THERE ARE NO CHAOTIC MAPPINGS WITH
 RESIDUAL SCRAMBLED SETS

T. Gedeon

A continuous mapping f of a compact real interval I to itself which is chaotic in the sense of Li and Yorke, cannot have a scrambled set residual in an subinterval of I. This shows that chaos in this case cannot be large from a topological point of view.

We shall consider continuous mappings $f: I \rightarrow I$, where I is a real compact interval. The notion of chaos for such mappings was introduced by Li and Yorke [4]. However, the following equivalent formulation is more convenient.

DEFINITION ([2], [8]). A mapping $f: I \rightarrow I$ is δ-chaotic if there is a nonempty perfect set S such that for any $x, y \in S, x \neq y$, and any periodic point p of f,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup \left|f^{n}(x)-f^{n}(y)\right|>\delta \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\liminf \left|f^{n}(x)-f^{n}(y)\right|=0 \tag{2}
\end{equation*}
$$

$$
n \rightarrow \infty
$$

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sup _{n}\left|f^{n}(x)-f^{n}(p)\right|>\delta \tag{3}
\end{equation*}
$$

where f^{n} denotes the n-th iterate of f, for $n=0,1,2, \ldots$ The
Received 17 November 1986.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/87 $\$ 22.00+0.00$.
set S is then called δ-scrambled (or simply scrambled when $\delta=0$) set for f.

We recall that f is chaotic when the topological entropy of f is positive (or equivalently, when f has a cycle of order not a power of 2), but there are also chaotic mappings with zero topological entropy (see [8]).

It is well-known that there exist functions with scrambled sets of positive Lebesgue measure (see [3], [5], [6], [7]). By a simple modification of the argument from [7] we can see that (assuming the continuum hypothesis) the standard "tent" mapping defined by $f(x)=1-|1-2 x|$ for $x \in[0,1]$, has a scrambled set which is of the second Baire category on every subinterval of [0, 1]. Another construction can be found in [1].

However, none of the above examples yields a function with a scrambled set residual in a certain interval. The problem is whether such a function does exist. A partial negative solution, for functions satisfying a strong restrictive additional condition, is given by Bruckner and Thakyin Hu [1]. More precisely, they assume that the corresponding function f satisfies on the scrambled set S the condition
$\lim \sup \left|f^{n}(x)=f^{n}(y)\right|=\mu(I) \quad$ (the measure of I), instead of the much $n \rightarrow \infty$ weaker condition (1) with $\delta=0$.

In the present note we show that the answer is negative in general. Our main result is the following

THEOREM. Let $f: I \rightarrow I$ be a continuous function and S a scrambled set for f. Then S is residual in no subinterval of I.

Our proof of the theorem is based on some lemmas.
LEMMA 1. Let $f: I \rightarrow I$ be a continuous function and S a scrombled set for f. Let $J_{0} \subset I$ be an interval such that $S \cap J_{0}$ contains at least two different points u, v. Then there are positive integers r, s such that

$$
\operatorname{int}\left(f^{r}\left(J_{0}\right)\right) n \operatorname{int}\left(f^{r+s}\left(J_{0}\right)\right) \neq \emptyset
$$

Proof. By (1) $\quad \lim \sup \left|f^{n}(u)-f^{n}(v)\right|=\varepsilon>0$. Hence
$\lim _{n \rightarrow \infty} \sup \left(\operatorname{diam} f^{n}\left(J_{0}\right)>\varepsilon / 2\right.$, that is, diam $f^{m}\left(J_{0}\right)>\varepsilon / 2$ for infinitely
many $m^{\prime} s$. Since the measure $\mu(I)$ of I is finite, we get immediately the statement.

LEMMA 2. (see [1]). Let f be continuous on an interval [a, b] and S be a residual subset of $[a, b]$. If f is one to one on S, then $f(S)$ is residual in $f([a, b])$.

Since [1] is not generally available, we give here also the proof.
Proof. of Lemma 2. Let H be a dense set of type G_{σ} contained in S. Then $f(H)$ is a Borel set, being the one to one continuous image of a set of type G_{σ}.

Thus, if $f(H)$ is not residual in $f([a, b])$, then there exists an open interval J such that $f(H) \cap J$ is of first category. Let I be a component interval of the open set $f^{-1}(J)$ and $H^{*}=H \cap I$. Since $f\left(H^{*}\right)$ is a first category subset of J, there exist nowhere dense sets B_{1}, B_{2}, \ldots
 Since H^{*} is residual in I, the same is true for ${\underset{\sim}{0}=1}_{\infty}^{\infty}\left(f^{-1}\left(\bar{B}_{k}\right) \cap \bar{I}\right)$. This implies that there is a k such that the closed set $f^{-1}\left(\bar{B}_{k}\right) \cap \bar{I}$ contains an interval L. But H^{*} is residual in L and f is one to one on H^{*}, so the set $f(L)$ is a non-degenerate interval. This is impossible since $f(L) \subseteq \bar{B}_{\mathcal{K}}$, a nowhere dense set.

LEMMA 3. Let $f: I \rightarrow I$ be a continuous function, let J be a subinterval of I and S be a residual subset of J. If f is one to one on S, then f is monotonic on J.

Proof. Let f be not monotonic on J. Then there exist points $a<b<c$ such that $f(a)=f(c) \neq f(b)$. Without loss of generality assume $\max \{f(x): x \in[a, b]\}=f(b)$. Since f is one to one on S, by Lemma $2 f(S \cap[a, b])$ and $f(S \cap[b, c])$ are residual subsets of $f([a, b])$. Thus these two sets have non-empty intersection, which is impossible since f is one to one on S.

LEMMA 4. Let f be continuous and S be a scrambled set for f. Then f^{n} is one to one on $f^{m}(S)$, for $m, n=0,1,2, \ldots$.

Proof. Assume that there are $u, v \in f^{m}(S), u \neq v$, such that $f^{n}(u)=f^{n}(v)$. Choose $x, y \in S$ with $f^{m}(x)=u, f^{m}(y)=v$. Then $x \neq y$ and $f^{m+n}(x)=f^{m+n}(y)$, contrary to (1).

Now we are able to prove the main result.
Proof of Theorem. Assume contrary to what we wish to show that S is a scrambled set for f, residual in a subinterval L of I. By Lemma 1 there are positive integers r, s such that

$$
\begin{equation*}
\operatorname{int}\left(f^{r+s}(L)\right) \cap \operatorname{int}\left(f^{x}(L)\right) \neq \emptyset \tag{4}
\end{equation*}
$$

Let $f^{2}(L)=J, f^{x}(S)=S_{0}$. By (4), int $\left(f^{s}(J)\right) \cap$ int $(J) \neq \varnothing$ hence int $\left(f^{2 g}(J)\right) \cap \operatorname{int}\left(f^{s}(J)\right) \supset$ int $\left(f^{\beta}\left(f^{s}(J) \cap J\right)\right) \neq \varnothing$ and by induction we get immediately

$$
\begin{equation*}
\operatorname{int}\left(f^{k s}(J)\right) n \operatorname{int}\left(f^{(k-1) s}(J)\right) \neq \emptyset, k=0,1,2, \ldots \tag{5}
\end{equation*}
$$

Consequently, $J_{0}=\bigcup_{k=0}^{\infty} f^{k s}(J)$ is a connected set, that is an
interval. We show that f^{8} is monotonic on J_{0}. Since S is residual in L, Lemmas 4 and 2 imply

$$
\begin{equation*}
f^{k s}\left(S_{0}\right) \text { is residual in } f^{k s}(J), k=1,2, \ldots \tag{6}
\end{equation*}
$$

and Lemma 4 gives

$$
\begin{equation*}
f^{s} \text { is one to one on } f^{k s}\left(S_{0}\right), k=1,2, \ldots . \tag{7}
\end{equation*}
$$

Now by (6), (7) and Lemma 3, f^{s} is monotonic on each of the intervals $\left\{f^{k s}(J)\right\}_{k=1}^{\infty}$ and the intersection property (5) implies that f^{s} is monotonic on J_{0}.

Put $g=f^{2 s}$. Since f^{s} is monotonic, g is non-decreasing, and clearly $g^{k}(x) \in J_{0}$ for every $x \in S \cap J$ and every k.

Finally, consider the sequence $\left\{g^{k}(x)\right\}_{k=1}^{\infty}$, for $x \in S \cap J$. Since g is non-decreasing, $g(x)<x$ implied $g^{k}(x)<g^{k-1}(x)$ and $\left\{g^{k}(x)\right\}_{k=0}^{\infty}$ is decreasing. Similarly $\left\{g^{k}(x)\right\}_{k=0}^{\infty}$ is increasing if $g(x)>x$. Thus
$\lim _{k \rightarrow \infty} g^{k}(x)=\alpha$ exists. Since $g(\alpha)=g\left(\lim _{k \rightarrow \infty} g^{k}(x)\right)=\lim _{k \rightarrow \infty} g^{k+1}(x)=\alpha, \alpha$ is a fixed point of g.

For $i=1,2, \ldots, 2 s$ write $\alpha_{i}=f^{i}(\alpha)$. The points α_{i} form a periodic orbit and by the continuity of f, we have

$$
\alpha_{i}=f^{i}\left(\lim _{k \rightarrow \infty} g^{k}(x)\right)=\lim _{k \rightarrow \infty} g^{k}\left(f^{i}(x)\right)=\lim _{k \rightarrow \infty} f^{2 k s+i}(x)
$$

that is the sequence $\left\{f^{n}(x)\right\}_{n=1}^{\infty}$ is asymptotically periodic, contrary to the fact that x belongs to a scrambled set (see (3)).

Remarks. 1. In the proof the condition (3) is not necessary, since every set S such that (1) and (2) is true for $x, y £ S, x \neq y$, can clearly contain at most one point which has an asymptotically periodic trajectory.
2. A simple modification of the above argument shows that the theorem is also true for continuous mappings of the circle.

References

[1] A. M. Bruckner and Thakyin Hu, "On scrambled sets for chaotic functions", (Preprint 1985).
[2] K. Janková and J. Smital, "Characterization of chaos", BuZZ. Austral. Math. Soc. 34 (1986), 283-292.
[3] I. Kan, "A chaotic function possessing a scrambled set of positive Lebesgue measure", Proc. Amer. Math. Soc. 92 (1984), 45-49.
[4] T. Y. Li and J. A. Yorke, "Period three implies chaos", Amer. Math. Monthly 82 (1975), 985-992.
[5] M. Misiurewicz, "Chaos almost everywhere", Iteration Theory and its Functional Equations (Ed. R. Liedl et al.), Lecture Notes in Math. 1163 (Springer 1985), pp. 125-130.
[6] J. Smital, "A chaotic function with some extremal properties", Proc. Amer. Math. Soc. 87 (1983), 54 - 56.
[7] J. Smital, "A chaotic function with scrambled set of positive Lebesgue measure", Proc. Amer. Math. Soc. 92 (1984), 50-54.
[8] J. Smital, "Chaotic functions with zero topological entropy", Trans. Amer. Math. Soc. 297 (1986), 269-282.

Katedra algebry
Faculty of Mathematics and Physics
Komensky University
84215 Bratislava
Czechoslovakia.

