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The theorem of Marggraff on

primitive permutation groups

which contain a cycle

Richard Levingston and D.E. Taylor

A short elementary proof is given of the theorem of Marggraff
which states that a primitive permutation group which contains a
cycle fixing k points is (fc+l)-fold transitive. I t is then
shown that the method of proof actually yields a generalization
of Marggraff's theorem.

The following theorem is quoted by Wielandt [5, p. 38], who refers to
the thesis of Marggraff [3] for a proof. [The authors have not seen this
thesis, which Kantor [2, p. 6^] describes as "inaccessible".] The theorem
can also be deduced from a more general result of Kantor [2, 7D(it)] on
Jordan groups.

THEOREM A. Let G be a -primitive permutation group on a set Q, of
n points and suppose that G contains a non-trivial subgroup X which
fixes k points of ft and which is transitive on the remaining points.
If X is cyclic, then G is (k+l)-fold transitive.

In th i s note we give a proof of th i s theorem based on resul ts from

Wielandt's book together with elementary considerations of 2-designs. The

same method of proof combined with the Hall-Bruck theorem [7] yields the

following extension of Theorem A.

THEOREM B. Let G, fi , and X satisfy the hypotheses of the first

sentence of Theorem A. If X contains a cyclic subgroup of index 2 ,
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then one of the folloxoing holds:

(i) G is (k+l)-fold transitive;

(ii) n = 7 , k = 3 , X is a Klein four-group, and

G ^ PSL(3, 2) ;

(Hi) n = 8 j k = h , X is a Klein four-group, and G is the

holomorph of an elementary abelian group of order 8 ;

(ivj n = 9 i k = 3 , X is a non-abelian group of order 6 ,

and G is the holomorph of an elementary abelian group of

order 9 •

If A is a subset of Q we shall use ff(A) and G. to denote the

pointwise and setwise stabilizers of A , respectively. The group G.

induces the permutation group GT = G./G(A) on A .

Suppose that G, Q, , and X satisfy the hypotheses of Theorem A or B,

but G is not (fc+l)-fold transitive. Let A Jhe the set of fixed points

of X and set r = fi - A . By a theorem of Jordan (see [5, 13.1]), G is

doubly transitive and hence the sets A , x € G , are the blocks of a

2-design V on ft {of. [2, Section 7]). Let A be the number of blocks

containing two distinct points. Our aim is to show that \ = 1 .

For Theorem B, a transitive extension of the group occurring in

conclusion (ii) is isomorphic to the group of conclusion (Hi), while the

groups of conclusions (Hi) and (iv) admit no transitive extensions. Thus

we may suppose, by induction, that G is not doubly primitive. From [5,

13.h and 13.7] we find that k < %n and G~ is primitive on A .

Moreover, if g € G is chosen so that T& + T and \T& U T| is as small

as possible, then B = ^ u f - T is a block of imprimitivity for

G(& n A ) . Because G is not doubly primitive we have |3| i 2 . Now

]P has a subgroup which acts transitively on B , so G7 satisfies the

same hypotheses as G .

Proof of Theorem A. Let a be an element of A n tp . Since X c G
— a
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and |r| > %n it follows that A - {a} is a union of blocks of

imprimitivity for G . By induction G7 is (|ArA^|+l)-fold transitive,

so if A n tr t {a} , then G~ is primitive on A - {a} ; hence this

latter set constitutes a single block of imprimitivity for G . Thus for

all B € A - {a} we have G . c G. . But G7 is doubly transitive on
Otp ti A

A , so G o is transitive on the blocks of V containing a and $ ,
ap

contradicting A n A" t {a} . It follows that A n A^ = {a} and hence

X = 1 .

Since X is transitive on r n bP , it follows that X is the

unique subgroup of X of order k - 1 . Now choose Y t F n A" ,

B (. A - {a} such that {B, y] c A . Then X = X , , yet
A9 AW

X n % i, — ^ ~ 1 • This contradiction completes the proof of Theorem A.

$ tr Y

Proof of Theorem B- Proceeding as in Theorem A we find that either V

is a 2-design with X = 1 or else G~ is not doubly primitive.

Suppose that G7 is not doubly primitive. By induction k = 7 >

GT a= PSL(3, 2) , and the sets B* , x € GT , form a 2-design which is the

7-point plane. From the Veblen and Young axioms [4], it is easily verified

that the 2-design with blocks B* , x € G , is a projective geometry over

GF(2) . However, none of the groups PGL(d, 2) , d i U , satisfy the

hypotheses of the theorem so this case cannot arise.

It follows that X = 1 and as before, if A, is a block of V

meeting A in a , then \X. \ = k - 1 . If Ap is a block meeting A

in (3 i- a and meeting A, in Y •> then X. n X. c X = 1 since AT

acts regularly on F . As X contains a cyclic subgroup of index 2 , we

must have k = 3 . Let t be the number of involutions in X and suppose
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that X has order 2m . If x (. X is an involution and y and 6 are

points of f2 interchanged by x , then the third point of the block

through y and 6 is fixed by x and hence belongs to A . Each point

of A is in m blocks other than A and each such block is fixed by a

unique involution of X . Thus 3m = mt and hence t = 3 . Therefore, if

x and y are involutions of X and D = <x, y) , then D is either a

Klein four-group or a dihedral group of order 6 . If F1 is an orbit of

D in r , then A u I" is a subspace of V and the design is either a

protective geometry over GF(2) or an affine geometry over GF(3) (see

Hall [/]). Thus G is a subgroup of PGL(d, 2) or AGL(<i, 3) for some

d . The only examples which satisfy the hypotheses of the theorem are

PGL(2, 2), PGL(3, 2) , and AGL(2, 3) , and this completes the proof.
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