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1. Introduction
Consider uniform spaces X and Y and a separately uniformly continuous

real-valued function/on XxY. The following question arises in the theory
of games: under what conditions can/be extended to a separately continuous
function on X x Y, where X, Y are the completions of X and Y respectively?
Firstly observe that such an extension is not always possible. If X = Y = (0, 1]
with the usual uniform structure and/(x, y) = xy then/is separately uniformly
continuous but has no separately continuous extension to X x Y = [0, I]2 since
such an extension would satisfy /(0, .) = 0 on Y and/( . , 0) = 1 on Zand so
would necessarily have a discontinuity in one argument at the origin.

A similar problem was solved by VI. Ptak (6). If X and Y are completely
regular Hausdorff spaces, C°(X) and C"(Y) are the 5-spaces of bounded
continuous functions on X, Y with supremum norm and C°(X)', C°(Y)' are
their duals, Ptak obtained a necessary and sufficient condition of a combinatorial
character for a bounded real-valued separately continuous function on XxY
to have a separately w*-continuous bilinear extension to C°(X)' x C°°(y)',
where we regard X and Y as subsets of C°(X)', C'iY)' in the canonical way.
Since the Stone-Cech compactifications fiX, fiY are the w*-closures of X and Y
in these duals this immediately gives a criterion for the function to have a
separately continuous extension to fiXxfiY. Note that this is a special case
of the problem posed above since flX is the completion of X under the uniformity
it induces on X.

Ptak's method is based on his combinatorial lemma on the existence of
convex means, from which he also obtains a criterion for the weak compactness
of a set in a Banach space, together with various other theorems in which
combinatorial assumptions yield topological conclusions. In this paper we
use a different approach, based on a theorem of Grothendieck, emphasizing
topology rather than combinatorics and obtaining more general results. The
major theorem of the paper is the generalized version of Ptak's bilinear extension
theorem (§4); we illustrate the use of this result by proving a theorem on the
inversion of the order of repeated integrals with respect to finitely additive
set-functions.

The author is grateful to the referee for some important observations which
led to a recasting of this paper.

E.M.S.—N
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2. The extension theorem
Let (zy) be a double sequence in a topological space. A point z of the space

is said to be a double cluster point (point doublement adherent) of the double
sequence if every neighbourhood of z meets infinitely many rows and columns
of the sequence, each in an infinite number of points. Theorem 2 of Grothen-
dieck's paper (4) contains the following:

Let Ex be a dense subspace of the topological space E and let F be a com-
pletely regular space. Let A be a family of continuous functions from E into
.Fwith the property that for every sequence (xt) of members of Et and for every
sequence (fj) of members of A the double sequence (/)•(*,•)) has a double cluster
point in F. Then every mapping from E into F which is a pointwise limit of
members of A is continuous. Consequently if {g(x): g e A} is relatively
compact in Ffor every xeE then A is relatively compact in the space C(E, F)
of continuous mappings from E into F with the topology of pointwise conver-
gence.

The proof is quite elementary. The second statement is not given in quite
this form, but it is easily seen to follow from the first part as A is relatively
compact in FE by Tychonov's theorem. From this we shall deduce the required
extension theorem via the following:

Lemma 1. Let Y be a dense subspace of a topological space % let E be
compact and let F be a Hausdorff space. In the following commutative diagram
X is the injection of Y into Y, n, v and n are continuous and v is injective.

t - F
n

Then Im n £ Im v and fi can be extended to a continuous map of Y into E.

Proof. Pick any n(y) e Im n, so that ye Y. Let ^ be a filter on Y converging
to y; then by continuity n o X(</>) is a filter base on F converging to n(y). Now
H(4>) is a filter base on E, and so by compactness has a cluster point zeE.
Thus v(z) is a cluster point of v ° /x(<j>) = n ° A($). Hence n(y) = v(z) e Im v.
Moreover since E is compact and F Hausdorff v is a homeomorphism of F
with Im v; thus v"'i>jtisa continuous extension of n mapping Finto F.

Theorem 1. Let%, Ybe topological spaces and let Zbe a compact Hausdorff
space. Let X, Y be dense subspaces of%, Yrespectively and letf: Xx. Y-*Z be a
separately continuous function such that for every pair of sequences (xt) in X, (yj)
in Y the double sequence (f(xt, yj)) has a double cluster point in Z. Then iff(x, .),
/ ( . ,y) have continuous extensions tot, X for every xeX, ye Y respectively it
follows that f has separately continuous extension / ' : ^ x Y-*Z.

Proof. For any ye Y le t / i ( . , y): X-*Z be the continuous extension of
yf(.,). For every xeX the function fi(x, .): y-»Z is a pointwise limit of
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members of the family f(X, .) = {f(x, .): xeX}, and so by the first part of
Grothendieck's theorem is continuous; thus / t : Xx Y-*Z is separately con-
tinuous and extends / . Likewise we may construct a separately continuous
function/2: XxY-^Z which extends/. Define a map n: Y-*C(X,Z) by
ix(y) =fy(.,y). In the lemma above take E to be the closure in C(X, Z) of
the image/j(., Y) of \i; then E is compact by a direct application of Grothen-
dieck's theorem. Let F = C(X, Z), let v be the restriction map, and let

n(y) = / 2 ( . , y) for y e Y.

Then the hypotheses of the lemma are satisfied and so n has a continuous
extension pi: ¥-+B. Define f'(x, y) to be n'(x)(y) for x e X, y e Y. By con-
struction/' is separately continuous and extends/.

The statement of the theorem is simpler in the case of uniform spaces. Recall
that if X is a uniform space with completion X and Z is a complete uniform
space then any uniformly continuous function g: X-*Z has a continuous
extension to X.

Corollary 1. Let X, Y and Z be separated uniform spaces with Z compact-
Let X, Ybe the completions ofX, Y respectively and letf: Xx Y-+Z be a separ-
ately uniformly continuous function which satisfies the double cluster point
condition of the theorem. Then f has a separately continuous extension to XxY.

If Z is sequentially compact the condition on double cluster points can be
expressed more simply. Suppose (f(xh yj)) has no double cluster point in Z.
By use of the diagonal procedure one can replace (*,), (yj) by subsequences so
that

lim/(*,•, yj) = aj and lim/(xf) yj) = bt
i j

exist.

Then taking further subsequences we may suppose that a = lim a, and b = lim bx

exist; however a and b must be unequal or their common value would be a
double cluster point. Thus the condition of the theorem can be expressed as
follows (the converse implication being immediate): if lim lim f(xh yj) and

i J
lim lim/(jc,-, yj) both exist for any pair (x,), (yj) of sequences in X, Y then these

j t

repeated limits are equal. If/has this property we shall say that / satisfies the
repeated limit condition.

Corollary 2. Let X and Y be completely regular spaces and let Z be a compact
and sequentially compact Hausdorff space. Then a separately continuous function
f: Xx Y-+Z has a separately continuous extension / ' : fiXxpY-*Z if and only
if f satisfies the repeated limit condition.

This result (with Z ^ R) was given by Ptak (6, Theorem 5.2). Similarly
one can show that if Z is realcompact ((2)) then the double cluster point con-
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dition suffices for / (as above) to have a separately continuous extension to
vXx oY where vX, oY are the Hewitt realcompactifications of X, Y.

An interesting feature of the necessary and sufficient condition in Corollary 2
is that it makes no mention of the topology of X or Y; thus / has separately
continuous extension to fiXxfiY if and only if it has separately continuous
extension to aXxctY where <xX, a y are the Stone-Cech compactifications of A"
and y in their discrete topologies. One can further deduce, for example, that
the family of all bounded real-valued functions on XxY which satisfy the
repeated limit condition is complete with respect to the supremum norm and is
closed under algebraic operations—facts which are not trivial to verify directly.
However this family is not closed under the taking of monotone limits whenever
both X and Y are infinite, as one may then construct a countable set in XxY
whose characteristic function does not satisfy the repeated limit condition.

3. A criterion for weak compactness

Another important result obtained by combinatorial methods in Ptak's
paper (7) is a criterion for weak compactness in Banach spaces: the correspond-
ing result for complete locally convex spaces is given by Grothendieck (4,
Theorem 7). Here we present a strengthening of this criterion.

If (E, F) is a dual pair of real or complex vector spaces and A £ E, B £ F
then we say that AxB satisfies the repeated limit condition if for all sequences
(x,), (yj) taken from A, B respectively we have

lim lim <x,-, j>,> = lim lim <x,-, y •>
i J j i

whenever both repeated limits exist. It is clear that if A and B are relatively
compact in a(E, F) and a{F, E) then AxB satisfies the repeated limit condition.
We denote the bipolar of a set A £ E by A00; thus A00 is the a(E, F)-closed
absolutely convex hull of A in E.

Theorem 2. If{E, F) is a dual pair of real or complex vector spaces and A, B
are subsets ofE, F such that {<x, j>>: x e A, y e B} is bounded and AxB satisfies
the repeated limit condition then the same holds for Aoox B.

In the case where B is absolutely convex and weakly compact this conclusion
may be found in (5, p. 332), where a combinatorial proof (again due to Ptak)
is given, and in the proof of Theorem 7 of (4). The present proof is based on
the latter.

Proof. Let F^ denote the linear subspace of F generated by B. Then A is
a a{E, /^-bounded set and hence (8, p. 50) is a precompact (though possibly
not separated) space in the uniform structure induced by a(E, Ft). Let A
denote the completion of the space obtained by identifying non-separated
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points of A; then every member of Ft (being uniformly continuous on A) has
a continuous extension to A. Denote this extension by ty for every y e Fu so
that t is a linear transformation from Ft into the space C(A) of continuous
real-valued functions on the compact Hausdorff space A. By Grothendieck's
theorem (§2) t(B) is relatively compact in C(A) in the topology of pointwise
convergence, and by hypothesis t(B) is bounded. Hence by a further theorem
of Grothendieck (4, Theorem 5) t(B) is relatively weakly compact. Let K
denote the unit ball of the Banach dual C'(A) of C(A) (taken with respect to the
supremum norm). Then K is w*-compact and hence t(E) x # satisfies the repeated
limit condition. Now let F* denote the algebraic dual of Ft and let

f: C'(A)^F*

be the adjoint of /. Then it follows that Bxt'(K) satisfies the repeated limit
condition in (Fj, F*). Since t' is continuous with respect to a(F*, Ft) and the
w*-topology on C'(A) (8, p. 38), t'(K) is a a(F*, F1)-compact absolutely convex
set. Moreover t'{K) contains the image i(A) of A under the canonical mapping
i of E into F*. This mapping is continuous with respect to the topologies
o(E, F J and a(F*, Fr) and hence i~ lt'(K) is a o(E, Ft)-closed absolutely convex
set containing A, and clearly J ~ V(#) x 2? satisfies the repeated limit condition.
The topology a(E, F) is finer than a(E, Ft) so A00 £ i~ V(A") and hence A00 x B
satisfies the condition.

Theorem 3. Let (E, F) be a dual pair of real or complex vector spaces and
let 39 be a family of weakly bounded subsets of F whose bipolars generate F
algebraically. IfE is complete in the topology of uniform convergence on members
of 33 and A ^ E is a 39-bounded set such that AxB satisfies the repeated limit
condition for every Be 38 then A is weakly relatively compact.

We observe that Grothendieck (4, Theorem 7) makes the additional assump-
tion that the bipolars of members of 3$ are weakly compact (so that the 3S-
topology is a topology of the dual pair (E, F)). In that case the condition of the
theorem is clearly also necessary.

Proof. Regard E as the space of weakly continuous linear functionals on F.
Since A is ^-bounded it is also weakly bounded and hence by Tychonov's
theorem is relatively compact in RF or CF (where R and C denote the real and
complex fields). Consequently to prove A relatively weakly compact we need
only show that any (real or complex-valued) function/on F which is a pointwise
limit of members of A belongs to E. Such a function is clearly linear, and for
any B in 33, Theorem 2 and the hypothesis above imply that A x B00 satisfies
the repeated limit condition. Hence by the theorem of Grothendieck (§2) /
is weakly continuous on B00. However, by a further theorem of Grothendieck
(3) the fact that E is complete in the ^-topology implies that every linear
functional on F which is weakly continuous on every B00 (with Be33) belongs
to E. The conclusion follows.
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We observe that the theorems of Krein and Eberlein are simple consequences
of this criterion together with Theorem 2.

4. The bilinear extension theorem
Ptak's theorem mentioned in the Introduction states that if X and Y are

completely regular spaces and/ is a bounded real-valued separately continuous
function o n l x Y then / h a s a separately w*-continuous bilinear extension to
CX(X)' x Cm(Y)' if and only if/satisfies the repeated limit condition. In similar
vein we have the following result: let X and Y be locally compact Hausdorff
spaces and let C(X), C(Y) be the spaces of all continuous functions on X, Y
with the topology of compact convergence, having duals C(X)' and C(Y)'.
Then a separately continuous real-valued function on Xx Y which is bounded
on compact sets can be extended to a separately weakly continuous bilinear
functional on C(X)' x C(Y)'. In fact both statements are special cases of the
following theorem.

Theorem 4. Let X and Y be sets and let st, 9$ be families of subsets ofX, Y
which cover X, Y respectively. Let E, F be vector spaces of real-valued functions
on X, Y which are bounded on members of si, 38 and which are complete in the
topologies of uniform convergence on the members of si, 38. Let the duals of
E, F in these topologies be E', F'. Letf. Xx Y-*R satisfy fix, .)eF,f(.,y)eE
for every x e Xandy e Y, and suppose that the restriction off to AxB is bounded
and satisfies the repeated limit condition for every Ae s/ and B e 38. Then f
has a separately weakly continuous bilinear extension to E' x F'.

Proof. Embed Y in F' as a set of evaluation functionals. Then we may
regard SS as a family of weakly bounded subsets of F', and it is simple to check
that the bipolars of members of 38 span F', and the given topology of F is that
of ^-convergence. For each A est let Ay s F be the set {/(*, .): xeA}.
The hypothesis on/implies that A1 is ^-bounded and that AlxB satisfies the
repeated limit condition for each Be38. Hence by Theorem 3 Ay is weakly
compact. We now require

Lemma 2. Let Y be a set and F a real vector space whose elements are real-
valued functions on Y with pointwise operations and whose topology is finer than
that of pointwise convergence. Then any continuous linear functional on F can
be approximated uniformly on weakly compact subsets ofFby linear combinations
of evaluation functionals.

For if F' denotes the dual of F in the given topology a Hahn-Banach argu-
ment shows that the subspace of linear combinations of evaluation functionals
is a(F', F)-dense in F', and so is dense in any topology of the dual pair (F', F).
The lemma now follows from the Mackey-Arens theorem, which states that
the topology of uniform convergence on weakly compact sets of F is such a
topology.
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Continuing the proof of the theorem we setf^x, v) = </(*, .)» v> for any
xe X, v e F'. Clearly fx(x, .) is a weakly continuous linear functional on F';
and for any A e si the lemma shows that/j(., v) can be approximated uniformly
on A by finite sums £A/(., y). Thus by the assumption of completeness of E
M.,v)eE.

We may therefore define/' on E'xF' by f'(ji, v) = (ft(., v), ji> for n e E',
v 6 F'. Then / ' ( . , v) is linear and weakly continuous on E' for each ve F'
and f'(p, .) is linear on F' for each ju e E'. To show thatf'(p, .) is also weakly
continuous on F' it suffices (on account of the completeness of F) to show it to
be weakly continuous on 5 0 0 for every B e SB, by the theorem of Grothendieck
quoted above.

We first observe that for any Be SB the set {fi(., v): v e 500} is contained
in {/(.,y): yeB}00 in E; for the argument above shows that if veB 0 0 then
/ i ( . , v) can be approximated uniformly on any A e si by absolutely convex
combinations EA/(., y) with yeB. Since {f(.,y): y e B} is weakly relatively
compact—again by the repeated limit criterion—so also is {/j(., v): v e B00}.
Thus any \ieE' can be approximated uniformly on this set by linear combina-
tions of points of X, or equivalently f'(ji, .) can be approximated uniformly
on B00<=F' by linear combinations EA/'(JC, .)• By the definition of/t we have
fi(x, .) =/'(*> •) weakly continuous on F', so f'(ji, .) is weakly continuous
on every B00.

We remark that the extension / ' is unique since X and Y generate weakly
dense subspaces of E' and F'. Moreover the condition that/satisfy the repeated
limit condition on A x B for every Ae si, Be SB is also necessary for the
existence of the extension/' since A00 and B00 are weakly compact in E' and F'
and/is a restriction of/'.

As a consequence of this theorem we obtain

Theorem 5. If n, v are bounded additive set-functions on the measurable
spaces {X, S), {Y, T) andf is a bounded separately measurable real-valued function

on XxY which satisfies the repeated limit condition then K-,y)v(dy) and
JY

f(x, .)fi(dx) are measurable functions on X, Y respectively and
Jx

f f(x, y)v(dyMdx) = f [ f(x, y)fi(dx)v(dy).
XJY JYJX

The assumption that / be separately measurable means that f(x, .) be
measurable (T) for every xeXand f{.,y) be measurable (2) for every y e Y.

Proof. In Theorem 4 take si = {X}, SS = {Y} and let E, F be the spaces of
bounded measurable functions with respect to E, T on X, Y. The hypotheses of
the theorem are then satisfied and so/has separately weakly continuous bilinear
extension/' to E' x F'. E', F' are the spaces of bounded additive set-functions
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on 2, T (see (1, Theorem IV, 5, 1)), and reference to the proof of Theorem 4
shows that for /i e E', veF' we have

and

/'(*, v) = f /(*, y)v(dy)
Jr

/'0*,v)= f $ f(x,y)v(dy)n(dx).
JXJY

By symmetry the opposite order of integration must also yield a separately
weakly continuous bilinear extension of/, and by uniqueness the two must be
equal.

This result appears to be new even in the case where /i and v are measures.

REFERENCES

(1) N. DUNFORD and J. T. SCHWARTZ, Linear Operators, Part 1 (Interscience.
1958).

(2) L. GILLMAN and M. JERISON, Rings of Continuous Functions (Van Nostrand,
1960).

(3) A. GROTHENDIECK, Sur la completion du dual d'un espace localement convexe,
C.R. Acad. Sci. Paris 230 (1950), 605-606.

(4) A. GROTHENDIECK, Criteres de compacite' dans les espaces fonctionnels
generaux, Amer. J. Math. 74 (1952), 168-186.

(5) G. KOTHE, Topologische Lineare Raume I (Springer Verlag, 1960).

(6) VL. PTAK, An extension theorem for separately continuous functions and its
application to functional analysis, Czechoslovak Math. J. 14 (89) (1964), 562-581.

(7) VL. PTAK, A combinatorial lemma on the existence of convex means and its
application to weak compactness, Proc. Sympos. Pure Math. Vol. VII (American
Math. Soc, Providence, R.I., 1963), 437-450.

(8) A. P. ROBERTSON and W. J. ROBERTSON, Topological Vector Spaces (Cambridge
University Press, 1964).

THE UNIVERSITY

GLASGOW, W.2

https://doi.org/10.1017/S0013091500026900 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500026900

