The theorem of Marggraff on primitive permutation groups which contain a cycle

Richard Levingston and D.E. Taylor

Abstract

A short elementary proof is given of the theorem of Marggraff which states that a primitive permutation group which contains a cycle fixing k points is $(k+1)$-fold transitive. It is then shown that the method of proof actually yields a generalization of Marggraff's theorem.

The following theorem is quoted by Wielandt [5, p. 38], who refers to the thesis of Marggraff [3] for a proof. [The authors have not seen this thesis, which Kantor [2, p. 64] describes as "inaccessible".] The theorem can also be deduced from a more general result of Kantor [2, 7D(4)] on Jordan groups.

THEOREM A. Let G be a primitive permutation group on a set Ω of n points and suppose that G contains a non-trivial subgroup X which fixes k points of Ω and which is transitive on the remaining points. If X is cyclic, then G is $(k+1)$-fold transitive.

In this note we give a proof of this theorem based on results from Wielandt's book together with elementary considerations of 2 -designs. The same method of proof combined with the Hall-Bruck theorem [1] yields the following extension of Theorem A.

THEOREM B. Let G, Ω, and X satisfy the hypotheses of the first sentence of Theorem A. If X contains a cyclic subgroup of index 2 ,

[^0]125
then one of the following holds:
(i) G is $(k+1)$-fold transitive;
(ii) $n=7, k=3, X$ is a Klein four-group, and $G \simeq \operatorname{PSL}(3,2) ;$
(iii) $n=8, k=4, X$ is a Klein four-group, and G is the holomorph of an elementary abelian group of order 8 ;
(iv) $n=9, k=3, X$ is a non-abelian group of order 6 , and G is the holomorph of an elementary abelian group of order 9 .

If Δ is a subset of Ω we shall use $G(\Delta)$ and G to denote the pointwise and setwise stabilizers of Δ, respectively. The group G_{Δ} induces the permutation group $G_{\Delta}^{\Delta} \simeq G_{\Delta} / G(\Delta)$ on Δ.

Suppose that G, Ω, and X satisfy the hypotheses of Theorem A or B, but G is not $(k+1)$-fold transitive. Let Δ be the set of fixed points of X and set $\Gamma=\Omega-\Delta$. By a theorem of Jordan (see [5, 13.1]), G is doubly transitive and hence the sets $\Delta^{x}, x \in G$, are the blocks of a 2-design D on Ω (cf. [2, Section 7]). Let λ be the number of blocks containing two distinct points. Our aim is to show that $\lambda=1$.

For Theorem B, a transitive extension of the group occurring in conclusion ($i i$) is isomorphic to the group of conclusion ($i i i$), while the groups of conclusions ($i i i$) and ($i v$) admit no transitive extensions. Thus we may suppose, by induction, that G is not doubly primitive. From [5, 13.4 and 13.7$]$ we find that $k<\mathcal{Z}_{2} n$ and G_{Δ}^{Δ} is primitive on Δ. Moreover, if $g \in G$ is chosen so that $\Gamma^{g} \neq \Gamma$ and $\left|\Gamma^{\mathcal{G}} \cup \Gamma\right|$ is as small as possible, then $B=\Gamma^{g} \cup \Gamma-\Gamma$ is a block of imprimitivity for $G\left(\Delta \cap \Delta^{g}\right)$. Because G is not doubly primitive we have $|B| \geq 2$. Now X^{g} has a subgroup which acts transitively on B, so G_{Δ}^{Δ} satisfies the same hypotheses as G.

Proof of Theorem A. Let α be an element of $\Delta \cap \Delta^{g}$. Since $X \subseteq G_{\alpha}$
and $|\Gamma|>\frac{3}{2} n$ it follows that $\Delta-\{\alpha\}$ is a union of blocks of imprimitivity for G_{α}. By induction G_{Δ}^{Δ} is $\left(\left|\Delta \Delta^{\mathscr{G}}\right|+1\right)$-fold transitive, so if $\Delta \cap \Delta^{g} \neq\{\alpha\}$, then $G_{\Delta, \alpha}^{\Delta}$ is primitive on $\Delta-\{\alpha\}$; hence this latter set constitutes a single block of imprimitivity for G_{α}. Thus for all $\beta \in \Delta-\{\alpha\}$ we have $G_{\alpha \beta} \subseteq G_{\Delta}$. But G_{Δ}^{Δ} is doubly transitive on Δ, so $G_{\alpha \beta}$ is transitive on the blocks of D containing α and β, contradicting $\Delta \cap \Delta^{g} \neq\{\alpha\}$. It follows that $\Delta \cap \Delta^{g}=\{\alpha\}$ and hence $\lambda=1$.

Since ${ }_{\Delta_{\Delta}} g$ is transitive on $\Gamma \cap \Delta^{g}$, it follows that $X_{\Delta^{g}}$ is the unique subgroup of X of order $k-1$. Now choose $\gamma \in \Gamma \cap \Delta^{g}$, $\beta \in \Delta-\{\alpha\}$ such that $\{\beta, \gamma\} \subseteq \Delta$. Then $X_{\Delta^{g}}=X_{\Delta}{ }^{h}$, yet ${ }_{X_{\Delta}}{ }^{\cap}{ }_{\Delta}{ }_{\Delta} h \subseteq X_{\gamma}=1$. This contradiction completes the proof of Theorem A.

Proof of Theorem B. Proceeding as in Theorem A we find that either D is a 2-design with $\lambda=1$ or else G_{Δ}^{Δ} is not doubly primitive.

Suppose that G_{Δ}^{Δ} is not doubly primitive. By induction $k=7$, $G_{\Delta}^{\Delta} \simeq \operatorname{PSL}(3,2)$, and the sets $B^{x}, x \in G_{\Delta}^{\Delta}$, form a 2-design which is the 7-point plane. From the Veblen and Young axioms [4], it is easily verified that the 2 -design with blocks $B^{x}, x \in G$, is a projective geometry over $\operatorname{GF}(2)$. However, none of the groups $\operatorname{PGL}(d, 2), d \geq 4$, satisfy the hypotheses of the theorem so this case cannot arise.

It follows that $\lambda=1$ and as before, if Δ_{I} is a block of D meeting Δ in α, then $\left|X_{\Delta_{1}}\right|=k-1$. If Δ_{2} is a block meeting Δ in $\beta \neq \alpha$ and meeting Δ_{1} in γ, then $X_{\Delta_{1}} \cap X_{\Delta_{2}} \subseteq X_{\gamma}=1$ since X acts regularly on Γ. As X contains a cyclic subgroup of index 2 , we must have $k=3$. Let t be the number of involutions in X and suppose
that X has order $2 m$. If $x \in X$ is an involution and γ and δ are points of $\dot{\Omega}$ interchanged by x, then the third point of the block through γ and δ is fixed by x and hence belongs to Δ. Each point of Δ is in m blocks other than Δ and each such block is fixed by a unique involution of X. Thus $3 m=m t$ and hence $t=3$. Therefore, if x and y are involutions of X and $D=\langle x, y\rangle$, then D is either a Klein four-group or a dihedral group of order 6 . If Γ^{\prime} is an orbit of D in Γ, then $\Delta u \Gamma^{\prime}$ is a subspace of D and the design is either a projective geometry over GF(2) or an affine geometry over GF(3) (see Hall [1]). Thus G is a subgroup of $\operatorname{PGL}(d, 2)$ or $\operatorname{AGL}(d, 3)$ for some d. The only examples which satisfy the hypotheses of the theorem are $\operatorname{PGL}(2,2), \operatorname{PGL}(3,2)$, and $\operatorname{AGL}(2,3)$, and this completes the proof.

References

[1] Marshall Hall, Jr., "Group theory and block designs", Proc. Internat. Conf. Theory of Groups, Austral. Nat. Univ., Canberra, August, 1965, 115-114 (Gordon and Breach, New York, London, Paris, 1967).
[2] W.M. Kantor, "2-transitive designs", Combinatorics. Part 3: Combinatorial group theory, 44-97 (Proc. Adv. Study Institute Combinatorics, Breukelen, 1974. Mathematical Centre Tracts, 57. Mathematisch Centrum, Amsterdam, 1974).
[3] Bernhard Marggraff, "Ueber primitive Gruppen mit transitiven Untergruppen geringeren Grades", (Inaugural-Dissertation, Giessen, 1888; printed Berlin 1889).
[4] Oswald Veblen and John Wesley Young, Projective geometry, Vol. I (Ginn, Boston and London, 1910).
[5] Helmut Wielandt, Finite permutation groups (Academic Press, New York, 1964) .

Department of Pure Mathematics, University of Sydney,

Sydney,
New South Wales.

[^0]: Received 9 April 1976. The Editor is grateful to Dr Wolfgang Knapp for supplying him with details of reference [3].

