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Abstract
In the second part of this series of papers, we address the same evolution problem that was considered in part 1 (see
[16]), namely the nonlocal Fisher-KPP equation in one spatial dimension,

ut = Duxx + u(1 − φ ∗ u),

where φ ∗ u is a spatial convolution with the top hat kernel, φ(y) ≡ H
(

1
4
− y2

)
, except that now we modify this

to an associated initial-boundary value problem on the finite spatial interval [0, a] rather than the whole real line.
Boundary conditions are required at the end points of the interval, and we address the situations when these are of
either Dirichlet or Neumann type. This model is a natural extension of the classical Fisher-KPP model, with the
introduction of the simplest possible nonlocal effect into the saturation term. Nonlocal reaction-diffusion models
arise naturally in a variety of (frequently biological or ecological) contexts, and as such it is of fundamental interest
to examine their properties in detail, and to compare and contrast these with the well known properties of the
classical Fisher-KPP model.

1. Introduction

In this second paper, we consider the evolution problem detailed in part 1 of this series of papers [16]
(and henceforth referred to as (NB1)) for the nonlocal Fisher-Kolmogorov-Petrovsky-Piskunov (Fisher-
KPP) equation with top hat kernel, but now on a finite spatial interval [0, a], where a is the dimensionless
interval length, scaled relative to the nonlocal length scale. In particular, this paper is designated as part
2 because it requires significant use and development of the theory and results detailed in part 1. As a
consequence, the present paper should be read in conjunction with (NB1) to avoid significant repetition
at numerous points throughout the paper. Reference to the relevant parts of (NB1) is clearly designated
at all stages. As described in (NB1) and references therein, nonlocal reaction-diffusion equations arise
in many different scientific areas, and finite domain effects can be relevant in a significant number of
them, particularly in biomedical applications, [2]. The reader is referred to the introduction of (NB1) for
a more extensive and general discussion of background and related works, which need not be repeated
here. In this regard, we note that the majority of significant theoretical works on the nonlocal Fisher-KPP
equation have treated the Cauchy problem on the real line, in respect to travelling wave-fronts, spreading
speeds and stationary patterning, and as such have been referenced and discussed in the introduction and
relevant sections of (NB1) (we mention here [3], [20], [11], [8], [13], [5], [7], [19] and [13]). However, it
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is appropriate to contextualise here the relevance of considering the evolution problem on a finite spatial
interval, with associated Dirichlet or Neumann boundary conditions. Specifically, from a modelling
perspective, the relevance of finite interval problems arises naturally in ecological population dynamics
and many biomedical applications. Modelling and analysis in these areas have recently been developed
in [6] and [12]. Also, it is worth emphasising that the key feature of the inclusion of the nonlocal term is
the introduction of a nonlocal length scale into the model. There are thus two dimensionless parameters
in the model, namely D, which measures the square of the ratio of the diffusion length scale (based on
the kinetic time scale) to the nonlocal length scale, and a, which measures the ratio of the domain length
scale to the nonlocal length scale. We examine both the Dirichlet and the Neumann models for (a, D)
throughout the positive quadrant of the parameter plane. As should be expected, significant structural
differences in behaviour between the classical Fisher-KPP model and this natural nonlocal extended
model become more extensive as the parameter D decreases and the nonlocal length scale becomes
dominant (the classical local Fisher-KPP models are readily recovered, after a rescaling of dimensionless
length with

√
D, in the limit D → ∞, uniformly for a > 0), and these principal, and marked, differences

are fully explored, exposed and summarised at the end of each section and subsection. We remark here
that throughout the paper, we regard a as a bifurcation parameter, at fixed D, which is regarded as the
unfolding parameter. For each fixed positive D, we endeavour to give a complete description of the key
qualitative and quantitative features of the model. To achieve this, we find it useful to adopt and develop
a combination of well-established approaches as and when appropriate, including direct exact analysis,
classical linearised and weakly nonlinear theory, local bifurcation theory, matched asymptotic methods
and numerical approximation.

The simplicity of the top hat kernel allows us to develop both a qualitative and quantitative description
of the strongly nonlinear and nonlocal structure and dynamics of the solution set to both the Dirichlet
and Neumann models, whose qualitative features (strongly nonlinear and nonlocal hump formation and
structure, and accumulating numbers of temporally stable multi-hump steady-state attractors), which
have previously been unidentified, are expected to remain relevant for other localised kernels that are less
amenable to this type of detailed analysis. In particular, we study, in detail, regimes far away from linear
and weakly nonlinear limits, and address the fully nonlinear interaction between nonlocality, diffusion
and competition in the underlying nonlocal PDE.

We address the evolution problem, firstly with Dirichlet and secondly with Neumann boundary
conditions at the two ends of the finite spatial interval. The evolution problem is

ut = Duxx + u

(
1 −

∫ β(x)

α(x)

u(y, t)dy

)
with (x, t) ∈ D∞, (1)

with the domain

D∞ = (0, a) × (0, ∞), (2)

and where, with 0 < a ≤ 1/2, we have,

α(x) = 0 and β(x) = a ∀ x ∈ [0, a], (3)

whilst, with a > 1/2, we have,

α(x) =

⎧⎪⎨
⎪⎩

0, 0 ≤ x ≤ 1

2
,

x − 1

2
,

1

2
< x ≤ a,

(4)

and,

β(x) =

⎧⎪⎨
⎪⎩

x + 1

2
, 0 ≤ x < a − 1

2
,

a, a − 1

2
≤ x ≤ a.

(5)
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These two conditions simply ensure that the nonlocal range does not extend beyond the two boundaries
of the finite interval. The associated initial condition is,

u(x, 0) = u0(x), x ∈ [0, a], (6)

whilst the boundary conditions are, for the Dirichlet problem,

u(0, t) = u(a, t) = 0, t ∈ (0, ∞), (7)

or for the Neumann problem,

ux(0, t) = ux(a, t) = 0, t ∈ (0, ∞). (8)

In the above, D is the constant diffusion coefficient. The initial data have u0 ∈ C([0, a]) ∩ PC1([0, a]) (that
is, continuous with piecewise continuous derivative), and are non-negative and nontrivial. We henceforth
refer to the Dirichlet problem as (DIVP) and the Neumann problem as (NIVP), and throughout we will
consider classical solutions to these two evolution problems.

To begin with, we review the basic setting in uniqueness and global existence for both of the evolution
problems (DIVP) and (NIVP). To this end, it is a straightforward consequence of the parabolic strong
maximum principle (and non-negative, nontrivial initial data) that, with u : D∞ →R being a solution to
either of (DIVP) or (NIVP), then,

u(x, t) > 0 ∀ (x, t) ∈ D∞. (9)

It is then a consequence of the parabolic comparison theorem (with parabolic operator N[u] ≡ ut −
Duxx − u) that,

u(x, t) ≤ Met ∀ (x, t) ∈ D∞, (10)

with M = supy∈[0,a]u0(y). The a priori bounds in (9) and (10) readily guarantee the existence and unique-
ness of a classical solution to either of (DIVP) and (NIVP) (without repetition, this follows very closely
from the discussion, and key references therein, as laid out in section 2 of (NB1) for the Cauchy problem
on the real line). A further simple application of the parabolic comparison theorem establishes that, for
the solution to (DIVP), there exists a positive constant A, for which u0(x) ≤ A sin

(
πx
a

) ∀ x ∈ [0, a], and
such that,

u(x, t) ≤ Ae
(

1− π2D
a2

)
t sin

(πx

a

)
∀ (x, t) ∈ D∞. (11)

The remainder of the paper is structured as follows. Section 2 addresses (DIVP) in detail. Exact solutions
are constructed for 0 < a ≤ 1/2, which allow for a complete analysis of (DIVP). For a > 1/2, we first
consider the existence of nontrivial and non-negative steady states associated with (DIVP). We achieve
this by fixing D as an unfolding parameter and regarding a as a bifurcation parameter. The detailed
bifurcation structure is examined numerically via pseudo-arclength continuation (see Appendix A or
[1]), with the asymptotic structure of steady states examined in detail in a number of relevant limits in
the positive quadrant of the (a, D) parameter plane through the use of well established regular and sin-
gular perturbation methods, the conclusions of which are gathered together in each relevant subsection.
In this way, the intricate nature of this bifurcation structure is fully detailed across the primary linear
and weakly nonlinear local bifurcations from the trivial steady state into the fully nonlinear and nonlo-
cal multiple and accumulating secondary bifurcations. The linear stability of the multiple steady states
generated from these accumulating secondary bifurcations is examined by analysis of the associated
linear, nonlocal, variable coefficient and eigenvalue problem. This then enables us to make conjectures
relating to the large-t attractors for (DIVP), and these conjectures are then supported by careful numer-
ical solutions to (DIVP). In section 3, we follow a similar approach in developing a detailed analysis
to (NIVP), and compare and contrast the results with the corresponding results in section 2. We draw
some relevant conclusions in section 4. Throughout the paper, the key results and their relevance are
summarised, discussed and contextualised at the end of each section and subsection. Descriptions of the
numerical methods required and used in the paper are given in Appendix A.

https://doi.org/10.1017/S0956792525100053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100053


4 D. J. Needham and J. Billingham

2. The Dirichlet problem (DIVP)

In this section, we focus on the Dirichlet problem (DIVP). To begin with, we observe that when the
initial data is trivial, the solution to the associated (DIVP) is the equilibrium solution

u(x, t) = ue = 0 ∀ (x, t) ∈ D̄∞. (12)

For initial data with ‖u0‖∞ small, it is straightforward to develop a linearised theory for (DIVP). For
brevity, we do not present the details, which are standard, but observe that this linearised theory for
(DIVP) leads directly to the conclusion that the trivial equilibrium solution is locally asymptotically
stable when D > a2/π 2 but unstable when 0 < D < a2/π 2. These conclusions can be extended, via (9)
and (11), beyond the linearised regime to prove that the trivial equilibrium solution is globally asymptot-
ically stable when D > a2/π 2, and at least Liapunov stable when D = a2/π 2. Thus, when D > a2/π 2, the
solution to (DIVP) decays to zero exponentially in t as t → ∞, uniformly for x ∈ [0, a]. The remainder
of this section focuses on considering the nature of the solution to (DIVP) when 0 < D < a2/π 2, and
in particular the structure of the solution for t large. To continue, it is convenient to consider the cases
when 0 < a ≤ 1/2 and a > 1/2 separately.

In addition, referring back to our observation in the introduction, we again note that in the limit
D → ∞ (after rescaling x with

√
D), (DIVP) formally becomes the classical local Fisher-KPP Dirichlet

problem, and so we should expect that the associated well known classical results for this local problem
are recovered in this limit, and this is confirmed in what follows.

2.1. 0 < a ≤ 1/2

In this case, it follows from (3) that equation (1) becomes,

ut = Duxx + u(1 − aū(t)), (x, t) ∈ D∞, (13)

where ū : [0, ∞) →R is the spatial mean value of u over the interval [0, a], given by,

ū(t) = 1

a

∫ a

0

u(y, t)dy ∀ t ∈ [0, ∞). (14)

Before considering (DIVP) in detail, it is instructive to first consider the possible non-negative and
nontrivial steady states, which satisfy equation (13) and boundary conditions (7), as such steady states
are potential attractors for the solution to (DIVP) as t → ∞ when 0 < D < a2/π 2. A non-negative steady
state us : [0, a] →R to (DIVP) satisfies,

Du′′
s + us(1 − aūs) = 0, x ∈ (0, a), (15)

with,

us(x) ≥ 0 ∀ x ∈ [0, a], (16)

subject to the boundary conditions,

us(0) = us(a) = 0, (17)

and with the constant ūs given by,

ūs = 1

a

∫ a

0

us(y)dy. (18)

It is straightforward to analyse this boundary value problem directly, and the details are left to the reader.
Apart from the trivial solution, it has an additional nontrivial solution if and only if 0 < D < a2/π 2, and
this solution is given by,

us(x) = π

2a

(
1 − π 2D

a2

)
sin
(πx

a

)
∀ x ∈ [0, a], (19)
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with,

ūs = 1

a

(
1 − π 2D

a2

)
= 1

a
||us||1 = 2

π
||us||∞. (20)

We observe that the nontrivial steady state is a positive single hump, symmetric about x = 1
2
a, and with

support spanning the whole interval. It is convenient to consider this steady state with 0 < D < 1/4π 2

fixed, and allowing a to vary in the interval of existence (π
√

D, 1/2]. In this context, from (19) and (20),
we see directly that us emerges at a steady state transcritical bifurcation from the equilibrium state ue = 0,
when a = π

√
D (noting that the nontrivial steady solution generated by this bifurcation for a ∈ (0, π

√
D)

is negative, and thus ruled out) and develops for a ∈ (π
√

D, 1/2]. For 1/12π 2 ≤ D < 1/4π 2, we note that
||us||∞ is monotone increasing with a, whilst for 0 < D < 1/12π 2, we determine that now ||us||∞ has a
single maximum, at a = √

3π
√

D, with value ||us||∞ = 1/(3
3
2
√

D). In Figure 1, we graph ||us||∞ against
a at a number of values of D. It is anticipated that, at fixed 0 < D ≤ 1/4π 2, this branch of steady solutions
will be smoothly continued into a > 1/2. This will be addressed at a later stage. For the present, we now
return to considering (DIVP) in detail.

With equation (1) now having the form given in (13), we can, in fact, directly construct the solution
to (DIVP) as follows. First, we write the solution u : D̄∞ →R to (DIVP), via Fourier’s Theorem, as,

u(x, t) =
∞∑

n=1

An(t) sin
(nπx

a

)
∀ (x, t) ∈ D̄∞, (21)

which satisfies the boundary conditions (7), and, for each n ∈N, An : [0, ∞) →R is to be determined
so that (21) satisfies equation (13) and initial condition (6). For each n ∈N, it follows from a direct
substitution that this is achieved if and only if An(t) satisfies the initial value problem,

A′
n(t) = An(t)

(
1 − D

n2π 2

a2
− aū(t)

)
, t > 0, (22)

subject to,

An(0) = A0
n = 2

a

∫ a

0

u0(y) sin
(nπy

a

)
dy, (23)

and we note, following the earlier conditions on u0, that

A0
1 > 0, (24)
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whilst,

ū(0) = 1

a

∫ a

0

u0(y)dy = 2

π

∞∑
r=1

A0
2r−1

(2r − 1)
> 0. (25)

The solution to (22) and (23) is readily obtained as,

An(t) = A0
nJ(t)e− n2π2D

a2 t, t ≥ 0, (26)

with,

J(t) = e(t−aI(t)) > 0, t ≥ 0, (27)

and,

I(t) =
∫ t

0

ū(s)ds, t ≥ 0. (28)

The solution to (DIVP) can now be written, via (21) and (26), as

u(x, t) = J(t)
∞∑

n=1

A0
ne

− n2π2D
a2 t sin

(nπx

a

)
, (x, t) ∈ D̄∞. (29)

We note, via differentiating (27), that we may rearrange to obtain,

ū(t) = 1

a

(
1 − J′(t)

J(t)

)
, t ≥ 0, (30)

and, via (27), that,

J(0) = 1. (31)

Now, on integrating (29) across the spatial interval [0, a], we obtain,

ū(t) = J(t)G(t), t > 0, (32)

with G ∈ C([0, ∞)) ∩ C∞((0, ∞)) being the known function,

G(t) = 2

π

∞∑
n=1

A0
2n−1

(2n − 1)
e− (2n−1)2π2D

a2 t, t ≥ 0. (33)

It follows from (27) and (32) (recalling from (9) that the solution to (DIVP) is strictly positive on D∞)
that,

G(t) > 0 ∀ t ≥ 0, (34)

and

G(0) = ū(0). (35)

whilst,

G(t) ∼ 2

π
A0

1e− π2D
a2 t as t → ∞. (36)

Direct substitution from (32) into (30) then determines that J(t) is the solution to the nonlinear Bernoulli
equation,

J′(t) − J(t) = −aJ2(t)G(t), t > 0, (37)

subject to the initial condition (31). This problem has solution J : [0, ∞) →R given by,

J(t) = et

(1 + aM(t))
, t ≥ 0, (38)
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where M : [0, ∞) →R is given by,

M(t) =
∫ t

0

esG(s)ds ∀ t ≥ 0, (39)

with M(t) > 0 for t > 0. The exact solution to (DIVP) is now complete, and given by (29) with (33), (38)
and (39). On using (36), we observe that, when 0 < D < a2/π 2,

M(t) ∼ 2A0
1

π

(
1 − π 2D

a2

)−1

e(1− π2D
a2 )t as t → ∞, (40)

whilst, when D > a2/π 2,

M(t) → M∞ =
∫ ∞

0

esG(s)ds as t → ∞. (41)

The marginal case when D = a2/π 2 has,

M(t) ∼ 2A0
1

π
t as t → ∞. (42)

It now follows from (39) and (40)–(42) that,

J(t) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

π

2A0
1a

(
1 − π 2D

a2

)
e

π2D
a2 t, 0 < D <

a2

π 2
,

et

(1 + aM∞)
, D >

a2

π 2
,

πet

2A0
1at

, D = a2

π 2
,

(43)

as t → ∞. Thus we have, via (29) and (43), that the solution to (DIVP) has, when 0 < D < a2/π 2,

u(x, t) = us(x) + O(E(t)) as t → ∞, (44)

uniformly for x ∈ [0, a], with E(t) being exponentially small in t as t → ∞. Conversely, when D > a2/π 2,
we have,

u(x, t) ∼ A0
1

(1 + aM∞)
e

−
(

π2D
a2 −1

)
t
sin
(πx

a

)
as t → ∞, (45)

uniformly for x ∈ [0, a]. In the marginal case, D = a2/π 2, we have uniform decay to zero, as in the second
case above, but now the decay is slower, being algebraic rather than exponential in t, as t → ∞, with,
specifically,

u(x, t) ∼ π

2at
sin
(πx

a

)
as t → ∞, (46)

uniformly for x ∈ [0, a].
The cases with 0 < a ≤ 1/2 are now complete, and we move on to consider the situation when

a > 1/2.

2.2. a > 1/2

In this subsection, we consider the remaining cases, which have 0 < D < a2/π 2 when now a > 1/2.
Although the scope for direct analytical progress is much more limited in this case, considerable
progress can be made in a number of significant asymptotic limits and making useful applications
of well-established perturbation methods, and this, complemented and supported by evidence gained
from detailed numerical solutions, results in a largely complete overall picture. Details of the numeri-
cal methods used to find steady states, compute bifurcation diagrams, solve the evolution problem and
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calculate eigenvalues for the linear stability problem, which are based on central finite differences and
the trapezium rule, are given in Appendix A.

To begin with, we consider the non-negative and nontrivial steady states which can exist satisfying
(1) with (4), (5) and again the Dirichlet boundary conditions (7). This enables us subsequently to draw
conclusions concerning the large-t structure of the solution to (DIVP). It is again convenient to con-
sider the steady state structure at fixed D (as an unfolding parameter) whilst varying a (as a bifurcation
parameter). This leads us naturally to consider a number of complementary cases.

2.2.1. D ≥ 1/4π2 ≈ 0.02533 with 0 < (a − π
√

D) � 1

In this case, it is again straightforward to prove (via a standard linearisation of the steady form of equa-
tion (1) about the trivial equilibrium state) that a steady state transcritical bifurcation from the trivial
equilibrium state, as a increases through π

√
D, generates a nontrivial, non-negative steady state, and

a weakly nonlinear theory is readily developed, which gives this bifurcated steady state the following
structure close to the bifurcation point, namely,

us(x; a, D) ∼ Ab(D)(a − π
√

D) sin
(πx

a

)
as a → (π

√
D)+, (47)

uniformly for x ∈ [0, a] (the detailed calculations here are standard, and as such, left for the reader). Here
Ab(D) is a strictly positive O(1) constant, independent of a.

2.2.2. 0 < D < 1/4π2 with 0 < (a − 1/2) � 1

It is in this case that we consider whether the unique steady state we have identified in subsection 2.1,
which exists for π

√
D < a ≤ 1/2, can be continued into a > 1/2. An examination of the steady state

version of equation (1) in the limit as a → 1/2 determines that this continuation is certainly possible, and
uniquely so, at least locally, and we perform this as a regular perturbation expansion in integral powers
of (a − 1/2) when a is sufficiently close to 1/2. This results in the following leading order approximation
for the continued steady state,

us(x; a, D) ∼ π (1 − 4π 2D) sin
(πx

a

)
+ O((a − 1/2)) as a → 1

2

+
, (48)

uniformly for x ∈ [0, a].
In the next case, we consider steady states when D is large, with a = O(

√
D) as D → ∞.

2.2.3. D � 1 with a = O(
√

D)

We write,

a = √
Dā, (49)

so that ā = O(1)+ as D → ∞. A balancing of terms in the steady state version of equation (1) determines
that steady states have us = O(1) as D → ∞, after which this nontrivial balance requires us to introduce
the scaled coordinate,

x̄ = x/
√

D, (50)

with now x̄ ∈ [0, ā]. For a steady state, the nonlocal term in (1) becomes (except in passive boundary
layers, where x̄ = O(1/

√
D)+or x̄ = ā − O(1/

√
D)+),

√
D
∫ x̄+ 1

2
√

D

x̄− 1
2
√

D

us(ȳ)dȳ = us(x̄) + O(D−1) as D → ∞, (51)
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with x̄ ∈ (O(1/
√

D)+, ā − O(1/
√

D)+). A steady state us : [0, ā] →R is now expanded in the asymptotic
form,

us(x̄, ā; D) = Us(x̄, ā) + O(D−1) as D → ∞, (52)

with x̄ ∈ [0, ā]. On substitution from expansion (52) into equation (1) (when written in terms of the
coordinate x̄), we obtain at leading order the local, nonlinear ODE for Us,

U′′
s + Us(1 − Us) = 0, x̄ ∈ (0, ā), (53)

where ′ = d/dx̄. We note that this is precisely the Dirichlet problem for steady states on the interval [0, ā]
for the local Fisher-KPP equation (see, for example, [9]). This is to be solved subject to the boundary
and non-negativity conditions,

Us(0, ā) = Us(ā, ā) = 0 , Us(x̄, ā) ≥ 0 ∀ x̄ ∈ [0, ā]. (54)

It is straightforward to consider solutions to this nonlinear boundary value problem by recasting it in
the (Us, U′

s) phase plane. We omit details, which can be readily confirmed by the reader, and simply
record the conclusions. Firstly, it has no nontrivial solutions when 0 < ā ≤ π . However, consistent with
the earlier theory, a transcritical bifurcation from the trivial solution occurs as ā increases through the
bifurcation value ā = π (this being, in term of a, the value a = π

√
D, consistent with the earlier theory).

This bifurcation produces a unique nontrivial solution in ā > π . We denote this solution by Us = ν(x̄, ā)
with x̄ ∈ [0, ā], and it has the following key properties,

1. ν(x̄, ā) > 0 ∀ x̄ ∈ (0, ā),

2. ν(x̄, ā) is symmetric about x̄ = 1
2
ā,

3. ν(x̄, ā) has a single turning point, which is a maximum, at x̄ = 1
2
ā,

4. with A(ā) = supx̄∈[0,ā](ν(x̄, ā)), then A(ā) is monotone increasing with ā > π , and A(ā) → 0 as
ā → π , whilst A(ā) → 1 as ā → ∞.

It is also straightforward to develop the following formal asymptotic approximations for the nontrivial
steady state; the regular perturbation,

ν(x̄, ā) = 3

4
(ā − π ) sin

(
π x̄

ā

)
+ O((ā − π )2) as ā → π , (55)

uniformly for x̄ ∈ [0, ā], and the matched asymptotic approximation,

ν(x̄, ā) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − 3

2
sech2

{
1

2

(
x̄ + ln (2 + √

3)
)}

+ o(1), x̄ = O(1)+,

1 − 6

2 + √
3

(
e−x̄ + e−(ā−x̄)

) + o(e−x̄, e−(ā−x̄)), x̄ = O(ā)+,

1 − 3

2
sech2

{
1

2

(
(ā − x̄) + ln (2 + √

3)
)}

+ o(1), x̄ = ā − O(1)+,

(56)

as ā → ∞. We see that the structure of the steady state changes from a weakly nonlinear sinusoidal
hump close to its appearance at the local bifurcation when a = π to an almost uniformly (except in thin
boundary layers) flat profile across the interval when a becomes large. This concludes the analysis for D
large with a = O(

√
D), and the asymptotic analysis has shown that there are no non-negative nontrivial

steady states for 0 < a ≤ π
√

D, but a unique such steady state at each a > π
√

D.
The next case has D of O(1) with a large.

2.2.4. 0 < D ≤ O(1) with a � 1

In this case, since the domain length a is large, whilst D remains of O(1), we expect that there will be
symmetric boundary layers when x = O(1)+ and x = a − O(1)+ as a → ∞, at either end of a bulk region
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separating these two boundary layers. We also expect that any nontrivial steady state will have us = O(1)
in the bulk region and in the boundary layers, as a → ∞. Therefore, it is natural to pursue an analysis
of this case via the method of matched asymptotic expansions (see, for example, [14], chapter 8). It
is instructive to begin in the boundary layers, and as these are symmetric, we need only consider the
boundary layer at the left end of the domain. In this boundary layer, we expand as,

us(x, D, a) ∼ Ub(x, D) as a → ∞, (57)

with x = O(1)+. The leading order problem is then readily obtained from substitution of (57) into
equation (1) as,

DU′′
b + Ub

(
1 −

∫ x+ 1
2

α(x)

Ub(y, D)dy

)
= 0, x = O(1)+, (58)

with Ub being non-negative, and subject to the boundary conditions,

Ub(0, D) = 0 and Ub(x, D) bounded as x → ∞. (59)

This nonlocal boundary value problem depends only upon the parameter D, and we have performed a
systematic numerical study using a standard shooting method, together with a linearised analysis at large
x to refine this. For convenience, we refer to this nonlocal boundary value problem as (SIBP), and the
numerical analysis, together with the linearised theory (which are straightforward and, for brevity, need
not be detailed here), determine the following key properties:

1. For each D ≥ �1 ≈ 0.00297 (see (NB1), section 4), the numerical shooting method determines
that (SIBP) has a single solution. The linearised theory then determines that this solution has
Ub(x, D) → 1, exponentially in x, as x → ∞. In addition, it determines that Ub(x, D) is mono-
tone when D ≥ �m, but has harmonic exponential decay to unity when �1 < D < �m, with the
exponential decay rate reducing to zero as D → �1. Here �m = 2l−3 sinh

(
1
2
l
)
, with l ≈ 5.9694

being the unique positive solution to the algebraic equation 6 tanh
(

1
2
l
)= l. This determines

�m ≈ 0.0928.
2. For each 0 < D < �1, the numerical shooting method now confirms that (SIBP) has a one-

parameter family of solutions, parameterised by a characteristic wavelength λ, with λ ∈
(λ−

1 (D), λ+
1 (D)), where the notation here is as introduced in section 3 and section 4 of (NB1).

Specifically, each of these solutions is now asymptotic to a steady non-negative, periodic solution
of (1), oscillating about unity, and with wavelength λ, as x → ∞. In particular,

Ub(x, D) ∼ Fp(x − xb(λ, D), λ, D) as x → ∞. (60)

Here Fp(y, λ, D), for y ∈ [0, λ) and (λ, D) ∈ 	1, is readily identified with that nontrivial, non-
negative periodic steady state, with wavelength λ, and oscillating about unity, as introduced and
analysed in detail in section 4 of (NB1), with the spatial translation invarience fixed so that
Fp(0, λ, D) = 1 and F′

p(0, λ, D) > 0. In addition, xb(λ, D) is a shift of origin, which is determined
in the solution of (SIBP), and can be estimated numerically when necessary.

This completes the structure in the left boundary layer. In the right boundary layer, we have, symmetri-
cally,

us(x, D, a) ∼ Ub(a − x, D) as a → ∞, (61)

with x = a − O(1)+. We must now connect the two boundary layers through the bulk region, when x ∈
(O(1)+, a − O(1)+). The situation for D ≥ �1 is straightforward. In the bulk region, asymptotic matching
with the solution in the left and right boundary layers (via item (1) above, and (61), using the classical
Van Dyke asymptotic matching principle, [18]) dictates that in equation (1), we must simply take,

us(x, D, a) ∼ 1 as a → ∞, (62)

for x ∈ (O(1)+, a − O(1)+), and the structure is complete.
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For 0 < D < �1, the situation is more complicated due to the changing structure in the right and left
boundary layers (as recorded in item (2) above) and we begin by recalling from (NB1) (see section 4)
the following general properties of Fp(x, λ, D) with x ∈R:

• Fp(x, λ, D) has exactly one maximum point and one minimum point, and no other stationary points,
over one wavelength λ

• Consecutive maximum and minimum points are separated by a distance 1
2
λ.

• Fp(x, λ, D) is an even function about each of its stationary points.

Now let x = xM(λ, D) be the location of the first maximum point of Fp(x, λ, D) on the positive x-axis.
Using the above properties, we can conclude for each r ∈N, D ∈ (0, �1) and λ ∈ (λ+

1 (D), λ−
1 (D)) (see

(NB1), section 4, for this notation) that the function Fp(x − xb(λ, D), λ, D) has a stationary point at the
positive location

x = xr(λ, D) = xb(λ, D) + xM(λ, D) + 1

2
(r − 1)λ. (63)

Therefore, following the final property above, we conclude that Fp(x − xb(λ, D), λ, D):

• is an even function of x about x = xr(λ, D),
• has a maximum or minimum point at this location when r is odd or even, respectively,
• has exactly r maximum points for x ∈ [0, 2xr(λ, D)].

With this information in hand, we can now return to the bulk region. First, fix D ∈ (0, �1), and choose
r ∈N with r large. Then for each λ ∈ (λ−

1 (D), λ+
1 (D)), take,

a = 2xr(λ, D) = λ(r − 1) + O(1) as r → ∞. (64)

For this large value of a, as r → ∞, we then take,

us(x, D, a) ∼ Fp(x − xb(λ, D), λ, D) (65)

for x ∈ (O(1)+, a − O(1)+). We observe, via (64) and the first comment above, that the asymptotic
approximation (65) asymptotically matches (again according to the Van Dyke matching principle) with
the asymptotic approximations in the boundary layers (57) and (61) when x = O(1)+ and x = a − O(1)+,
respectively. Thus, to summarise, for each fixed 0 < D < �1, we have shown, for each large natural
number r, and then each

a ∈ (λ−
1 (D)(r − 1) + O(1)+, λ+

1 (D)(r − 1) + O(1)+) ≡ Ir(D), (66)

that a nontrivial, non-negative steady state exists and we have constructed its form. Away from boundary
layers at the ends of the long domain, this steady state is periodic about unity, with wavelength (for
a = O(r) as given in (66))

λ ∼ a(r − 1)−1, (67)

and having r peak points across the domain. To characterise each such steady state it is instructive to
measure its norm in L1. Firstly, for 0 < D < �1 and λ ∈ (λ−

1 (D), λ+
1 (D)), we write, over an interval of one

wavelength λ,

A(λ, D) = ||Fp(·, λ, D)||1 ≡
∫ λ

0

Fp(y, λ, D)dy, (68)

and numerically determined contour plots of A(λ, D) in the (D, λ) plane, for each of the first four tongues
where the periodic steady states exist (see (NB1), section 4 for this notation and terminology), are shown
in Figure 2. Outside the tongues, A varies linearly with λ as we have plotted the result for the equilibrium
solution, ue = 1. Within the tongues, the deviation of A from this linear behaviour becomes stronger as
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Figure 2. The L1 norm, A(λ, D), of the nontrivial, non-negative, periodic steady states identified in
(NB1). The first four tongue regions are shown in the (D, λ) plane.

D decreases, becoming independent of λ as D → 0. The qualitative behaviour of A(λ, D) is very similar
in each tongue.

It is now straightforward to determine, via construction and using A(λ, D) in the first tongue, that for
fixed D, and given large r, then,

||us(·, D, a)||1 ∼ rA(a(r − 1)−1, D) ∀ a ∈ ((r − 1)λ−
1 (D), (r − 1)λ+

1 (D)). (69)

With D fixed and r large, we consider the (a, ||us(·, D, a)||1) bifurcation diagram when a is large; we have
now shown above that each interval with a ∈ Ir(D), containing the branch of r-peak steady states, has
an echelon overlap with its predecessor when a ∈ Ir−1(D), containing the branch of (r − 1)-peak steady
states, and this structure continues as r increases, with the number of overlaps, with previous echelons,
increasing linearly with increasing r. This can be represented on the (a, ||us(·, D, a)||1) bifurcation plane
as follows: for each large r, the associated r-peak branch of steady states has a graph given by (69)
on this plane. The graphs of these branches form a lifting, and multiply overlapping, echelon of sepa-
rate segments. At a given large a, the overlapping echelons are associated with those natural numbers
rm(a, D) ≤ r ≤ rM(a, D), where

rm(a, D) ∼ a

λ+
1 (D)

+ 1, (70)

rM(a, D) ∼ a

λ−
1 (D)

+ 1, (71)

as a → ∞. Each segment has a base length increasing linearly with r, a slope of O(1) and a consequent
O(r) increase in norm on traversing the segment. In addition, each segment is lifted by an O(1) value
each time r is increased by unity. Careful numerical solution of the full boundary value problem, using
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Figure 3. Part of the (a, ||us||1) bifurcation diagram, when D = 2 × 10−3. Unstable branches of steady
states are indicated by broken lines.

pseudo-arclength continuation in the (a, ||us||1)-plane, reveals that each two consecutive, overlapping,
branches in the echelon are continuously connected by a hanging, elongated loop with two facing saddle-
node bifurcations, as illustrated in Figure 3. On the lower part of this loop, the associated steady state
develops an additional peak through a rapid process, which occurs, for r large, in the neighbourhood of
the stationary point at x = 1

2
a, in the bulk region, and allows this central stationary point to flip through

itself. There is then a rapid transition to the associated multi-peak steady state as each respective saddle-
node bifurcation is traversed. A typical case is shown in Figure 4.

The above large-a structure continues to hold as D becomes small. However, when D is small, we
can take advantage of the approximations to Fp(x, λ, D) as detailed in section 4 of (NB1). In particular,
we have, as D → 0,

(λ−
1 (D), λ+

1 (D)) →
(

1

2
, 1

)
, (72)

xb(λ, D) + xM(λ, D) → 1

2

(
λ − 1

2

)
∀ λ ∈

(
1

2
+ O(

√
D), 1 − O(D)

)
, (73)

and

A(λ, D) → 1 ∀ λ ∈
(

1

2
+ O(

√
D), 1 − O(D)

)
. (74)

This completes the examination of the steady state structure to (DIVP) when a is large.
We now continue by considering the steady state structure when D is small and a > 1/2 + o(1)+ as

D → 0.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 4. The profile of the steady state us, with D = 2 × 10−3, as the r = 14 to r = 13 echelon of the bifurcation diagram is traversed. The central panel
shows the relevant portion of the bifurcation diagram. Note the different us-axis range in the other panels, individually labelled (a) to (h), and identified
on the central panel. Also, only the steady states (a) to (c), on the upper echelon, are stable, with the steady states (d) to (h), on the connecting loop, each
being unstable.
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2.2.5. 0 < D � 1 with a > 1/2 + o(1) as D → 0

In this case, to again avoid extensive repetition, we take advantage of the detailed theory developed in
subsection 4.1 of (NB1) for the periodic steady states Fp(x, λ, D) with λ ∈ (λ−

1 (D), λ+
1 (D)), now directly

using the terminology laid out in (NB1) in subsection 4.1. Summarising from (NB1), the family of
nontrivial and non-negative periodic states are given by (at leading order as D → 0, and noting that
a passive edge region, of thickness O(D

1
4 ), is present at the end of the supported leading order form

for Fp, which provides local smoothing to the gradient discontinuity in the leading order form), for each
wavelength λ ∈ (1/2 + O(D

1
2 )+, 1 − O(D)+), the asymptotic approximation,

Fp

(
x − 1

2

(
λ − 1

2

)
, λ, D

)
∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

π

(2λ − 1)
sin

⎛
⎜⎝ πx

λ − 1

2

⎞
⎟⎠ , 0 ≤ x ≤ λ − 1

2
,

0, λ − 1

2
< x ≤ λ,

(75)

as D → 0 with x ∈ [0, λ]. We also recall from (NB1) (equation (126)), and using the notation (68), that

A(λ, D) = 1 − π 2

(λ − 1
2
)2

D + o(D
5
4 ) as D → 0. (76)

with λ ∈ (1/2 + O(D
1
2 )+, 1 − O(D)+). Now, for each r = 2, 3, 4 . . ., we can construct from (75) (by

periodic glueing) an r-peak steady state at each domain size a with

a ∈
(

1

2
(r − 1) + O(D

1
2 )+, r − 1

2
− O(D)+

)
, (77)

which is given by

us(x, D, a) ∼ Fp

(
x − 1

2

(
λ(a, r) − 1

2

)
,

(
a + 1

2

)
r−1, D

)
as D → 0, (78)

for x ∈ [0, a], and Fp approximated as in (75), with

λ(a, r) =
(

a + 1

2

)
r−1. (79)

The steady state is uniformly approximated by (78), except in passive, thin, boundary layers at each
end of the domain, when x = O(D

1
2 )+ or x = a − O(D

1
2 )+, respectively, and in which us = O(D

1
2 ). In the

(a, ||us(·, D, a)||1) bifurcation plane, each branch of r-peak steady states lies on the curve,

||us(·, D, a)||1 = r

(
1 − π 2(

λ(a, r) − 1
2

)2 D + o(D
5
4 )

)
as D → 0 (80)

for a ∈ ( 1
2
(r − 1) + O(D

1
2 )+, r − 1

2
− O(D)+), as illustrated in the central panels of Figures 5 and 6, where

this asymptotic expression can be seen to be in excellent agreement with the numerically calculated bifur-
cation curve. These overlapping branches form an increasing echelon as r is successively increased, and
each successive echelon is raised by unity, at leading order as D → 0. Each pair of overlapping echelon
branches is connected by a loop, which consists of a very stiff subcritical saddle-node bifurcation at the
head of each echelon, after which it then traces the echelon backwards, finally increasing towards the
tail of the echelon, passing through a less stiff supercritical saddle-node bifurcation and then increasing
by approximately unity to connect with the next echelon. Whilst traversing the loop, from head to tail,
the additional peak is generated by either the minimum or maximum point at x = 1

2
a pulling through

itself , when r is even or odd, respectively. This structure has been verified using pseudo-arclength con-
tinuation, and a typical numerically determined bifurcation diagram, for D = 10−5, is shown in the final
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Figure 5. The profile of the steady state us as the r = 6 to r = 5 echelon of the bifurcation diagram is traversed. The central panel shows the relevant
portion of the bifurcation diagram, with the broken line given by (80). Note the different us-axis limits in the other panels, individually labelled (a) to (h),
and identified on the central panel. The most dramatic changes in functional form occur along the upper branch of the bifurcation curve, where the peaks
become taller and thinner, and then at the left-hand side of the bifurcation curve, where the number of peaks changes by one. Note that only solutions (a)
to (c) are stable.
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(a) (b) (c)

(d) (e)

(f) (g) (h)

Figure 6. The profile of the steady state us as the r = 5 to r = 4 echelon of the bifurcation diagram is traversed. The central panel shows the relevant
portion of the bifurcation diagram, with the broken line given by (80). The steady state in (a) of this figure is close to the steady state in (h) of the previous
Figure 6 (see Figure 5, bottom right-hand panel) and is qualitatively very similar. Note the different us-axis limits in the other panels, individually labelled
(a) to (h), and identified on the central panel. Note that only solutions (a) to (c) are stable.
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Figure 7. The (a, ||us||1) bifurcation diagram for various values of D. Unstable branches are shown as
broken lines.

window of Figure 7. In addition, for the echelon-loop structure consisting of the r = 5 and r = 6 ech-
elons, and then the r = 4 and r = 5 echelons, together with their corresponding loop connections, we
graph, in Figure 5 and in Figure 6, a sequence of the associated steady states as the echelon-loop-echelon
structure is traversed. In both figures, we give profiles from the upper echelon, moving backwards along
this echelon onto the loop and through the lower supercritical saddle-node bifurcation, when the steady
state begins its transition from a (r + 1)-peak to an r-peak form and then continue forwards along the
loop towards the upper subcritical saddle-node bifurcation. We observe that the steady state profile is
close to achieving its final r-peak form prior to going through this upper saddle-node point, and so,
for brevity, we stop giving profiles in both figures towards the upper end of the lower loop. We note
the excellent agreement with the theory we have developed and presented above for D small. We also
note, from (80) above, that the supercritical saddle-node bifurcation must take place in a region with
(a, ||us||1) =

(
1
2
(r − 1) − O(

√
D), r − O(1)

)
, whilst the subcritical saddle-node bifurcation should take

place in a tighter region with (a, ||us||1) =
(

r − 1
2
+ O(D), r − O(

√
D)
)
, as D → 0. This is confirmed

by the numerical results, as can be seen in the final panel of Figure 7. This completes the asymptotic
structure for steady states when D is small and a > 1

2
+ o(1).

We now move on to the final case, with D = O(1) and a > π
√

D.
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2.2.6. D = O(1) with a > π
√

D

In this final case, we first investigate numerically, using pseudo-arclength continuation. This provides
strong evidence and support for us to formulate and propose the following key observations about the
bifurcation structure in the (a, ||us||1) bifurcation plane, for nontrivial, non-negative, steady states when
D = O(1) and a > π

√
D:

• For each D ≥ �1 ≈ 0.00297, the branch of single peak steady states created at the transcritical bifur-
cation from unity, when a = π

√
D, continues as a monotone increasing curve for all increasing a,

with the associated steady state retaining a single peak structure for D ≥ �m, but developing bound-
ary oscillations about unity, which decay exponentially into the core for �1 ≤ D < �m. In each case,
||us||1 ∼ a as a → ∞, in agreement with section 2.2.4 above. There are no other non-negative steady
state branches. The upper panels in Figure 7 show typical bifurcation curves.

• For each 0 < D < �1, as a increases in the (a, ||us||1) bifurcation plane, first there is the single
peak steady state, which emerges from the transcritical bifurcation from unity, when a = π

√
D.

Thereafter, for each r = 2, 3, 4, . . ., there is an interval Kr(D) = [ar(D), br(D)], with {ar(D)}, {br(D)}
both being positive, strictly increasing and unbounded sequences in r = 2, 3, . . ., such that for each
a ∈ Kr(D), there is an r-peak nontrivial and non-negative steady state, and this has ||us||1 = O(r)
on Kr(D). It follows from the theory above in section 2.2.4, for a large with D = O(1), that
ar(D) ∼ λ−

1 (D)r and br(D) ∼ λ+
1 (D)r as r → ∞. In addition, there is a natural number rc(D) =

�λ−
1 (D)/(λ+

1 (D) − λ−
1 (D))� + 1 ≥ 2, which is decreasing as D decreases, with rc(0+) = 2 and rc(D) →

∞ as D → �−
1 , and for which ar+1(D) > br(D) when 2 ≤ r < rc(D) whilst ar+1(D) ≤ br(D) for r ≥

rc(D). When 2 ≤ r < rc(D), the connection between the rth and (r + 1)th echeloned branch is a mono-
tone increasing curve in the (a, ||us||1) bifurcation diagram, with the associated steady state smoothly
transitioning from an r-peak to an (r + 1)-peak steady state. However, for r ≥ rc(D), the lower end
of the (r + 1)th echelon now overlaps the upper end of the rth echelon, and the connection is now
via a loop, which has the qualitative character of the loops visible in the numerical examples illus-
trated in Figure 7. As a particular illustration of this case, Figure 3 shows the (a, ||us||1) bifurcation
diagram for D = 2 × 10−3, obtained numerically using pseudo-arclength continuation. For the same
case, Figure 4 examines in detail the r = 14 echelon, with the transitional loop connecting to the
r = 13 echelon. Associated steady state profiles are presented at points along the upper echelon and
on the loop.

Each situation has now been considered. A point of interest to note is that the appearance of the multiple
saddle-node loops in the (a, ||us||1) bifurcation diagram, at each fixed D below �1 ≈ 0.00297, will obvi-
ously generate multiple hysteresis behaviour in the evolution of stable steady states when the parameter
a is slowly increased and then slowly decreased.

This completes the study of nontrivial, non-negative steady states for a > 1/2. We are now in
a position to return to the evolution problem (DIVP) at parameter values (a, D) with a > 1/2 and
0 < D < π 2/a2, which we label as region H. We begin by addressing the local stability properties of
the nontrivial, non-negative steady states, identified and investigated in the above subsections, at each
point (a, D) ∈H, recalling from above that at each such point there is either,

• a single r-peak, nontrivial, non-negative steady state, for some r ∈N, when we label (a, D) ∈H1, or,
• an odd number, larger than unity, of nontrivial, non-negative steady states, these being an r-peak, an

(r + 1)-peak and a transitional steady state, from a minimum value of r( ≥ 2) to a maximum value
of r (which becomes unbounded with increasing a at fixed D < �1) when we label (a, D) ∈H2.
For D small, the minimum and maximum values of r are well approximated by the integer parts of
(a + 1

2
) and (2a + 1), respectively, which is readily determined via the asymptotic analysis presented

in subsection 2.2.5.

https://doi.org/10.1017/S0956792525100053 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792525100053


20 D. J. Needham and J. Billingham

Figure 8. The dependence on a of the largest eigenvalue of the linear stability problem for D = 10−5 as
the bifurcation curve is traversed. Note the slight qualitative difference in the plot between steady states
with odd and even numbers of peaks.

It is again helpful to fix D and then follow the nontrivial and non-negative steady state bifurcation curve
in the (a, ||us||1) bifurcation plane. As this curve is followed from the initial transcritical bifurcation at
a = π

√
D to large a, computational results determine that the largest eigenvalue of the linear stability

problem (see Appendix B), which is zero at the small norm transcritical bifurcation, becomes nega-
tive with increasing a, and remains negative unless a fold is traversed, in which case it changes sign to
positive, returning to negative after the next fold is traversed, with this pattern continuing as the bifur-
cation curve is continuously traversed. This enables us to conclude that at any point (a, D) ∈H1, then
the r-peak steady state is linearly stable, whilst when (a, D) ∈H3, for each r, both the r-peak and the
(r + 1)-peak steady states are linearly stable, with the transitional steady state being linearly unstable.
Figures 8 and 9 show the dependence on a of the value of the largest eigenvalue at each point on the
bifurcation curve, at two representative values of D, namely D = 10−5 and D = 2 × 10−3, respectively.
The eigenvalues are determined by pseudo-arclength continuation following the steady state bifurcation
curve, and formulating and numerically solving the associated linear eigenvalue problem. The points
which have zero largest eigenvalue correspond to the upper and lower saddle-node bifurcations on each
echelon-loop-echelon cycle, with the largest eigenvalue being negative on the echelons, and positive on
the loops.

Interpreting this in relation to (DIVP), we conjecture that :

• For (a, D) ∈H1, the solution to (DIVP) approaches the stable and unique r-peak steady state as
t → ∞ uniformly for x ∈ [0, a].

• For (a, D) ∈H2, the solution to (DIVP) approaches one of either the stable r-peak or the stable
(r + 1)-peak steady state, for some r between the available minimum and maximum, depending
upon the initial data u0 : [0, a] →R, as t → ∞ uniformly for x ∈ [0, a].
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Figure 9. The dependence on a of the largest eigenvalue of the linear stability problem for D = 2 × 10−3

as the bifurcation curve is traversed.

To support this conjecture, we have solved (DIVP) numerically (see Appendix A for details) for initial
conditions of the form

u(x, 0) =

⎧⎪⎨
⎪⎩

α

(
1 − 4 (x − x0)

2

w2

)
for |x − x0| < 1

2
w,

0 for |x − x0| ≥ 1
2
w.

(81)

This is a localised initial input of u based at x0, with width w and height α, each chosen so that the support
of u(x, 0) is contained in [0, a]. This type of localised initial condition is representative of the type of
initial distribution arising in applications. For D = 2 × 10−3 and a = 10, two numerical solutions, with
small, localised inputs of u (α = 0.01, w = 0.1) are shown in Figure 10. In each case, initially, a pair of
wavefronts is generated, which propagate away from x = x0. In the symmetric case (top row), x0 = 5,
these reach the boundaries simultaneously and a steady state with 13 peaks is generated. In the bottom
row, x0 = 2.5, and the wavefronts reach the boundaries at different times. In this case, a steady state with
14 peaks is generated. Figure 3 shows that when a = 10, there are actually three temporally stable steady
states available, with r = 13, 14 and 15. Whatever value we choose for x0, numerical solutions indicate
that the r = 15 steady state is not generated using these initial conditions, and we hypothesise that this is
because the slightly shorter wavelength of the r = 15 steady state is too far from the natural wavelength
generated behind the wavefronts when the Cauchy problem is on the whole real line, as determined in
(NB1).

The analysis of the Dirichlet problem (DIVP) is now complete, and we move on to consider the
Neumann problem (NIVP).

3. The Neumann problem (NIVP)

In this section, we analyse the Neumann problem (NIVP). The analysis is very similar to that in section 2
for the Dirichlet problem (DIVP), and so we focus mainly on presenting the key results, avoiding
repetition where possible. When the initial data are trivial, the solution to the associated (NIVP) is
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Figure 10. Solutions of (DIVP) for two different initial conditions, with a = 10 and D = 2 × 10−3. In the top row, the initial small input of u lies symmet-
rically at x0 = 5 and generates a steady state with 13 peaks. In the bottom row, the initial small input of u lies at x0 = 2.5 and generates a steady state with
14 peaks. In each case, w = 0.1 and α = 0.01.
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again the equilibrium solution given in (12). For initial data with ||u0||∞ small, it is again straightfor-
ward to develop a linearised theory for (NIVP), and this readily determines that the trivial equilibrium
solution is unstable for all (a, D) ∈ (0, ∞) × (0, ∞).

Again, we recall from the introduction that in the limit D → ∞ (after rescaling x with
√

D), (NIVP)
becomes the classical local Fisher-KPP Neumann problem, and so the associated well known classical
results for this local problem are recovered in this limit, and this is confirmed in what follows below.

3.1. 0 < a ≤ 1/2

We first consider (NIVP) when 0 < a ≤ 1/2, and so equation (1) takes on the form of (13) with (14).
To begin, it is a simple direct calculation to show that the only nontrivial steady state that exists is the
constant steady state,

us(x, D, a) = a−1 ∀ (x, t) ∈ D̄∞. (82)

Moreover, the solution to (NIVP) can be determined exactly, and is given by,

u(x, t) = N(t)

(
1

2
c0 +

∞∑
n=1

cne− n2π2D
a2 t cos

(nπx

a

))
∀ (x, t) ∈ D̄∞ (83)

with

N(t) =
(

1

2
ac0 + (1 − 1

2
ac0)e−t

)−1

∀ t ∈ (0, ∞) (84)

and

cr = 2

a

∫ a

0

u0(y) cos
( rπy

a

)
dy for r = 0, 1, 2 . . . . (85)

We observe that for all nontrivial initial data,

u(x, t) → a−1 as t → ∞, (86)

uniformly for x ∈ [0, a]. This establishes that the constant steady state a−1 is globally asymptotically
stable. This case is now complete.

3.2. a > 1/2

Here we consider (NIVP) when a > 1/2. As before, we begin by considering the possible nontrivial and
non-negative steady states of equation (1). Again, it is convenient to fix D > 0 and increase a > 1/2,
starting by continuing from the unique constant steady state us = 2, when a = 1/2. There are a number
of cases where we can develop an asymptotic theory for steady states, and we deal with these first. We
begin by considering this when D is large.

3.2.1. D � 1

There are two cases. First, we address the case when a ∈ (1/2, o(
√

D)) as D → ∞, and expand any
possible steady state in the regular perturbation form

us(x, D, a) = ū0(x, a) + D−1ū1(x, a) + O(D−2) as D → ∞, (87)

uniformly for x ∈ [0, a]. After substitution into equation (1) and boundary conditions (8), and solving
the resulting problem directly, we find that

ū0(x, a) = c(a) ∀ x ∈ [0, a], (88)
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with c(a) a positive constant to be determined. At next order, we obtain the following linear, inhomoge-
neous boundary value problem for ū1, namely,

ū′′
1 = c(a) (1 − c(a)φ(x, a)) , x ∈ (0, a), (89)

ū′
1(0, a) = ū′

1(a, a) = 0. (90)

Here, for 1/2 < a < 1,

φ(x, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 1

2
, x ∈

[
0, a − 1

2

]
,

a, x ∈
(

a − 1

2
,

1

2

)
,

a + 1
2
− x, x ∈

[
1

2
, a

]
,

(91)

whilst for a ≥ 1,

φ(x, a) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x + 1

2
, x ∈

[
0,

1

2

]
,

1, x ∈
(

1

2
, a − 1

2

)
,

a + 1

2
− x, x ∈

[
a − 1

2
, a

]
.

(92)

The solution to this linear boundary value problem is obtained directly and has,

ū′
1(x, a) = c(a)

(
x − c(a)

∫ x

0

φ(s, a)ds

)
∀ x ∈ [0, a], (93)

with now c(a) being required to satisfy the solvability condition,

c(a)
∫ a

0

φ(s, a)ds − a = 0. (94)

Equation (94) has the unique positive solution,

c(a) = a

(a − 1
4
)
. (95)

Thus, for each a ∈ (1/2, o(
√

D)), there is a unique, nontrivial and non-negative steady state, which has,

us(x, D, a) = a

(a − 1
4
)

+ D−1

(
c(a)

∫ x

0

(
y − c(a)

∫ y

0

φ(s, a)ds

)
dy + d(a)

)
+ O(D−2), (96)

as D → ∞, uniformly for x ∈ [0, a], with the constant d(a) determined via a solvability condition at
O(D−2). It should be noted that this steady state is, as it should be, an even function about x = 1

2
a.

We now observe that expansion (96) becomes nonuniform when a = O(
√

D) as D → ∞. Therefore, to
continue this unique branch of steady states for a large, we first write,

a = √
Dā and x = √

Dx̄, (97)

with ā = O(1)+ and x̄ ∈ [0, ā] as D → ∞. It then follows from (95) and (96) that we should expand
possible steady states in the asymptotic form,

us(x̄, D, ā) = 1 + D− 1
2 U0(x̄, ā) + O(D−1) as D → ∞, (98)
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for x̄ ∈ [0, ā]. After substitution into equation (1) and boundary conditions (8), and solving the resulting
problem directly, we find that at leading order, the only solution, which has the required symmetry about
x̄ = 1

2
ā, is given by,

U0(x̄, ā) = E cosh

(
x̄ − 1

2
ā

)
∀ x̄ ∈ (0, ā), (99)

with E a constant to be determined. We now observe that this leading order term fails to satisfy the
Neumann boundary conditions at the interval end points, and we conclude that two symmetric boundary
layers are required in the neighbourhood of each respective end point, and we adopt the method of
matched asymptotic expansions. We will consider the boundary layer at the end x̄ = 0. A balancing of
terms determines that the boundary layer has x̄ = O(D− 1

2 ), and so x = O(1), as D → ∞, and we are led
to expand in the asymptotic form,

us(x, D, ā) = 1 + D− 1
2 U0(x, ā) + D−1U1(x, ā) + O(D− 3

2 ) for x ≥ 0, (100)
as D → ∞. On substitution into equation (1), solving at each order, and applying the boundary condition
at x = 0, we obtain,

U0(x, ā) = F, (101)

U1(x, ā) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
G − 1

16
− 1

8

(
x − 1

2

))
, x >

1

2
,

(
G − 1

8
x −

(
1

2
− x

)3
)

, 0 ≤ x ≤ 1

2
,

(102)

with F and G constants to be determined via asymptotic matching to the core region. Matching (via Van
Dyke’s Principle) expansion (98) (as x̄ → 0) with expansion (100) (as x → ∞) determines,

E = 1

8 sinh
(

1
2
ā
) and F = 1

8 tanh
(

1
2
ā
) . (103)

However, the determination of the constant G requires the next term in the core region to be found,
which, for brevity, we need not pursue further.

We now make a comparison between the asymptotic forms for steady states, derived above from the
full problem and valid for D � 1, and the numerical solutions obtained by pseudo-arclength continuation
following steady states of the full problem. This is done most conveniently by plotting the value of the
steady state at the midpoint of the domain (minus one for clarity in a semi-logarithmic plot), us

(
1
2
a
)− 1,

as a function of a > 1
2

for various values of D, and compare with the leading order Van Dyke composite
asymptotic form (see [18]) for us

(
1
2
a
)
, given by

us

(
1

2
a, D, a

)
= a

(a − 1
4
)
+ 1

8
√

D sinh
(

a
2
√

D

) − 1

4a
+ O(D−1), (104)

as D → 0, and obtained from the matched asymptotic expansions (96) and (98) above. This gives the
leading order approximation uniformly for all a > 1

2
when D � 1. Figure 11 shows how the agreement

between the numerically determined steady state and leading order composite asymptotic form of the
steady state improves as D increases.

This completes the analysis and determination of the steady state structure when D is large. We now
consider the situation when D = O(1) and a is large.

3.2.2. D = O(1) with a � 1

In this case, the details are very similar to the corresponding case in section 2, as detailed in subsection
2.2.4, and so we can limit ourselves to presenting the salient results, which we have obtained from
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Figure 11. The value of the steady state at the midpoint of the domain (minus one for clarity), us( 1
2
a) − 1,

as a function of a > 1
2

for D = 1, 10, 100 and 1000. The broken line is the leading order composite
asymptotic approximation for D � 1, (104).

the full problem, again via construction through the application of the method of matched asymptotic
expansions. For D ≥ �1, our asymptotic analysis demonstrates that there is a unique steady state at each
large a, which has, in the bulk region,

us(x, D, a) ∼ 1 as a → ∞ (105)

for x ∈ (O(1)+, a − O(1)+). However, for 0 < D < �1, the existence of multi-peak steady states appears
for a large. In particular, for fixed D < �1, and each large integer r, there is an r-peak nontrivial, non-
negative steady state for each λ ∈ (λ−

1 (D), λ+
1 (D)), given by, in the bulk region,

us(x, D, a) ∼ Fp(x + xM(λ, D), λ, D), (106)

for x ∈ (O(1)+, a − O(1)+), with corresponding L1 norm being,

||us(·, D, a)||1 ∼ rA(λ, D) (107)

and large a given, in terms of λ, by

a = λ(r − 1) + O(1) as r → ∞, (108)

for each λ ∈ (λ−
1 (D), λ+

1 (D)). Here xM and A are as given in (63) and (68), respectively. In the
(a, ||us(·, D, a)||1) bifurcation plane, for each large integer r, the associated family of r-peak steady
states lies on an echelon above the interval with a ∈ Ir(D) (as given in (66)), parameterised by λ ∈
(λ−

1 (D), λ+
1 (D)), via (107) and (108). Sequential echelons are again overlapping, and at a given large a,

the overlapping echelons have those integer values, with rm(a, D) ≤ r ≤ rM(a, D), as for the Dirichlet
case. Also, for r large, each echelon has length of O(r) and variation of O(r), and so slope of O(1), whilst
each sequential echelon is lifted by O(1) with each unit increase in r. Again, in the bifurcation diagram,
each sequential echelon is connected by a loop containing a supercritical and subcritical saddle-node
bifurcation point, the traversal of which accommodates the transition from an r-peak to an (r + 1)-peak
structure in the steady state. We next consider the case when D is small.
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3.2.3. 0 < D � 1

The case 0 < D � 1 is similar to the corresponding case for the Dirichlet problem dealt with in subsec-
tion 2.2.5, and we therefore present only the salient features of our asymptotic analysis here. For each
r = 2, 3, . . ., we have constructed a branch of r-peak nontrivial, non-negative steady states, for

a ∈
(

1

2
(r − 1), r − 1

2

(
3 − √

2
))

, (109)

given by,

us(x, D, a) ∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

π

√
2

(
λ(a, r) − 1

2

) cos

⎛
⎜⎜⎝ πx

√
2

(
λ(a, r) − 1

2

)
⎞
⎟⎟⎠ , 0 ≤ x ≤ 1√

2

(
λ(a, r) − 1

2

)
,

Fp

(
x − 1√

2

(
λ(a, r) − 1

2

)
, λ(a, r), D

)
,

1√
2

(
λ(a, r) − 1

2

)
< x < a − 1√

2

(
λ(a, r) − 1

2

)
,

π

√
2

(
λ(a, r) − 1

2

) cos

⎛
⎜⎜⎝ π (a − x)

√
2

(
λ(a, r) − 1

2

)
⎞
⎟⎟⎠ , a − 1√

2

(
λ(a, r) − 1

2

)
≤ x ≤ a,

(110)
as D → 0, with

λ(a, r) =
(

a + 1

2

(√
2 − 1

))
(r − 2 + √

2)−1. (111)

Here, following (NB1), we have over one wavelength λ, with λ ∈ ( 1
2
, 1
)
,

Fp(y, λ, D) ∼
⎧⎨
⎩

0, 0 ≤ y < 1
2
,

π

2(λ− 1
2 )

cos
(

π (y− 1
2 (λ+ 1

2 ))

λ− 1
2

)
, 1

2
≤ y ≤ λ,

(112)

as D → 0. Again, localised edge layers, of thickness O(D
1
4 ), are present to smooth Fp across the edge of

its support regions in (112) (see section 4.1 in (NB1)). A notable and interesting feature of the r-peak
steady state in the Neumann case, given by (110), is that the peaks occurring at both end points have
height and support width, which is exactly

√
2 times that of each interior peak. We are able to interpret

this as being due to one half of the spatial extent of the boundary peak being clipped off beyond the
boundary in relation to the nonlocal term in equation (1), whilst the edge layer requires that the slope at
the edge of the boundary peak is equal to that at the edges of the interior peaks. This does not occur in
the Dirichlet case, when all peaks have the same height in this limit. In the (a, ||us||1) bifurcation plane,
the r-peak echelon, for r = 2, 3, . . ., is readily shown to have the curve given by,

||us(·, D, a)||1 = r

(
1 − π 2(

λ(a, r) − 1
2

)2 D + o(D
5
4 )

)
as D → 0 (113)

for a ∈
(

1
2
(r − 1), (r − 1

2

(
3 − √

2
)

)
)
. Finally, at each a > 1/2, there is an r-peak steady state for each

integer r satisfying
r ∈ [1 + a, 1 + 2a]. (114)

As in the Dirichlet case, on the (a, ||us||1) bifurcation plane, each sequential echelon is connected by an
elongated loop which has a low curvature supercritical saddle-node bifurcation at the lower end, and
a high curvature subcritical saddle-node bifurcation at the upper end. A numerical illustration of the
bifurcation plane, at D = 10−5, and obtained by solving the full problem, is given in Figure 12, along
with the three steady state solutions when a = 2.75.

This completes the analysis of nontrivial, non-negative steady states for small D.
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Figure 12. The bifurcation diagram for (NIVP) with D = 10−5 (left panel). The three stable steady states
when a = 2.75 (indicated by the dotted line), with r = 4, 5 and 6, are shown in the right-hand panel to
illustrate the typical form of these steady states. Note the different scales on the us-axes in the right-hand
panels.

3.2.4. D = O(1) with a > 1/2

Steady states, in this final case, are analysed via numerical pseudo-arclength continuation by fixing D
and then path following, from the unique nontrivial steady state at a = 1/2, with increasing a. The results
are not qualitatively different to those that we obtained for the Dirichlet problem, and we have not added
any new illustrations. The key conclusions from this numerical investigation follow directly those of
subsection 2.2.6 for the Dirichlet case, and are therefore not repeated again in detail.

This completes the analysis of nontrivial, non-negative steady states for the Neumann problem when
a > 1/2. We note that the remarks concerning steady state hysteresis in section 2 relating to the Dirichlet
case apply equally here. We are now in a position to consider the evolution problem (NIVP). At each
(a, D) ∈ (1/2, ∞) × (0, ∞), numerical solutions to (NIVP) approach one of the temporally stable non-
trivial, non-negative steady states when t is large. As we saw for (DIVP), different initial conditions lead
to different final steady states, but the behaviour of unsteady solutions to (NIVP) is not qualitatively
different to those of (DIVP), and we need not present any further numerical illustrations.

4. Conclusions

In this paper, we have considered evolution problems for the spatially nonlocal Fisher-KPP equation
with simple top hat kernel, labelled as (DIVP), with Dirichlet boundary conditions, and (NIVP), with
Neumann boundary conditions. The key feature of the inclusion of the nonlocal term is the introduction
of a nonlocal length scale into the model. There are thus two dimensionless parameters in the model,
namely D, which measures the square of the ratio of the diffusion length scale (based on the kinetic time
scale) to the nonlocal length scale, and a, which measures the ratio of the domain length scale to the non-
local length scale. We have examined both the Dirichlet and the Neumann models for (a, D) throughout
the positive quadrant of the parameter plane. Significant structural differences in behaviour between the
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classical Fisher-KPP model and this natural nonlocal extension have been identified, and these become
more significant as the parameter D decreases. These principal, and marked, differences have been fully
explored and exposed. The structural differences have included the existence of multiple, temporally
stable, multipeak, nontrivial and non-negative steady states, accumulated through multiple steady state
saddle-node bifurcations, with this giving rise to hysteretic behaviour with increasing and decreasing
domain size a, at sufficiently small D. In addition, the temporally stable multipeak steady states, when
available, are shown to be large-t attractors for the evolution problems (DIVP) and (NIVP), respectively.
Although the details for (DIVP) and (NIVP) are broadly similar in key features, as highlighted in the
relevant parts of section 3 and section 4, there are a number of interesting differences between the details
of the two models, which should be highlighted. First, the trivial equilibrium state is universally unsta-
ble throughout the (a, D) parameter space for (NIVP), but conditional on 0 < D < a2/π 2 for (DIVP). In
addition, when the trivial equilibrium state is unstable and D < �1, both models can support an accumu-
lating number of non-negative multi-peak steady states, which have a broadly similar structure; however,
a simple and clear distinguished difference, which appears when D becomes sufficiently small, and is
evident in both the small D asymptotic theory and the numerical solutions of the full problem at small D,
is that for the multi-peak steady states of (DIVP), all the peaks have approximately the same peak height
and width, whilst for (NIVP), the two boundary peaks are exceptional in that they have a larger peak
height, by a factor of

√
2, and a proportionately smaller peak width relative to each of the interior peaks,

so that each peak encloses the same area.
More generally, this paper and (NB1) have both studied a natural extension of the classical Fisher-

KPP model, with the introduction of the simplest possible nonlocal effect into the saturation term. The
motivation for these detailed analyses arises since nonlocal reaction-diffusion models occur naturally in
a variety of (frequently biological or ecological) contexts, and as such it is of fundamental interest to
examine the properties of the nonlocal Fisher-KPP model in detail, and to compare and contrast these
with the well known properties of the classical Fisher-KPP model. As we have seen here, in (NB1) and in
the work of many other authors (for example, [3, 4, 8, 10, 15, 17]), the introduction of a nonlocal kernel
leads to a huge increase in the complexity of possible solutions and their bifurcation structure. This has
implications for the behaviour of nonlocal biological systems that are confined to a finite region, with a
richer variety of spatial patterns possible than for systems with purely local interactions.

Since a top hat kernel is the simplest possible compactly-supported kernel, the detailed analysis that
we present here and in (NB1) forms the basis for an investigation into the form of solutions when the
kernel is not constant on its support. Our ongoing investigation suggests that adding a small variation to
the kernel is, in the limit D → 0, a singular perturbation, and that unravelling the bifurcation structure,
starting from the structure presented here for the top hat kernel, will reveal a wide variety of additional
solution branches. This will be the subject of a subsequent paper.
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A. Numerical methods

A.1. Finite difference discretisation
All of the numerical methods that we use in this paper are based on central finite differences in space
for second derivatives and the trapezium rule for the convolution integral. We discretise at N equally-
spaced points, xi, in [0, a], with x0 = 0 and xN = a. The trapezium rule that we use for the convolution
integral respects the fact that the end points, α(x) and β(x), defined in (4) and (5), may fall between
two grid points, and is calculated based on a linear variation of u between grid points. This is used in
the discretisation of both the steady and unsteady versions of (1) and the stability problem described
in Appendix B. The Neumann boundary conditions, (8), are discretised using a three point difference
formula in order to maintain second order accuracy in space. We typically used N = 1000.

A.2. Pseudo-arclength continuation
We investigate the bifurcation diagram for the steady states, us(x), of (1) using pseudo-arclength con-
tinuation, [1], in (a, ||u1||1) parameter space. We will use the notation A ≡ ||us||1 below for clarity. The
discretised linear system that arises from (1) with ut = 0 and either Dirichlet or Neumann boundary
conditions is supplemented by the conditions

(a − a0)
2 + (A − A0)

2 = ds2, (115)

and ∫ a

0

us(x)dx = A, (116)

with the trapezium rule used to evaluate this integral. Here, a0 and A0 are the values of the length of the
domain and the area under the solution at the previous point on the solution curve, and ds is the pseudo-
arclength that we attempt to traverse in the (a, A) ≡ (a, ||us||1) parameter space. The nonlinear system of
algebraic equations that determine the discretised solution is solved using ‘fsolve’ in MATLAB, with
the Jacobian of the system supplied analytically. The initial discrete solution is determined for a < 1

2
, in

which case a simple analytical solution is available for both (DIVP) and (NIVP). Linear extrapolation is
used to obtain new guesses of a and A, and we use a simple scaling factor for ds so that it is reduced when
the solution fails to converge and increased otherwise, with 10−6 ≤ ds ≤ 5 × 10−3. For D sufficiently
large, specifically D > 10−3, this method is sufficient to calculate the bifurcation diagrams presented in
the paper, including the loops in parameter space shown in Figure 7.
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For smaller values of D, the curvature of the saddle node bifurcation at the right of each loop becomes
so large that this algorithm fails. It seems likely that this curvature becomes exponentially large as D → 0,
in effect forming a cusp at which the direction of the bifurcation curve reverses at the bifurcation, which
is too much for our simple algorithm to cope with. We overcome this by using parameter continuation
to generate a solution on the stable branch above the cusp and then use pseudo-arclength continuation to
reach the cusp from the opposite direction. This is sufficient to generate all of the bifurcation diagrams
in the paper. At all values of D for which bifurcation loops occur, when a becomes sufficiently large the
curvature of the saddle-node bifurcation at the left of the loop also becomes too tight for our algorithm
to cope with, but we have not attempted to deal with this problem as the results presented in the paper
are sufficient to illustrate the form of the bifurcation diagram.

A.3. Numerical solution of (DIVP) and (NIVP)
After discretising (DIVP) and (NIVP) in space using the finite difference method described in
Appendix A.1, we use the midpoint method to evolve the solution from its initial state. If we write
the discretised system as u̇ = F(u), with ui = u(xi, t), this is

ū(t) = u(t) + 1

2
�t F(u(t)), u(t + �t) = u(t) + �t F(ū(t)).

We choose a time step, �t, adaptively so that the maximum change in u is less than 10−4, with maximum
time step 1

4
D−1�x2.

B. Linear stability of steady states
To determine the linear stability property of the steady state us, we define a new dependent variable
û(x) by

u = us(x) + û(x)eσ t,

substitute into (DIVP) and (NIVP), and assume that |û| � 1, to obtain the linear stability problem

Dû′′ +
(

1 −
∫ β(x)

α(x)

us(y)dy

)
û − us(x)

∫ β(x)

α(x)

û(y)dy = σ û, x ∈ (0, a), (117)

subject to the boundary conditions

û(0) = û(a) = 0, (118)

for (DIVP), and

û′(0) = û′(a) = 0, (119)

for (NIVP). It is straightforward to discretise this linear eigenvalue problem using the finite difference
approach described in Appendix A.1. The resulting matrix eigenvalue problem can then be solved in
MATLAB using the built-in routine ‘eig’. This determines that the eigenvalues are real and typical
results for the largest eigenvalue as a function of a for fixed D are shown in Figures 8 and 9.
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