi is motivated by
observations at Re = 0 shown in Appendix C. If λ = 0.005 is enforced for the branch
in question, which amounts to fixing the coefficient 1/(Re Sc) at the point marked by ‘+’
in figure 6, the branch of solutions can be followed down to Re = 0 along the lower branch
(cf. the dashed line in figure 6).

5. Results: TWs in the creeping flow limit Re = 0

Once Re = 0 is reached, we redirect the continuation tool towards decreasing Wi. The
resulting branch takes the familiar shape (from the Re > 0 cases) shown in figure 7,
attaining its saddle-node bifurcation point at Wi ≈ 7.5, which serves as a lower bound
for the region where TWs exist (note the waves found by Morozov (2022), at Re = 0 are
all above Wi = 20, albeit with a different model). Figure 7 gives a detailed description of
this branch, containing snapshots of full states that illustrate how these waves evolve as
Wi is varied. Arrowhead-shaped structures are still clearly visible at low Wi (cf. panels
on the left-hand side of figure 7), establishing their prevalence even in the high-elasticity
regime. We also report the phase speed, c, of the inertialess TWs as a function of Wi in
figure 7. Similar to the elasto-inertial case reported in Page et al. (2020), the phase speed is
always faster than the bulk velocity. On the lower branch, c tends to a constant value which
matches that of the linear eigenfunction. The phase speed of the upper branch solution
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Figure 7. (Middle right) Branch of TWs at Re = 0, β = 0.9, Lmax = 500, λ = 0.005, k = 1 in terms of the
amplitude A and wavespeed c (here the unstable lower branch is distinguished via dashes). All other panels
correspond to states at the locations marked via different symbols. In these plots, contours correspond to tr C
and lines correspond to level sets of the perturbation stream function. Domain length is 2π in all state plots.

is notably slower, and is presumably set by the self-sustaining mechanism proposed by
Morozov (2022).

For the particular case considered in figure 7 (specifically k = 1, Lmax = 500, λ =
0.005) the stability of steady states was examined along the upper branch using DNS.
At four points, Wi = 10, 20, 30 and 50, solutions of the branch continuation tool were
transferred into the Dedalus-based DNS code, and were subsequently subjected to
disturbances of finite amplitude. The perturbations were constructed from snapshots
extracted from separate simulations of EIT at high-Re, which were pre-multiplied by 10−6

and added to the TWs. All perturbed states returned to their respective stable upper-branch
solutions after a period of transient growth, suggesting that two-dimensional ET cannot be
initiated from these TWs in a direct manner.

5.1. β ∈ [0.5, 1): relation to recent experiments
The first experiments claiming to see nonlinear instability in viscoelastic channel flow
were performed by Arratia and colleagues (Pan et al. 2013; Qin & Arratia 2017;
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Qin et al. 2019). Finite-amplitude perturbations were induced by an array of obstacles
placed upstream, with the number of obstacles serving as a measure of amplitude.
Based on measurements taken further downstream, far away from the initial disturbances,
they conclude the existence of a subcritical nonlinear instability that persists down to
Wi ≈ 5.4. With the caveats that their channel had a square cross-section and FENE-P
is an approximation, their results are encouragingly comparable to the two-dimensional
channel prediction made here of Wisn = 7.5. In Figure S1 of the supplementary material
to Pan et al. (2013), the authors indicated the boundary to the observed instability in a Wi
versus perturbation amplitude plane, essentially matching our predictions for the threshold
of nonlinear instability given by the Re = 0 lower branch (shown in the middle-right panel
of figure 7) (that the unstable region in our case is bounded by the branch is an immediate
consequence of the discussion in § 4.1: once the threshold amplitude of a lower branch
edge state is reached, solutions continue to grow). However, in later proceedings, the
authors claim that the unstable flow remains time dependent with features reminiscent
of ET (Qin & Arratia 2017; Qin et al. 2019), as opposed to the upper branch TW scenario
described here.

More recently, (Schnapp & Steinberg 2022) have experimentally examined the stability
of viscoelastic channel flow to small disturbances using a channel of width-to-height
ratio of 7. The viscosity ratio was β = 0.74 and so significantly smaller than the above
presented β = 0.9. They describe seeing a complex transition which they call ‘an elastic
non-normal mode instability’ characterised by the direct transition to many modes at once.
This is different from a modal instability of a TW solution discussed here but may also
be the effect of a comparatively large initial disturbance so the transition is immediately
strongly nonlinear. Other recent experiments by Choueiri et al. (2021) in a pipe have also
considered smaller β = 0.57 albeit at larger Re. Motivated by this, we also performed a
few TW branch continuations (at Wi = 10, 20, 30 and 50) with decreasing β in an attempt
to map out the nonlinearly unstable domain in the Wi–β plane (all with zero inertia).
Results from these computations are shown in figure 8, with the left panel indicating the
unstable region and the right panel containing the solution branches found with varying β.
It transpires that at lower β, the solutions are a little more sensitive to the artificial diffusion
(see Appendix C for further details), necessitating multiple simulations at different λ
values, all of which are also shown in figure 8.

Figure 9 tracks changes in the lower branch TW amplitude, which is an upper bound
on the threshold for growth, as Wi is increased. For the parameter combination in
question (β = 0.74, Re = 0), both our standard amplitude measure A and a separate
measure for the magnitude of velocity perturbations, ‖û‖L2(Ω), are shown. For Wi > 30, A
remains below 1.005, implying that perturbations amounting to just 0.5 % of the laminar
conformation field tr Cb are sufficient to trigger growth, making this scenario practically
indistinguishable from a linearly unstable one. Here A reaches its minimum roughly
around Wi = 100, then, despite setting off in an increasing trend, remains negligibly small
up to Wi = 500.

In addition to the solution branch, figure 9 also displays two state plots at Wi =
20 and Wi = 407, now in terms of ûX/ub,X to aid comparison with experimental
results. The former, at Wi = 20, still resembles the structural composition of the
linearly unstable centre eigenmode at higher Re: chevron-shaped streaks remain
visible, but are now disconnected at the centreline. However, by Wi = 407 (and
similarly for all Wi > 100 lower branch states), these structures straighten out
and form streamwise counter-propagating streaks placed symmetrically around the
centreline.
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Figure 8. (a) Nonlinearly unstable regions in the Wi–β plane at Re = 0 for λ = 0.005 (full line), λ = 0.003
(dashed line) and λ = 0.002 (dotted line). Horizontal and vertical lines correspond to solution branches
computed via the continuation routine. (b) Branches with respect to β, obeying the same colour code as on
the left panel (at λ = 0.005).
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Figure 9. (a) The β = 0.74 lower branch from figure 8, at λ = 0.001, with respect to the standard amplitude
measure A (in black) and the perturbation velocity magnitude ‖û‖L2(Ω) (in blue). (b) State snapshot at Wi =
20 from the branch above. Contours show ûX/ub,X . (c) State snapshot at Wi = 407 from the branch above.
Contours show ûX/ub,X .
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Figure 10. The effect of varying Lmax on the nonlinearly unstable region at fixed λ = 0.003. Horizontal and
vertical lines correspond to solution branches computed via the continuation routine with Lmax = 70 (black
solid lines), Lmax = 100 (red dashed lines) and Lmax = 500 (blue dotted lines).

In their pipe set-up, Choueiri et al. (2021) detected fluctuations at Re ≈ 5 for β = 0.57,
Wi = 104 while the flow remained laminar at Re ≈ 3. Computationally, the Re = 0 branch
may be continued to β = 0.57 (for λ sufficiently small) in our channel flow setting
(cf. figure 8 again), albeit with a slightly larger threshold amplitude than that of figure 9.
This may explain the need for a finite Re for ‘unperturbed’ instabilities (Choueiri et al.
2021). Interestingly, the flow states shown by Choueiri et al. (2021) have the connected,
chevron-shaped streaks reminiscent of the centre-mode eigenfunction. In our setting,
‘connectedness’ of the chevrons is lost shortly after leaving the initial bifurcation (the
general shape is still retained for moderate Wi, see the middle panel of figure 9), but the
scenario could be quite different in pipes.

5.2. Lmax ∈ {70, 100, 500}
For completeness, the effect of varying the last outstanding parameter, Lmax, on the
region of nonlinear instability is depicted in figure 10. In contrast to the observations
of Buza et al. (2022), which indicated that lowering Lmax has a destabilizing role in
the elastically dominated regime (cf. their figure 13), here we see that the nonlinearly
unstable region shrinks with decreasing Lmax. This suppressing effect is in line with past
observations of the effect of finite extensibility; see, e.g., the linear analyses in Ray &
Zaki (2014), Page & Zaki (2015) or even figure 16 of Buza et al. (2022). It should be noted
that, in our experience, solution branches became difficult to extract at lower Lmax, with
convergence issues appearing along upper branches. In fact, we can only reliably obtain
upper branches for Lmax > 150, but lower branches remain accessible due to their lower
resolution requirements (see Appendix B).

6. Discussion

In this paper, we have used branch continuation to track two-dimensional, finite-amplitude
TWs in a viscoelastic channel flow, using the FENE-P model. The TWs are borne out of
the centre mode instability (Khalid et al. 2021a) which is known to be subcritical over
large areas of the Re − Wi parameter space (Buza et al. 2022). Here, we have shown
that the TW solution branches extend to significantly lower Re and Wi than the curve of

951 A3-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

83
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.831


Finite-amplitude elastic waves in viscoelastic channel flow

marginal stability. For instance, we showed that the saddle node at Re = 1000 drops as low
as Wi ≈ 25, while the associated linear instability at this Re does not occur until Wi ≈ 80.
Most significantly, we demonstrated the persistence of the nonlinear TWs at Re = 0 for a
large range of Wi, with the saddle node sitting at Wi ≈ 7.5–10 in dilute (β = 0.9) solutions
for a range of Lmax. Across a broad range of the parameter space, including at Re = 0, the
upper branch TWs resemble the arrowhead structures observed in DNS at higher Re (Page
et al. 2020; Dubief et al. 2022).

A key feature of the solution branch at Re = 0 is the low amplitude of the lower branch
TW across a very large range of Wi. This suggests that only a very weak disturbance would
be required to cause the flow to transition to a potentially complicated time-dependent
state, a scenario which would potentially be indistinguishable from a linear instability in an
experiment. The small amplitude of the lower branch also poses the question whether the
amplitude expansion pursued in Morozov & Saarloos (2005) and Morozov & van Saarloos
(2019) was attempting to resolve it; see, e.g., figure 8(c) of Morozov & van Saarloos (2019).

While our results demonstrate the existence of finite-amplitude arrowhead TWs over a
very large range of the parameter space, a direct connection to either EIT or ET has yet to
be established even within the same FENE-P model. In inertia-dominated EIT at Reynolds
numbers Re = O(1000), instantaneous arrowhead-shaped flow structures resembling the
stable upper branch states have been observed numerically (Dubief et al. 2022). While the
region of nonlinear instability found here overlaps with these observations, further work
is required to assess if there is a direct connection between the exact coherent states and
EIT (e.g. through a sequence of successive bifurcations). The picture is complicated by
observations from both numerics and experiments at higher Re, where near-wall activity
has been observed to be dominant in both channels and pipes (Shekar et al. 2019, 2020;
Choueiri et al. 2021). At present, no exact coherent states connected to other linear
instabilities (e.g. Tollmien–Schlichting waves in channels, see Shekar et al. 2019) have
been discovered, and the possible role of such states in EIT remains an interesting open
problem. At low Re, our numerical experiments indicate that the upper branch TWs are
linearly stable, and we have been unable to trigger ET. Our computations have been
restricted to two-dimensional flows, and so this does not rule out the existence of ET
in three dimensions, or a direct route from the upper branch TWs to such a state. We hope
to report results on this soon.
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Appendix A. Pseudo-arclength continuation

The branch continuation routine is launched from a point on the neutral curve (curve of
marginal linear stability) with the aid of the weakly nonlinear theory, which provides
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the very first initial condition near the solution branch of interest. Beyond this point,
as parameters are varied in larger increments, supplying sufficiently accurate initial
conditions for (3.14) amounts to predicting the shape of the bifurcation branch, precisely
the objective of pseudo-arclength continuation (see, e.g., Dijkstra et al. 2014).

If κ ∈ {Wi,Re, β} is the parameter allowed to vary in the continuation (all others are
fixed), F restricts to a map F : RQ+1 → RQ and (3.14) translates to

F(a, c,FX, κ) = 0. (A1)

Arclength-based techniques interpret the branch of solutions as a curve γ : R → RQ+1

embedded in configuration space, which is spanned by (a, c,FX, κ) in this particular case.
Assume now that a steady state has been computed at point n on the branch γ , which we
write as γ (tn) = (an, cn,FX,n, κn)

T. A prediction for the solution at the next step, γ (tn+1),
is given by moving a distance of s tangentially along γ , where s denotes the a priori
specified step size. Making use of the fact that a solution branch must satisfy F ◦ γ ≡ 0,
the tangent at point n is computed according to(

DF(γ (tn))
γ̇ (tn−1)

T

)
γ̇ (tn) =

(
0
1

)
. (A2)

If no tangent is available at the previous step, the last row is replaced by (0, . . . , 1). The
initial prediction for the solution at step n + 1 is given by

γ̃ 0(tn+1) :=

⎛
⎜⎜⎜⎜⎝

a0
n+1

c0
n+1

F0
X,n+1

κ0
n+1

⎞
⎟⎟⎟⎟⎠ = γ (tn)+ sγ̇ (tn), (A3)

where the upper indices correspond to the number of completed Newton–Raphson iterates
(see the following), and the twiddle serves to distinguish the converged branch γ from
its approximate counterpart γ̃ . The next step is to employ the Newton–Raphson method
using (A3) as initial condition to obtain an exact solution of (A1). Knowledge of the
tangent may be used to aid this procedure, by means of constraining subsequent iterates to
remain on the hyperplane orthogonal to γ̇ (tn). Incorporating this condition into a standard
Newton–Raphson scheme, we obtain the system(

DF(γ̃ i(tn+1))

γ̇ (tn)T

)
Δγ̃ i+1(tn+1) =

(
−F(γ̃ i(tn+1))

s − 〈γ̇ (tn), γ̃ i(tn+1)− γ (tn)〉

)
, (A4)

supplemented with the update rule

γ̃ i+1(tn+1) = γ̃ i(tn+1)+ Δγ̃ i+1(tn+1). (A5)

Once the solutions have converged to a sufficient degree, i.e.

|Δγ̃ i+1(tn+1)|
|γ̃ i(tn+1)| < tol, (A6)

is reached, we set γ (tn+1) = γ̃ i+1(tn+1), and continue further along the branch. The
tolerance ‘tol’ was set to 10−8 throughout all examples shown. The continuation routine
consists of repeated applications of the above procedure over n, resulting in a discrete
representation of the full solution branch as {γ (tn)}n≥0.

951 A3-18

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

83
1 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.831


Finite-amplitude elastic waves in viscoelastic channel flow

0 20 40 60 80 100

10–10

10–5

100

105

0 20 40 60 80

10–10

10–5

100

105

C
o
n
tr

ib
u
ti

o
n
 Σ

n|
a n

m
|2

C
o
n
tr

ib
u
ti

o
n
 Σ

m
|a

nm
|2

Chebyshev coefficient m Fourier coefficient n

(b)(a)

Figure 11. Grid independence checks at Re = 60, Wi = 20, Lmax = 500, β = 0.9 and Sc = 250 for both the
upper and lower branch solutions. The upper branch is identified by larger coefficient contributions. Orange,
yellow, red and green lines with symbols correspond to solutions obtained through branch continuation,
the blue solid lines correspond to the DNS detailed in § 3.2 using NX = 128 complex Fourier modes and
Ny = 128 Chebyshev coefficients. (a) Ny independence: Overall contribution of each Chebyshev mode for
Ny ∈ {30, 40, 50, 60} for the lower branch and Ny ∈ {35, 50, 60, 70} for the upper branch, with NX = 60
fixed in the branch continuation. (b) NX independence: Overall contribution of each Fourier mode for NX ∈
{20, 40, 60, 80} for the lower branch and NX ∈ {30, 40, 60, 80} for the upper branch, with Ny = 60 fixed in the
branch continuation.

Appendix B. Resolution

Figure 11 shows how different truncations in the branch continuation and DNS compare
when resolving the upper and lower TWs shown in figure 4 at Wi = 20 (more
precisely (Wi,Re, β, Sc, Lmax) = (20, 60, 0.9, 250, 500) ) with the base flow subtracted.
The various truncations of branch continuation show very good agreement with the spectra
from the DNS. It is worth remarking that to obtain converged spectra in the DNS it
was necessary to reduce the timestep to Δt = 1 × 10−3. Further discrepancies for the
higher-order modes may be caused by the finite accuracy of the edge tracking algorithm
in locating the lower branch.

Appendix C. Remarks on the polymer diffusion term

Memory limitations associated with increasing NX and Ny provide an upper bound on how
large a value of Sc can be considered whereas taking Sc too small is known to eradicate
small scale dynamics. Thus, Sc was selected between the two of these bounds: just above
the smallest number where solution branches become independent of Sc, but resolution
requirements are still moderate enough for the physical memory to handle.

In the creeping flow limit (Re → 0), a distinguished limit with Sc → ∞ such that Sc =
1/(εRe) with ε a constant clearly needs to be taken to retain finite polymer diffusion as
follows

∂tC + (u · ∇)C + T (C) = C · ∇u + (∇u)T · C + εΔC. (C1)

The new polymer diffusion coefficient, ε, is selected analogously to Sc, whereby
independence of solution branches is sought while keeping the grid size manageable.
Numerical observations indicate that there cannot be a universal ε that is optimal in this
sense across all parameter regimes within the Re = 0 limit. However, the slight rescaling
λ = εWi (cf. § 4.3) seems to help.Figure 12 displays three pairs of solution branches
computed at different values of fixed λ (in green) and fixed ε (in blue). While the λ-based
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Figure 12. Solution branches at fixed λ = 0.005 (full line), λ = 0.007 (dashed line), λ = 0.01 (dotted line).
Inset: Branches with ε fixed, at ε = 5 × 10−4 (full line), ε = 7 × 10−4 (dashed line) and ε = 10−3 (dotted
line), so that they agree with their λ-based counterparts at Wi = 10.

branches can be extended up to arbitrarily large Wi (the λ = 0.005 one was continued
up to Wi > 1000, not shown), the ε-based ones form isolas at low Weissenberg numbers
Wi < 30, resulting in a loss of robustness with respect to ε. Using λ, robustness is
recovered after a certain threshold is hit (λ ≈ 0.007 for this branch), which served as the
primary motivation behind choosing λ as the parameter to be fixed throughout the main
text.
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