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The theorem of Marggraff on
primitive permutation groups

which contain a cycle

Richard Levingston and D.E. Taylor

A short elementary proof is given of the theorem of Marggraff
which states that a primitive permutation group which contains a
cycle fixing k& points is (k+l1)-fold transitive. It is then
shown that the method of proof actually yields a generalization
of Marggraff's theorem.

The following theorem is quoted by Wielandt [5, p. 38], who refers to
the thesis of Marggraff [3] for a proof. [The authors have not seen this
thesis, which Kantor [2, p. 64] describes as "inaccessible".] The theorem
can also be deduced from a more general result of Kantor [2, TD(4)] on

Jordan groups.

THEOREM A. Let G be a primitive permutation group on a set £ of
n points and suppose that G contains a non-trivial subgroup X which
fizxes k points of @ and which is transitive on the remaining points.
If X 1is cyclic, then G 1is (k+l)-fold transitive.

In this note we give a proof of this theorem based on results from
Wielandt's book together with elementary considerations of 2-designs. The
same method of proof combined with the Hall-Bruck theorem [7] yields the

following extension of Theorem A.

THEOREM B. Let G, Q, and X satisfy the hypotheses of the first
gsentence of Theorem A. If X contains a cyclic subgroup of index 2 ,
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then one of the following holds:

(Z) G is (k+l)-fold transitive;

T, k=3, X is a Klein four-group, and
PSL(3, 2) ;

(it) n
G

2

(i) n=8, k=4, X is a Klein four-group, and G 1is the
holomorph of an elementary abelian group of order 8 ;

(iv) n=9, k=3, X is a non-abelian group of order 6 ,
and G is the holomorph of an elementary abelian group of

order 9 .
If A is a subset of Q we shall use G(A) and GA to denote the
pointwise and setwise stabilizers of A , respectively. The group GA

induces the permutation group Gﬁ o~ GA/G(A) on A .

Suppose that G, € , and X satisfy the hypotheses of Theorem A or B,
but G is not (k+1)-fold transitive. Let A _be the set of fixed points
of X and set I =Q - A . By a theorem of Jordan (see [5, 13.1]), G is

doubly transitive and hence the sets Ax , & € G , are the blocks of a
2-design D on £ (cf. [2, Section 7]). Let A ©be the number of blocks

containing two distinct points. Our aim is to show that A =1 .

For Theorem B, a transitive extension of the group occurring in
conclusion (Z%Z2) is isomorphic to the group of conclusion (i7Z), while the
groups of conclusions (27Z) and (Zv) admit no transitive extensions. Thus

we may suppose, by induction, that G is not doubly primitive. From [5,
13.4 and 13.7] we find that k < %37 and Gﬁ is primitive on A .
Moreover, if g € G dis chosen so that 9 #T and |Fg uT| is as small
as possible, then B = Fg ull =T is a block of imprimitivity for

G(A n Ag) . Because (G 1is not doubly primitive we have |B| > 2 . Now
Xg has a subgroup which acts transitively on B , so Gﬁ satisfies the

same hypotheses as @G .

Proof of Theorem A. Let o be an element of A n AY . Since X €6,
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and || > 4 it follows that A - {a} is a union of blocks of

imprimitivity for Gu . By induction Gﬁ is (IArAgi+l)—fold transitive,

so if A n A9 # {a} , then A is primitive on A - {a} ; hence this

Ao

latter set constitutes a single block of imprimitivity for Ga . Thus for
all B €A - {a} we have GQB S Gy - But Gﬁ is doubly transitive on
A, so GaB is transitive on the blocks of U containing o and B ,
contradicting A n A9 # {a} . It follows that A n A9 = {a} and hence
A=1.

Since X g is transitive on T n AY , it follows that X is the

A A

unique subgroup of X of order k - 1 . Now choose Yy €T n Ag N

B €A - {a} suchthat {B, Y} €A . Then X =X o yet
¢ s

X nX h C X, =1 . This contradiction completes the proof of Theorem A.

Proof of Theorem B. Proceeding as in Theorem A we find that either 7

is a 2-design with )X =1 or else Gﬁ is not doubly primitive.

Suppose that Gﬁ is not doubly primitive. By induction %k =7 ,

Gﬁ ~ PSL(3, 2) , and the sets B* , z ¢ Gﬁ , form a 2-design which is the

T-point plane. From the Veblien and Young axioms [4], it is easily verified

that the 2-design with blocks Bx , x €G , is a projective geometry over
GF(2) . However, none of the groups PGL(d, 2) , d = 4 , satisfy the

hypotheses of the theorem so this case cannot arise.
It follows that A = 1 and as before, if Al is a block of D

is a block meeting A

meeting A in o , then |X, | =k -1 . If A
A 2

in B # a and meeting Al in y , them X, nX, <X =1 since X

Ay AT
acts regularly on I' . As X contains a cyclic subgroup of index 2 , we
must have k = 3 . Let ¢ be the number of involutions in X and suppose
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that X has order 2n . If x € X is an involution and Y and 6 are
points of Q interchanged by & , then the third point of the block
through Y and § is fixed by x and hence belongs to A . Each point
of A is in m blocks other than A and each such block is fixed by a
unique involution of X . Thus 3m = mf and hence ¢ = 3 . Therefore, if
x and Yy are involutions of X and D =(x, y) , then D is either a
Klein four-group or a dihedral group of order 6 . If TI' is an orbit of
D in T , then A uT' is a subspace of D and the design is either a
projective geometry over GF(2) or an affine geometry over GF(3) (see
Hall [1]). Thus G is a subgroup of PGL(d, 2) or AGL(d, 3) for some
d . The only examples which satisfy the hypotheses of the theorem are
PGL(2, 2), PGL(3, 2) , and AGL(2, 3) , and this completes the proof.
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