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Abstract. We compute explicitly the isomorphic structure of the normalized
unit group of an abelian group ring under some minimal natural restrictions on the
group basis and the coefficient ring. This enlarges affirmations due to Chatzidakis-
Pappas (J. London Math. Soc., 1991) and Mollov (Publ. Math. Debrecen, 1971).
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Introduction. Let K be an algebraically closed field of characteristic p (K=K�,
the algebraic closure of K), let F be an arbitrary field of characteristic p and let G be
an abelian group written multiplicatively. In this paper we completely describe the
unit group UF[G] of the group ring F[G] when G is a splitting sum of countable
groups (in particular is a direct sum of cyclics). Our facts extend these established by
Chatzidakis-Pappas in [1]. Further we provide the isomorphism type of UK[G] in
the case that G is p-splitting. Our results generalize those obtained by Mollov [26,
27, 25] for G torsion.

The present work is written in the sense of [1], but the technique used is (almost)
algebraic. Its organization is as follows. In x1, we set up notation, terminology and
some known results stated by us in [2–11]. In x2, we study the normed unit groups in
abelian group rings. Here we state and prove our main theorems. We conclude in x3
with some questions left open and problems in the investigated theme.

1. Notation, conventions and previous results. Throughout E denotes an arbitrary
field. We shall denote by F an arbitrary field of char(F)=p, by K an algebraically
closed field of char(K)=p (K=K�, the algebraic cover of K), and by R an abelian
ring with 1 of char(R)=p. For G a commutative group and p a prime integer, Gp

denotes the p-component of the torsion subgroup Gt of G. As usual, R[G] is the
group ring with a group of normed invertible elements VR[G].

For n a natural number, zn will designate a primitive n-th root of unity. We let m
denote the group of all primitive n-th roots of unity for n prime to char(F)=p, and
mq the q-component of m. We let F* =F\{0} designate the multiplicative group of F
and more generally, we let UR be the multiplicative group of units of a ring R. For
H a subgroup of G we define I(R[G]; H) as the relative augmentation ideal of R[G]
with respect to H, generated by elements 1-h, when h varies in H. We define the set
1+I(R[G]; H)=V(R[G]; H).

Following the standard terminology, we say that G is �-cyclic (respectively �-
countable) if G is a direct sum of cyclic groups (a direct sum of countable groups,
respectively). All other notations and terminology are in agreement with [12, 14, 15].
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The next results are well documented [2–11], but for the convenience of the
reader and for the sake of completeness we shall prove some of them, using a slightly
different technique. The following are valid.

Theorem 1.1 [3–8]. Suppose that G is p-primary �-cyclic. Then G is a direct
factor of VR[G] with a �-cyclic complement. Thus VR[G] is �-cyclic. If Gp is �-
cyclic and R has a trivial nilradical, then Gp is a direct factor of SR[G] with a �-cyclic
complementary factor. Thus SR[G] is �-cyclic.

Theorem 1.2 [24, 3, 6]. Suppose that Gt is p-torsion �-cyclic. Then G is a direct
factor of VF[G] with a �-cyclic complement. Thus if G is �-cyclic, then VF[G] is �-
cyclic and conversely.

Theorem 1.3 [5]. Suppose that Gp has a countable limit length and F is perfect.
Then SF[G] is �-countable if and only if Gp is �-countable. Moreover, if Gp is
�-countable, then Gp is a direct factor of SF[G] with a �-countable complement. If
Gt=Gp, then VF[G] is �-countable if and only if G is �-countable. Moreover, if Gt

is p-torsion �-countable, then G is a direct factor of VF[G] with a �-countable
complementary factor.

Remark. Other facts in this direction of some interest and importance, the
reader can find in our previous articles [7, 9, 10, 11].

2. Descriptions of VF[G] and VK[G]. Some of the central theorems of this
investigation were announced in [4]. We start this section with two simple observa-
tions. First, it is well known that UR[G]=VR[G]�UR and so the study of UR[G] is
reduced to that of VR[G]. Moreover, UpR[G]=VpR[G]�UpR, and the study of
UpR[G] reduces to that of VpR[G]. If R has a zero nilradical, then UpR=1 and
UpR[G]=VpR[G].

Next, we shall prove Theorems 1.1. and 1.2 in a more compact form.

Theorem 2.1. (i) VR[G] is �-cyclic if and only if G is �-cyclic, provided that G is
p-primary. If G is �-cyclic p-primary, then G is a direct factor of VR[G].

(ii) SR[G] is �-cyclic if and only if Gp is �-cyclic, provided that R is without
nilpotents. If Gp is �-cyclic, then Gp is a direct factor of SR[G]. Moreover, if Gt

is p-torsion �-cyclic, then G is a direct factor of VF[G] with a �-cyclic comple-
ment. Thus VF[G] is �-cyclic if and only if G is �-cyclic, assuming that Gt is p-
primary.

Proof.We have proved in [6], more generally, that if H is a �-cyclic p-group and
if it is pure in G, then H is a direct factor of the p-group V(R[G]; H), where the last
group is �-cyclic too. This is equivalent to V(R[G]; H)/H being �-cyclic [12, p. 143,
Theorem 28.2].

Let now, H=G. Consequently V(R[G]; G)=VR[G]. Moreover if H=Gp and
the nilradical of R is zero, then V(R[G]; Gp)=SR[G]. (See [3, 5].) That is why (i) and
the first half of (ii) hold.

Suppose that Gt=Gp. Therefore VF[G]/SF[G] ffi VF[G/Gp]=G/Gp, by virtue
of the classical result of G. Higman (cf. [14]). Then VF[G]=GSF[G], where
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G \ SF[G]=Gp, and besides VF[G]/G ffi SF[G]/Gp. From the above claim part (ii)
follows.

Remark. T. Mollov [25] has proved the first statement of (i), but the claim
about the direct factor was not discussed.

Moreover, W. May [22] proved that if G is a �-countable p-group and R is
perfect, then G is a direct factor of VR[G] with a �-countable complement. Thus
VR[G] is �-countable. If G has countable length and VR[G] is a �-countable group,
then G is �-countable for R arbitrary (i.e. it need not be perfect). In this light, May
in [23] showed that the simply presented p-group G is a direct factor of VF[G] with a
simply presented complement provided that F is perfect. Moreover in [24] he proved
the assertions about the direct factor (ii), for R a field and Gt=Gp (his idea and
technique are differ from ours). Important facts which enlarge the above mentioned
affirmations are established by us in [10, 11].

Next, we generalize in some aspect the theorems above. (See [11], too.)

Claim 2.1. Assume that F is perfect and G is p-splitting. Then SF[G] is simply
presented (in particular �-countable) if and only if Gp is.

Proof. Write G=Gp�M. Then clearly SF[Gp] is a direct factor of SF[G] and
hence SF[G] simply presented yields the same for SF[Gp]; i.e. Gp is simply presented
[23, 14].

Now we treat the more difficult converse question. Select a smooth ascending
chain 1 ¼ N0 � . . . � Na � . . . (a<m) of nice subgroups of Gp=

S
a<m Na (and

hence of G) such that Naþ1=Na
�� �� 	 @0 whenever a+1<m. But SF[G]=V(F[G]; Gp)

by [3,5] and therefore there is a smooth ascending sequence

1 ¼ V F G½ �; N0ð Þ � . . . � V F G½ �; Nað Þ � . . . ð�Þ

of nice subgroups of SF[G] (see [23]) with SF[G]=
S

a<m V(F[G]; Na). Adapting the
technique described on page 407 of [23], we may obtain a nice composition series for
SF[G] that verifies that SF[G] is simply presented. But length SF[G]=lengthGp (	�
for the �-countable case [12]), which finishes the proof in general.

The following two formulae are necessary for our presentation and are given in
a slightly different form from the original.

Theorem (Chatzidakis-Pappas [1]). Let E be a field and let G be an abelian group
with no element of order char(E).

If G is infinite torsion; then UE� G½ � ffi � Gj jE
��: ð1Þ

If G splits and Gt is infinite; then UE G½ � ffi UE Gt½ � � � Gtj jG=Gt

� �
: ð2Þ

In their paper [1], Chatzidakis and Pappas completely describe UE[G] when G is
torsion �-countable without elements of order char(E). They have demonstrated
that UE[G] is isomorphic to a direct sum of multiplicative groups of cyclotomic
extensions of E and computed explicitly their exponents. In particular, when G is an
infinite torsion �-cyclic group, the following is valid.
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UE G½ � ffi
Y1

d¼0
�ld E �dð Þ

�; where ld ¼ g 2 Gt

� ��order gð Þ ¼ d
�� �

j= E �dð Þ : Eð Þ: ð3Þ

However, it is well known and documented that if G is finite, then (see [37] or
[1])

UE G½ � ffi
Y

d= Gj j
�ld E �dð Þ

�: ð4Þ

Further we shall establish some supplements and expansions of the last theo-
rem. For this we first need a few preliminaries.

Lemma 2.1. Suppose that 1 2 L 	 R; B 	 G; X 	 G. Then

V R G½ �; Bð Þ \ V L X½ �; Xð Þ ¼ V L X½ �; X \ Bð Þ: ð��Þ

Proof. Given y in the left-hand side, we have y ¼
P

x2Xfxx and

X
x2gB

fx ¼
0 g 62 B
1 g 2 B

; for each g 2 G;




where fx 2 L. Choose arbitrary a 2 X. Furthermore aB \X ¼ a B \Xð Þ and more-
over we get

X
x2aB\X

fx ¼
X

x2a B\Xð Þ
fx ¼

0 a 62 B \X
1 a 2 B \X

:




Finally, y 2 V L X½ �; X \ Bð Þ, as required.
Now we are in a position to formulate and prove the following two results.

Lemma 2.2. If G ¼ Gp �M, then

VR G½ � ¼ VR M½ � � V R G½ �;Gp

� �
; ð5Þ

VF G½ � ¼ VF M½ � � SF G½ �; ð6Þ

UF G½ � ¼ UF M½ � � SF G½ �: ð7Þ

Proof. Because R[G]=R[M][Gp], for each x 2 VR G½ � we have x ¼
P

a2Gp
xaa,

where xa2R[M]. Set x� ¼
P

a2Gp
xa. Consequently x ¼ x� þ

P
a2Gp

xa: a� 1ð Þ.
Apparently xp

k

¼ x�p
k

for any natural k. But xp
k

2 VR G½ � and so x� 2 VR G½ �.
Hence x� 2 VR G½ � \R M½ � ¼ VR M½ �. Writing v ¼ 1 þ x� �1ð Þ:

P
a2Gpn 1f gxa: a� 1ð Þ,

we easily deduce that x ¼ x�v, where v 2 V R G½ �;Gp

� �
. It is clear that,

VR G½ � � VR M½ �: V R G½ �;Gp

� �
. Certainly by an application of Lemma 2.1,

VR M½ � \ V R G½ �;Gp

� �
� V R M½ �;M \Gp

� �
¼ 1, which completes the proof of (5).

The other two equalities hold by the formulae SF G½ � ¼ V F G½ �;Gp

� �
(cf. [5]) and

UF G½ � ¼ VF G½ � � F�.
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The next result is important. Its proof is obvious and we omit the details.
Lemma 2.3. Suppose Ri are commutative rings with identities i ¼ 1; . . . ; jð Þ. Then

�iRið Þ G½ � ffi �iRi G½ �.

Now we can state our main result.

Theorem 2.2. (a) Let E be a field and let G be an abelian group without elements
of order char(E).

UE� G½ � ffi � Gtj jG=Gt

� �
� � Gtj jE

��
� �

: ð8Þ

UE� G½ � ffi � Gtj jG=Gt

� �
� � Gtj jQ=Z

� �
� � Gtj j� E�j jQ

� �
; ð9Þ

if char Eð Þ ¼ 0.

UE� G½ � ffi � Gtj jG=Gt

� �
� � Gtj j�q 6¼pZ q1ð Þ

� �
� � Gtj j�ZQ

� �
; ð10Þ

if char Eð Þ ¼ p 6¼ 0, where Z ¼ 0 or Z ¼ E�j j.
(b) Suppose that G is p-splitting.

UK G½ � ffi � Gt=Gpj jG=Gt

� �
� � Gt=Gpj jK

�
� �

� SK G½ �: ð11Þ

UK G½ � ffi � Gt=Gpj jG=Gt

� �
� � Gt=Gpj j�q 6¼pZ q1ð Þ

� �

� � Gt=Gpj j�ZQ
� �

� SK G½ �; where Z ¼ 0 or Z ¼ Kj j:
ð12Þ

(c) Assume Gt is finite and E is a field. If char Eð Þ ¼ 0, then we have

UE G½ � ffi �aG=Gtð Þ �
Y

d= Gtj j
�ldE �dð Þ

�
� �

; a ¼
X

d= Gtj j
ld ð13Þ

and if char Eð Þ ¼ p > 0, then we have

UE G½ � ffi �bG=Gt

� �
�

Y
d= Gt=Gpj j

�md
E �dð Þ

�


 �
� SE G½ �; ð14Þ

b ¼
X

d= Gt=Gpj j
md;

where ld ¼ g 2 Gt

� ��order gð Þ ¼ d
�� �

j= E �dð Þ : Eð Þ;
P

d= Gtj jld: E �dð Þ : Eð Þ ¼ Gtj j, and
md ¼ g 2 Gt=Gp

� ��order gð Þ ¼ d
�� �

j= E �dð Þ : Eð Þ;
P

d= Gt=Gpj jmd: E �dð Þ : Eð Þ ¼ Gt=Gp

�� ��.
Moreover, SE G½ � is bounded and the Ulm-Kaplansky functions [28] serve to classify
SE G½ �.
(d) Suppose that G splits and E is a field. If char Eð Þ ¼ 0, then

UE G½ � ffi UE Gt½ � � �aG=Gtð Þ; ð15Þ

where a ¼ Gtj j � @0 or a ¼
P

d= Gtj j ld when Gtj j < @0, where ld ¼ g 2 Gtj
���

order gð Þ ¼ dgj= E �dð Þ : Eð Þ, and if char Eð Þ ¼ p > 0 then we have
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UE G½ � ffi UE Gt=Gp

� �
� �bG=Gt

� �
� SE G½ �; ð16Þ

where b ¼ Gt=Gp

�� �� � @0 or b ¼
P

d= Gt=Gpj jmd when Gt=Gp

�� �� < @0; here
md ¼ g 2 Gt=Gpjorder gð Þ ¼ d

� ��� ��= E �dð Þ : Eð Þ.
(e) Let G be splitting such that Gt=Gp is �-cyclic.

UF G½ � ffi � Gt=Gpj jG=Gt

� �
�

Y1

n¼0
�mnF �nð Þ

�
� �

� SF G½ �; Gt=Gp

�� �� � @0:

ð17Þ

UF G½ � ffi ��G=Gt

� �
�

Y
n= Gt=Gpj j

�mn F �nð Þ
�


 �
� SF G½ �; Gt=Gp

�� �� < @0;

ð18Þ

where � ¼
P

n= Gt=Gpj jmn and mn ¼ g 2 Gt=Gp

� ��order gð Þ ¼ n
�� �

j= E �nð Þ : Eð Þ. If Gp is

�-cyclic, then SF G½ � is �-cyclic and thus the Ulm-Kaplansky cardinal invariants [28]
serve to classify SF G½ �.

(f) Let G be splitting so that Gt=Gp is �-countable. Besides let Dq be the max-
imal divisible subgroup of Gq and D ¼�q 6¼pDq, where q is a prime. Let P be the set
of all primes q 6¼ p. For every finite T � P and every integer n relatively prime to the
members of T (following Chatzidakis and Pappas), we define a cardinal number
m T; nð Þ as follows:

. m 1; 1ð Þ ¼ 1;

. Gq!

q ffi 1; m q
� �

; 1
� �

¼ Gq

�� ��; otherwise m q
� �

; 1
� �

¼ 0;
. m T; 1ð Þ ¼

Q
q2Tm q

� �
; 1

� �
;

. m T; nð Þ ¼ m T; 1ð Þan, where an F �nð Þ :Fð Þ ¼ a2 �q 6¼pGq

� �
=Dja has order n

� ��� ��.
The following properties hold.

UF G½ � ffi � Gt=Gpj jG=Gt

� �
�

Y
T;n
�m T;nð ÞF �n; mq

� ��� �
� SF G½ �; ð19Þ

where Gt=Gp

�� �� � @0, or

UF G½ � ffi ��G=Gt

� �
�

Y
n= Gt=Gpj j

�mn
F �nð Þ

�


 �
� SF G½ �; ð20Þ

where Gt=Gp

�� �� < @0. Moreover if Gp is �-countable and F is perfect, then SF G½ � is �-
countable and thus the Ulm-Kaplansky cardinal functions [28] serve to classify SF G½ �.

Proof. (a) We shall distinguish two basic cases.
Case 1—G splitting. If Gtj j � @0, then the isomorphism holds by application of

(1) and (2). Now, assume that Gtj j < @0. Hence E� Gt½ � ffi � Gtj jE
�, and

E� G½ � ¼ E� Gt½ � G=Gt½ �. Consequently, by Lemma 2.3, E� G½ � ffi � Gtj jE
� G=Gt½ � and

immediately we deduce that UE� G½ � ffi � Gtj jUE
� G=Gt½ � ¼ � Gtj j G=Gt � E��ð Þ

according to the classical Higman’s result (cf. [14]), completing the proof in this case.
Case 2—G arbitrary. Select H ¼ Gt �G=Gt. By [19], E� H½ � ffi E� G½ �, whence

UE� H½ � ffi UE� G½ �. From Case 1 it follows that UE� H½ � ffi � Gtj j G=Gt
� �

�

� Gtj jE
��

� �
, and so we are done.

It is not difficult to see that E�* is divisible. From the monograph [12, p. 369,
Theorem 127.3] (see also the first book of [12]) it follows that E�� ffi Q=Z�� E�j jQ
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for char Eð Þ ¼ 0, and E�� ffi �q 6¼pZ q1ð Þ ��ZQ for char Eð Þ ¼ p 6¼ 0, where q is a
prime, Z is a cardinal (Z=0 if E is an algebraic extension of finite field()E�* is
torsion; or Z ¼ E�j j otherwise) and Q is an additive group of rationals. That is why for
the above condition on G, the dependences (9) and (10) are true. Thus (a) is proved.

(b) Since G p-splits, G ffi Gp �G=Gp. Thus, by (7), UK G½ � ffi UK G=Gp

� �
�

SK G½ �. Finally we need only apply the formulas (8) and (10). This completes the
proof of (b).

(c) The torsion part Gt is finite and hence bounded. However it is pure in G and
therefore G splits; i.e. G ffi Gt �G=Gt (see [12, p. 140, Theorem 27.5] (L. Kulikov).
Thus E G½ � ffi E Gt½ � G=Gt½ �. We shall assume that char(E) does not divide Gtj j (so
that char(E)=0 or char(E)=p 6¼0 when Gp=1). That is why employing the classical
Maschke’s criterion, E[Gt] is a semisimple group algebra [13], and moreover
it is Artinian. Hence, by [37,13], we have E Gt½ � ffi

P
d= Gtj j � ld E �dð Þ andP

d= Gtj j ld: E �dð Þ :ð EÞ ¼ Gtj j, where ld are calculated as above.
Furthermore E G½ � ffi

P
d= Gtj j � ld E �dð Þ G=Gt½ �, using Lemma 2.3.

Apparently UE G½ � ffi
Q

d= Gtj j�ldUE �dð Þ G=Gt½ � ¼
Q

d= Gtj j�ld G=Gt � E �dð Þ
�

½ �,

by making use of the classical Higman’s result. Finally UE G½ � ffi

�P
d= Gtj j

ld
G=Gt


 �
�

Q
d= Gtj j�ld E �dð Þ

�
� �

, which finishes the proof in this case.

Let us now assume that char(E)=p and Gp 6¼1 (if Gp=1, the proof is analogous
to the above). We may write G=Gp�M and hence utilizing Lemma 2.2,
UE[G]=UE[M]�SE[G]. By the preceding scheme we deduce that

UE M½ �ffi �P
d= Mtj j

md
M=Mt


 �
�

Y
d= Mtj j

�md
E �dð Þ

�
� �

;

where

md ¼ g 2 Mtjg has order d
� ��� ��= E �dð Þ : Eð Þ:

But M=Mt ffi G=Gt and Mt ffi Gt=Gp since Mt�Gp=Gt, which gives the result
immediately. Finally Gp � Gt is bounded, therefore it is not difficult to verify that
SE[G] is also, by [5]. That is why the Ulm-Kaplansky cardinal functions of SE[G]
calculated in [28, 35, 36], completely characterize this group. The proof of (c) is
complete.

(d) Trivially by virtue of [36], if Gt is finite and char(E) does not divide the car-
dinality Gtj j, then UE Gt½ � ffi

Q
d= Gtj j�ld E �dð Þ

�, assuming that char(E)=0 or
char(E)=p>0 along with Gp=1 (see also (13)). In view of (13) and (14) we conclude

that UE G½ � ffi �P
d= Gtj j

ld
G=Gt


 �
�UE Gt½ �. If Gt is infinite, then the above listed

formula (2) from the theorem due to Chatzidakis-Pappas yields (15) in this case.
Now, assume char(E)=p 6¼0 and Gp 6¼1. Write G=Gp�M. From Lemma 2.2 it

follows at once that UE[G]=UE[M]�SE[G]. As above,

UE M½ � ffi �bM=Mt

� �
�UE Mt½ � ffi �bG=Gt

� �
�UE Gt=Gp

� �
;

because M=Mt ffi G=Gt and MtffiGt/Gp. This completes the proof of (d).
(e) For Gt/Gp finite, the assertion follows by combining (16) and (12). Let us

assume that Gt/Gp is infinite. Evidently in this situation, (16) and (11) are applicable.
Moreover since Gp is �-cyclic then, by means of Theorem 2.1(ii) so is SF[G].
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Therefore the Ulm-Kaplansky invariants computed in [28,35,36] serve the iso-
morphism type of SF[G]. This proves (e).

(f) The first part follows according to (16), (18) and the discussion on
the Chatzidakis-Pappas theorem [1, Theorem 3.6]. The second part is a consequence
of Claim 2.1 together with [28,35,36] and [12]. This completes the proof of (f).

Remark. We now use an example of a group constructed by May [21] to give an
assertion pertaining to isomorphism of group algebras over all fields and to the
construction of unit groups of such group algebras. Let G be the abelian group
generated by elements ap, bpi, g0, and gpj (p prime, i�1, j�2) with relations given in
[21]. There it is shown that G is countable and there is no splitting of torsion-free
rank one such that E[G]ffiE[Gt�G/Gt], for every field E, so UE[G]ffiUE[Gt�G/Gt].
By what we have proved above in Theorem 2.2, the group UF[Gt�G/Gt] is com-
pletely determined and so the structure of UF[G] is obviously described.

Remark. When G is arbitrary �-countable (in particular �-cyclic), the for-
mulas (19) and (20) (in particular (17) and (18)) guarantee that the group UF[G] is
completely determined up to an isomorphism.

Other significant facts in this area, the reader can see in [16–18; 20].
We conclude this article with some problems of interest and importance that

immediately arise.

3. Open questions and conjectures. What is the structure of UK[G] when G is
arbitrary (though is not, however, p-splitting)? Probably a formula similar to (11)
will be valid. Moreover, what is the simulation for the more general UF[G]? The
particular situation when Gt/Gp is from a class of groups larger than the class of all
�-countable groups is also of major interest.

Complying with the structural formulas for U[KG] and UF[G] listed above, new
criteria and computations generalizing those in [29–34] for these groups to belong to
some central classes of abelian groups, may be obtained. Nevertheless, this is a
problem where some other approach might work.
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