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Quadratic Integers and Coxeter Groups
Dedicated to H. S. M. Coxeter, mentor and friend

Norman W. Johnson and Asia Ivić Weiss

Abstract. Matrices whose entries belong to certain rings of algebraic integers can be associated with discrete
groups of transformations of inversive n-space or hyperbolic (n+1)-space Hn+1. For small n, these may be Cox-
eter groups, generated by reflections, or certain subgroups whose generators include direct isometries of Hn+1.
We show how linear fractional transformations over rings of rational and (real or imaginary) quadratic inte-
gers are related to the symmetry groups of regular tilings of the hyperbolic plane or 3-space. New light is shed
on the properties of the rational modular group PSL2(Z), the Gaussian modular (Picard) group PSL2(Z[i]),
and the Eisenstein modular group PSL2(Z[ω]).

1 Introduction

Each of the classical spaces of constant curvature has a continuous group of isometries that
(for some n) is a subgroup of the general linear group GLn(R) of n× n invertible matrices
over R or its central quotient group, the projective general linear group PGLn(R). The
orthogonal group On of real n × n matrices A such that AA∨ = I (the inverted circumflex
denoting the transpose) is the group of isometries of the (n − 1)-sphere Sn−1, and the
projective orthogonal group POn

∼= On/〈−I〉 is the group of isometries of elliptic (n − 1)-
space P̃n−1. If Tn is the additive (translation) group of Rn, the Euclidean group En

∼=
Tn

� On of isometries of Euclidean n-space En can be represented by “transorthogonal”
matrices of order n+1. Real (n+1)×(n+1) matrices A such that AHA∨ = H, where H is the
diagonal matrix \1, . . . , 1,−1\, form the pseudo-orthogonal (or “Lorentzian”) group On,1,
and the projective pseudo-orthogonal group POn,1

∼= On,1/〈−I〉 is the group of isometries
of hyperbolic n-space Hn (see [14, pp. 444–447], [27, pp. 58–60, 67–68]).

Here we shall be primarily concerned with discrete groups of isometries, many of which
are related to the symmetry groups of regular polytopes or regular honeycombs (tilings) of
Euclidean or non-Euclidean space. Of particular interest will be representations of hyper-
blic isometries, which are in one-to-one correspondence with the circle-preserving trans-
formations of inversive geometry.

Certain groups of transformations of inversive n-space In or hyperbolic (n + 1)-space
Hn+1(n ≤ 4) can be represented by 2×2 invertible matrices whose entries belong to the ring
Z of rational integers or to a suitable ring of quadratic integers, i.e., real numbers, complex
numbers, or quaternions that are zeros of a monic polynomial of degree 2 with coefficients
in Z. When discrete, such groups are subgroups of groups generated by reflections, or
Coxeter groups, frequently the symmetry groups of regular honeycombs of Hn+1.
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When n = 1, the ring of integers may be either Z itself or a real quadratic integral do-
main. When n = 2, it is one of the complex quadratic integral domains G or E of Gaussian
or Eisenstein integers. Groups for n = 3 and n = 4 are related to quaternionic inte-
gral skew-domains. While some of these connections have long been known, others have
been discovered only recently as more has been learned about discrete groups of hyperbolic
isometries and about the algebraic systems themselves.

Felix Klein [16, pp. 120–121] proved that PSL2(Z) (the “modular group”) is isomor-
phic to the group of rotations of the regular hyperbolic tessellation {3,∞}. Émile
Picard [26] considered the analogous group PSL2(G) (the “Picard group”). Luigi
Bianchi [2], [3] showed that if D is an imaginary quadratic integral domain, the group
PSL2(D) acts discontinuously on hyperbolic 3-space. Fricke & Klein [10, pp. 76–93] iden-
tified PSL2(G) with a subgroup of the rotation group of the regular honeycomb {3, 4, 4}.

Graham Higman, Bernhard Neumann, and Hanna Neumann [11] showed how to con-
struct infinite groups in which any two elements, apart from the identity, are conjugate.
Both the modular group PSL2(Z) and the Picard group PSL2(G) contain normal subgroups
that are free products with amalgation of such HNN groups, a fact that gives considerable
insight into their structure. However, the corresponding group PSL2(E) over the Eisenstein
integers does not have this property [1, pp. 2935–2936].

Wilhelm Magnus [20, pp. 107–122] gave geometric descriptions of PSL2(Z) and some
of its subgroups and quotient groups. Benjamin Fine [8, chap. 5] undertook a thorough
algebraic treatment of PSL2(G). Fine & Newman [9] investigated normal subgroups of
PSL2(G), and Roger Alperin [1] did likewise for PSL2(E). Schulte & Weiss [29, p. 246]
showed that PSL2(E) can be identified with a subgroup of the rotation group of {3, 3, 6}.

Spherical and Euclidean reflection groups were completely classified by H. S. M. Cox-
eter [4]. Hyperbolic reflection groups with simplicial fundamental regions, which exist in
Hn only for n ≤ 9, were enumerated by Folke Lannér [18], Coxeter & Whitrow [7], and
Jean-Louis Koszul [17]. Groups with nonsimplicial fundamental regions have been de-
scribed by Ernest Vinberg and others. All regular honeycombs of Hn were determined by
Klein [16], Schlegel [28], and Coxeter [5]; these exist only for n ≤ 5.

It is our purpose here to show how the properties of Coxeter groups and their subgroups
provide a basis for a unified theory of linear fractional transformations as represented by
2× 2 matrices over rings of real, complex, or quaternionic integers. Such transformations
may be taken as projectivities on a projective line, homographies of real inversive space, or
direct isometries of a real hyperbolic space. For each system of integers the corresponding
group of linear fractional transformations is isomorphic to a subgroup of some hyperbolic
Coxeter group.

In discussing groups over different rings R that are algebraic extensions of the real field
R or the ring Z of rational integers, we find it convenient to adopt a uniform notation
for certain standard cases. We identify Rn with the left linear space (or lattice) of rows
(x) = (x1, . . . , xn). The one-dimensional subspaces of linear space Rn spanned by nonzero
rows are the elements 〈(x)〉 of a projective linear space PRn.

As usual, we denote by GLn(R) the general linear group of n × n invertible matrices
over R and by SLn(R) the special linear group of n × n matrices of determinant 1. For R
an extension of R or Z, SLn(R) is the commutator subgroup of GLn(R). (This is true of
matrix groups over arbitary rings except for 2× 2 matrices over the finite fields F2 and F3.)
We define the unit linear group S̄Ln(R) to be the group of n × n matrices over R whose
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determinant has an absolute value of 1. Over a ring of integers, S̄Ln(R) is the same as
GLn(R); in any case, S̄Ln(R) contains SLn(R) as a normal subgroup.

If multiplication in R is commutative, the centre of GLn(R) is the general scalar group
GZ(R) of nonzero matrices λI, the centre of S̄Ln(R) is the unit scalar group S̄Z(R) of ma-
trices λI with |λ| = 1, and the centre of SLn(R) is the special scalar group SZn(R) of n× n
matrices λI with λn = 1. The respective central quotient groups are the projective gen-
eral linear group PGLn(R) ∼= GLn(R)/GZ(R), the projective unit linear group PS̄Ln(R) ∼=
S̄Ln(R)/S̄Z(R), and the projective special linear group PSLn(R) ∼= SLn(R)/ SZ(R). Depend-
ing on the ring R and the value of n, these three groups may or may not be distinct.

For D a ring of rational or quadratic integers, our methods lead to matrix representa-
tions of groups related to the special linear group SL2(D), as well as generators and relations
for the projective special linear group PSL2(D) and other groups of interest. Coxeter groups
can be used to show how each such projective group is realized as a discrete group of isome-
tries in hyperbolic space of dimension 2, 3, 4, or 5. Here we obtain representations in H2

and H3 of projective linear groups over real and complex integers—especially the groups
PSL2(Z), PSL2(G), and PSL2(E). Elsewhere [15] we extend the application of the theory to
groups over quaternionic integers with realizations in H4 and H5.

2 Reflection Groups and Their Subgroups

A Coxeter group P is generated by reflections ρ0, ρ1, . . . , ρn in the facets of a polytope P
each of whose dihedral angles is a submultiple of π. If the angle between the i-th and j-th
facets is π/pi j , the product of reflections ρi and ρ j is a rotation of period pi j . A Coxeter
group is thus defined by the relations

(ρiρ j)
pi j = 1 (0 ≤ i ≤ j ≤ n, pii = 1).(1)

If two facets are parallel, as in the case of an asymptotic triangle in the hyperbolic plane,
the corresponding relation with pi j =∞may be omitted.

The polytope P—generally a simplex—whose closure forms the fundamental region for
a Coxeter group P (or the group itself) is conveniently denoted by its Coxeter diagram, a
graph whose nodes represent the facets of P (or the generators of P). Nodes i and j are
joined by a branch marked ‘pi j ’ if the period of the product of the i-th and j-th generators
is pi j , except that when pi j = 3, the mark is customarily omitted, and when pi j = 2, the
nodes are not joined; in the latter case, the corresponding generators commute.

When P is an orthoscheme, a simplex whose facets may be ordered so that any two that
are not consecutive are orthogonal, the relations for P take the form

(ρiρ j)
pi j = 1 (0 ≤ i ≤ j ≤ n, pii = 1, pi j = 2 for j − i > 1),(2)

and it is convenient to abbreviate p j−1, j as p j . Such a group corresponds to the “string
diagram”

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��
��
��
��
��

�
�
�
�

��
��
��
��

p1 pn

and is denoted by the Coxeter symbol

[p1, . . . , pn].
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When p j > 2 for each j (1 ≤ j ≤ n), this is the symmetry group of a regular honeycomb
of spherical, Euclidean, or hyperbolic n-space or an isomorphic regular (n+1)-polytope
whose Schläfli symbol is

{p1, . . . , pn}.

This is a regular polygon {p} or a regular apeirogon {∞} if n = 1 and for higher n is
the regular polytope or honeycomb whose facet or cell polytopes are {p1, . . . , pn−1}’s and
whose vertex figures are {p2, . . . , pn}’s.

A group generated by reflections in the facets of a polytope that is not an orthoscheme
may likewise be given a Coxeter symbol that suggests the form of its Coxeter diagram. For
instance, the group whose fundamental region is the closure of a triangle (p q r) with acute
(or zero) angles π/p, π/q, π/r is denoted by the symbol [(p, q, r)] or, if p = q = r, simply
by [p[3]].

A Coxeter group is said to be spherical, Euclidean, or hyperbolic according as it is gener-
ated by reflections in the facets of a convex polytope in spherical, Euclidean, or hyperbolic
space. It is finitary if this polytope has finite content (“n-volume”). If in addition each sub-
group generated by all but one of the reflections is spherical, the group is compact. If each
such subgroup is either spherical or Euclidean, including at least one of the latter, it is para-
compact. If at least one such subgroup is hyperbolic, it is hypercompact. A Coxeter group (1)
is crystallographic if it leaves invariant some (n+1)-dimensional lattice [13, pp. 135–137].

A compact Coxeter group may be spherical, Euclidean, or hyperbolic, and its funda-
mental region is the closure of an ordinary simplex. A paracompact Coxeter group is either
Euclidean or hyperbolic, the fundamental polytope being respectively a prism or an asymp-
totic Koszul simplex. A hypercompact group can only be hyperbolic, and the fundamental
Vinberg polytope is not a simplex. In a crystallographic group the periods of the products
of distinct generators are restricted to the values 2, 3, 4, 6, and∞.

Each element of a Coxeter group P is an isometry of the underlying space. Those ele-
ments that are products of an even number of reflections constitute the direct subgroup P+,
of index 2. The product of two reflections is a rotation, a pararotation, or a translation
according as the mirrors intersect, are parallel, or have a common perpendicular. Other
important subgroups occur when the product of certain pairs of generators is of even or
infinite period.

Let the generators ρ0, ρ1, . . . , ρn of a Coxeter group P (relabeled if necessary) be parti-
tioned into sets of k + 1 and n− k, where 0 ≤ k ≤ n, so that for each pair of generators ρ j

and ρl with 0 ≤ j ≤ k < l ≤ n the period p jl of the product ρ jρl is even (or infinite), and
let Q be the distinguished subgroup of P generated by reflections ρ0 through ρk (if k = n,
then Q = P). The group Q has a direct subgroup Q+ generated, if k ≥ 1, by even trans-
formations (rotations, pararotations, or translations) τi j = ρiρ j (0 ≤ i < j ≤ k). The
transformations actually needed to generate Q+ usually include all the τ ’s of period greater
than 2. When the Coxeter diagram for Q is connected, these suffice; otherwise, certain
“linking” half-turns are also required.

The group P then has a subgroup of index 2 generated by the even transformations τi j

(0 ≤ i < j ≤ k), the reflections ρl (k < l ≤ n), and the conjugate reflections ρ jl j = ρ jρlρ j

(0 ≤ j ≤ k < l ≤ n). (Some generators may turn out to be superfluous.) This is a halving
subgroup if k = 0, a semidirect subgroup if 0 < k < n, or the direct subgroup P+ if k = n.
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Such a subgroup is denoted by affixing a superscript plus sign to the Coxeter symbol for P
so that the resulting symbol contains the symbol for the subgroup Q+, minus the enclosing
brackets. In the Coxeter diagram nodes corresponding to omitted reflections are replaced
by rings and detached from any branches joining them to nodes corresponding to retained
reflections.

For example, the group [p, q, r], generated by reflections ρ0, ρ1, ρ2, ρ3, satisfying the
relations

ρ2
0 = ρ

2
1 = ρ

2
2 = ρ

2
3 = (ρ0ρ1)p = (ρ1ρ2)q = (ρ2ρ3)r = 1,

ρ0 � ρ2, ρ0 � ρ3, ρ1 � ρ3

(3)

as indicated in the Coxeter diagram

���� ������������ p q r

has a direct subgroup [p, q, r]+, generated by the rotations σ1 = τ01 = ρ0ρ1, σ2 = τ12 =
ρ1ρ2, and σ3 = τ23 = ρ2ρ3, with the defining relations

σ
p
1 = σ

q
2 = σ

r
3 = (σ1σ2)2 = (σ2σ3)2 = (σ1σ2σ3)2 = 1.(4)

The group [p, q, r]+ has the Coxeter diagram

p q r

If r is even, the semidirect subgroup [(p, q)+, r], generated by the rotations σ1 and σ2

and the reflection ρ3, is defined by the relations

σ
p
1 = σ

q
2 = ρ

2
3 = (σ1σ2)2 = (σ−1

2 ρ3σ2ρ3)r/2 = 1, σ1 � ρ3.(5)

Likewise, if q is even, the semidirect subgroup [p+, q, r], generated by the rotation σ1 and
the reflections ρ2 and ρ3, has the defining relations

σ
p
1 = ρ

2
2 = ρ

2
3 = (σ−1

1 ρ2σ1ρ2)q/2 = (ρ2ρ3)r = 1, σ1 � ρ3.(6)

Also, if p is even, the halving subgroup [1+, p, q, r] is generated by the reflections ρ1, ρ2, ρ3,
and ρ010 = ρ0ρ1ρ0, with the defining relations

ρ2
010 = ρ

2
1 = ρ

2
2 = ρ

2
3 = (ρ010ρ1)p/2 = (ρ1ρ2)q = (ρ2ρ3)r = 1, ρ1 � ρ3.(7)

These relations imply that (ρ010ρ2)q = 1 and ρ010 � ρ3, so that [1+, p, q, r] is itself a
Coxeter group, which may be denoted by [r, q1,1] if p = 4 or by [r, 3[3]] if p = 6 and q = 3
(cf. [21, pp. 9–11]).

The groups [(p, q)+, r], [p+, q, r], and [1+, p, q, r] have the respective Coxeter diagrams
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�� ������ ������������
����

������
p q r p q r p q r

When the Coxeter diagram for P has one or more branches marked with even numbers
(or∞), the generators can be combined to yield further subgroups whose symbols include
two or more superscript plus signs, each ‘+’ doubling the index. For example, if r is even,
the group [p, q, r] and the three subgroups [(p, q)+, r], [p, q, r]+, and [p, q, r, 1+] have a
common subgroup

[(p, q)+, r]+ ∼= [(p, q)+, r, 1+] ∼= [p, q, r, 1+]+,

of index 4 in [p, q, r] and of index 2 in the other three, generated by the rotations σ1, σ2,
and σ33 = σ

2
3 = (ρ2ρ3)2, with the defining relations

σ
p
1 = σ

q
2 = σ

r/2
33 = (σ1σ2)2 = (σ2σ33)q = (σ1σ2σ33)2 = 1.(8)

The Coxeter diagram for this group may take any of the equivalent forms

����p q r p q r p q r

Any such subgroup of a Coxeter group P, with a symbol containing one or more plus
signs, will be called an ionic subgroup, by analogy with an atom that has lost one or more
electrons. The subgroup obtained by introducing the maximum number of plus signs into
the symbol for P, so that no further partitioning of the generators is possible, is the com-
mutator subgroup P+c, of index 2c, “where c is the number of pieces into which the graph
falls when any branches that have even marks are removed” [6, p. 126].

The finite Coxeter group [3, 3] ∼= S4 has a direct subgroup [3, 3]+ ∼= A4, and the latter
has a normal subgroup [3, 3]� ∼= D2 of index 3. Analogously, when r is even, the group
[3, 3, r] has a trionic subgroup [(3, 3)�, r], of index 6 in [3, 3, r] and of index 3 in its semidi-
rect subgroup [(3, 3)+, r], generated by the half-turns σ12 = σ1σ2 and σ21 = σ2σ1 and the
reflection ρ3, satisfying the relations

σ2
12 = σ

2
21 = ρ

2
3 = (σ12σ21)2 = (σ12ρ3)r = (σ21ρ3)r = (σ12σ21ρ3)r = 1.(9)

The trionic subgroup [(3, 3)�, r] and the ionic subgroup [(3, 3)+, r, 1+] have a common
subgroup [(3, 3)�, r, 1+], of index 2 in [(3, 3)�, r], of index 3 in [(3, 3)+, r, 1+], of index 6
in [(3, 3)+, r] and [3, 3, r, 1+], and of index 12 in [3, 3, r]. This group, generated by the half-
turns σ12 and σ21 and their conjugates σ̄12 = σ1σ2σ33 = ρ3σ12ρ3 and σ̄21 = σ2σ33σ1 =
ρ3σ21ρ3, is the commutator subgroup of [(3, 3)+, r, 1+] ∼= [3, 3, r]+2, which is itself the
commutator subgroup of [3, 3, r].

As above, given a Coxeter group P ∼= 〈ρ0, ρ1, . . . , ρn〉, let Q be a distinguished subgroup
generated by reflections ρ0 through ρk (for some k < n), such that for each pair of genera-
tors ρ j and ρl with 0 ≤ j ≤ k < l ≤ n the period p jl of the product ρ jρl is even (or infinite).
Then P has a radical subgroup P(Q∗), generated by the reflections ρl (k < l ≤ n) and their
conjugates by all the elements of Q. When Q is finite, P(Q∗) is a finitely generated reflec-
tion group, i.e., another Coxeter group. When k = 0, it is the halving subgroup described
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above. Moreover, at least for the cases to be considered here, the quotient group P/P(Q∗)
is isomorphic to Q. A radical subgroup is denoted by affixing a superscript asterisk to the
portion of the Coxeter symbol for P corresponding to the subgroup Q.

For example, when q is even, the group [p, q], generated by reflections ρ0, ρ1, ρ2 has
a radical subgroup [p∗, q] of index 2p generated by the reflection ρ2 and its conjugates
ρ121 = ρ1ρ2ρ1, ρ01210 = ρ0ρ121ρ0, etc., the number of distinct conjugates depending on the
value of p. In particular, we have

[3∗, 4] ∼= [2, 2], [4∗, 4] ∼= [∞, 2,∞], [3∗, 6] ∼= [3[3]].

Other instances of radical subgroups will be noted as they arise.

3 The Rational Modular Group

Each point X of the real projective line P1 may be given real homogeneous coordinates
(x) = (x1, x2). Equivalently, the point X may be associated with the single number x1/x2

if x2 = 0 or with the extended value∞ if x2 = 0. If M = [(a, b), (c, d)] is an invertible
matrix over R, a projectivity P1 → P1 is then induced either by a projective linear transfor-
mation 〈·M〉 : PR2 → PR2, with 〈(x)〉 �−→ 〈(x1a + x2c, x1b + x2d)〉, or by a linear fractional
transformation

·〈M〉 : R ∪ {∞} −→ R ∪ {∞}, with x �−→
xa + c

xb + d
, ad− bc = 0,(10)

where x �−→ ∞ if xb + d = 0,∞ �−→ a/b if b = 0, and∞ �−→ ∞ if b = 0. The class
of scalar multiples of (x) or M is denoted by 〈(x)〉 or 〈M〉. The projectivity is direct or
opposite according as ad− bc is positive or negative.

The product of two projectivities induced by linear fractional transformation ·〈M〉 and
·〈N〉, in that order, is the projectivity induced by the transformation ·〈MN〉. The group of
all direct projectivities of P1 is the projective general linear group PGL2(R). The group of
all direct projectivities of P1 is the projective special linear group PSL2(R), a subgroup of
index 2 in PGL2(R).

The (integral) special linear group SL2(Z) of 2 × 2 integer matrices of determinant 1 is
generated by the matrices

A =

(
0 1
−1 0

)
and B =

(
1 0
1 1

)
.

The unit linear group S̄L2(Z) of 2×2 integer matrices of determinant±1, which is the same
as the general linear group GL2(Z) of invertible matrices with integer entries, is generated
by the matrices A, B, and L = \ − 1, 1\. (Such matrices and groups are sometimes called
“modular” or “unimodular”, but the usage of these terms is not consistent in the literature.)

Various other representations of both groups are possible (see [6, pp. 83–88], [20,
pp. 107–111]; [12, pp. 365–371]). In particular, if we let R0 = AL, R1 = LB, and R2 = L,
then S̄L2(Z) is generated by the matrices

R0 =

(
0 1
1 0

)
, R1 =

(
−1 0
1 1

)
, R2 =

(
−1 0
0 1

)
.
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Likewise, with S1 = R0R1 = AB and S2 = R1R2 = B−1, SL2(Z) is generated by

S1 =

(
1 1
−1 0

)
and S2 =

(
1 0
−1 1

)
.

The two groups have a common commutator subgroup SL ′2(Z), of index 2 in SL2(Z)
and of index 4 in S̄L2(Z), generated by the matrices S = S1 and W = S−1

2 S1S2. Each of
these matrix groups may be regarded as a group of linear transformations of the lattice Z2

of points with integer coordinates (x1, x2).
The centre of both S̄L2(Z) and SL2(Z) is the special scalar group SZ2(Z) of scalar matrices

of determinant 1, i.e., the matrices ±I. Denoting the projective linear transformations
determined by the above matrices by corresponding Greek letters, we see that the generators
ρ0, ρ1, ρ2 of the (rational) extended modular group PS̄L2(Z) ∼= S̄L2(Z)/ SZ2(Z) satisfy the
relations

ρ2
0 = ρ

2
1 = ρ

2
2 = (ρ0ρ1)3 = (ρ0ρ2)2 = 1,(11)

while the generators σ1 = ρ0ρ1 and σ2 = ρ1ρ2 of the (rational) modular group PSL2(Z) ∼=
SL2(Z)/ SZ2(Z) satisfy

σ3
1 = (σ1σ2)2 = 1.(12)

If we set σ = σ1 and τ = σ1σ2, then PSL2(Z) has the simpler presentation

σ3 = τ 2 = 1.(13)

The generators σ = σ1 and ω = σ−1
2 σ1σ2 of the commutator subgroup PSL ′2(Z) ∼=

SL ′2(Z)/ SZ2(Z) [6, p. 86] satisfy

σ3 = ω3 = 1.(14)

The relations (11) define the paracompact Coxeter group [3,∞], the symmetry group of
the regular hyperbolic tessellation {3,∞} of triangles with three absolute vertices [6, p. 87],
[20, pp. 111, 174], [12, pp. 354–355], [8, pp. 41–45]. The subgroup [3,∞]+, which is the
rotation group of {3,∞}, is defined by the relations (12).

The group [3,∞], generated by reflections ρ0, ρ1, ρ2 in the sides of a Koszul triangle with
one absolute vertex and finite angles π/3 and π/2, is represented by the Coxeter diagram

�� ����

0 1 2

∞

where each node has been marked with the subscript of the corresponding generator. It has
three ionic subgroups of index 2 and one of index 4.

The direct subgroup [3,∞]+ ∼= PSL2(Z) is generated either by the rotation σ1 = ρ0ρ1

and the pararotation σ2 = ρ1ρ2, satisfying (12), or by the rotation σ = σ1 and the half-turn
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τ = σ1σ2 = ρ0ρ2, satisfying (13). The semidirect subgroup [3+,∞] is generated by the
rotation σ1 and the reflection ρ2, satisfying

σ3
1 = ρ

2
2 = 1.(15)

The halving subgroup [3,∞, 1+] ∼= [(3, 3,∞)] is itself a Coxeter group, generated by the
reflections ρ0, ρ1, and ρ212 = ρ2ρ1ρ2, satisfying the relations

ρ2
0 = ρ

2
1 = ρ

2
212 = (ρ0ρ1)3 = (ρ0ρ212)3 = 1,(16)

as indicated in the diagram

�
�
�
�

��������

0

1 ∞ 212

These three groups have a common subgroup, of index 2 in each and of index 4 in [3,∞]:
the commutator subgroup [(3, 3,∞)]+ ∼= [3+,∞, 1+] ∼= [3,∞]+2 ∼= PSL ′2(Z), generated
by the rotations σ = σ1 and ω = σ−1

2 σ1σ2 = ρ2σ
−1
1 ρ2 = ρ212ρ0, satisfying (14). This

is the rotation group of the “half regular” tessellation h{∞, 3}, each of whose vertices is
surrounded by three triangles and three apeirogons.

The group [3,∞] has three other subgroups

[∞,∞], [(3,∞,∞)], [∞[3]],

of indices 3, 4, 6, that are themselves Coxeter groups, with diagrams

��
��
��
��

��
��
��
��

��
��
��
��

����

��

���� �
�
�
�

��

��
��
��
��0

∞

121

∞

2

0

∞

121

∞

212 121

∞

01210

∞

2∞

Nodes marked ‘121’, ‘212’, and ‘01210’ correspond to generating reflections ρ121 = ρ1ρ2ρ1,
ρ212 = ρ2ρ1ρ2, and ρ01210 = ρ0ρ121ρ0. The group [∞[3]] is the radical subgroup [3∗,∞].
The direct subgroup [∞[3]]+ ∼= [3∗,∞, 1+], generated by the pararotations σω = ρ01210ρ2

and ωσ = ρ2ρ121 is the free group with two generators.

4 Semiquadratic Modular Groups

For any square-free integer d = 1, the quadratic field Q(
√

d) has elements r + s
√

d, where
r and s belong to the rational field Q . A quadratic integer is a root of a monic quadratic
equation with integer coefficients. For d ≡ 2 or d ≡ 3 (mod 4), r + s

√
d is a quadratic

integer if and only if r and s are both integers; for d ≡ 1 (mod 4), r and s may be both
integers or both halves of odd integers. The quadratic integers of Q(

√
d) form an integral

domain, a two-dimensional algebra Z2(d) over Z, whose invertible elements, or units, have
norm r2 − s2d = ±1 [19, pp. 187–189].
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When d is negative, the invertible elements of Z2(d) are complex numbers of modulus 1,
and there are only finitely many units: four if d = −1, six if d = −3, and two in all other
cases. When d is positive, Z2(d) has an infinite number of units, each expressible as ±1
times an integral power of a certain fundamental unit [12, p. 441]. It may be noted that
Z2(d) is just the ring Z[δ] of numbers of the form m + nδ (m and n in Z), where δ =

√
d

if d ≡ 2 or d ≡ 3 (mod 4) and δ = − 1
2 + 1

2

√
d if d ≡ 1 (mod 4); in the latter case Z2(d)

contains Z[
√

d] as a proper subdomain.
The group S̄L2

(
Z2(d)

)
of 2×2 invertible matrices over Z2(d) has two discrete subgroups

analogous to the groups S̄L2(Z) and SL2(Z) discussed in the last section. In each instance
the four entries of a matrix are partitioned, with rational integers on one diagonal and
integral multiples of

√
d on the other; entries of the form r + s

√
d with rs = 0 do not occur.

The semiquadratic unit linear group S̄L1+1(Z[
√

d]) is generated by the matrices

R0 =

(
0 1
1 0

)
, R1 =

(
−1 0√

d 1

)
, R2 =

(
−1 0
0 1

)
,

and the semiquadratic special linear group SL1+1(Z[
√

d]) is generated by

S1 = R0R1 =

(√
d 1
−1 0

)
and S2 = R1R2 =

(
1 0
−
√

d 1

)
.

Replacing each matrix A in either of these groups by the equivalence class α of matrices
±A (and ±iA in the first case if d = −1), we obtain the semiquadratic extended modular
group PS̄L1+1(Z[

√
d]), with generators ρ0, ρ1, ρ2, and the semiquadratic modular group

PSL1+1(Z[
√

d]), with generators σ1 = ρ0ρ1 and σ2 = ρ1ρ2.
The period of the matrix S1 is finite when d has one of the values 0, 1, 2, or 3, with Sp

1 =
−I for p equal to 2, 3, 4, or 6, respectively. Thus the generators of the groups PS̄L1+1(Z[

√
2])

and PSL1+1(Z[
√

2]) satisfy the respective relations

ρ2
0 = ρ

2
1 = ρ

2
2 = (ρ0ρ1)4 = (ρ0ρ2)2 = 1,(17)

σ4
1 = (σ1σ2)2 = 1,(18)

while the generators of PS̄L1+1(Z[
√

3]) and PSL1+1(Z[
√

3]) respectively satisfy

ρ2
0 = ρ

2
1 = ρ

2
2 = (ρ0ρ1)6 = (ρ0ρ2)2 = 1,(19)

σ6
1 = (σ1σ2)2 = 1.(20)

We observe that (17) and (19) define the Coxeter groups [4,∞] and [6,∞], which are
the symmetry groups of the regular hyperbolic tessellations {4,∞} and {6,∞}, with the
rotation groups [4,∞]+ and [6,∞]+ being defined by (18) and (20).

The group [4,∞] contains two other Coxeter groups as halving subgroups, namely,
[4,∞, 1+] ∼= [(4, 4,∞)], generated by the reflections ρ0, ρ1, and ρ212 = ρ2ρ1ρ2 and satis-
fying the relations

ρ2
0 = ρ

2
1 = ρ

2
212 = (ρ0ρ1)4 = (ρ0ρ212)4 = 1,(21)
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and [1+, 4,∞] ∼= [∞,∞], generated by reflections ρ1, ρ2 and ρ010 = ρ0ρ1ρ0 and satisfying

ρ2
010 = ρ

2
1 = ρ

2
2 = (ρ010ρ1)2 = 1.(22)

The latter group has a subgroup [∞[3]], of index 4 in [4,∞], generated by the reflections
ρ1, ρ2, and ρ01210 = ρ010ρ2ρ010 and satisfying

ρ2
01210 = ρ

2
1 = ρ

2
2 = 1.(23)

The commutator subgroup of [4,∞] and [4,∞]+, of index 8 in the former and of index 4
in the latter, is [1+, 4, 1+,∞, 1+] ∼= [4,∞]+3, generated by the half-turns σ2

1 and σ−1
2 σ2

1σ2

and the pararotation σ2
2.

Likewise, [6,∞] contains the halving subgroups [6,∞, 1+] ∼= [(6, 6,∞)], generated by
the reflections ρ0, ρ1, and ρ212 = ρ2ρ1ρ2 and satisfying

ρ2
0 = ρ

2
1 = ρ

2
212 = (ρ0ρ1)6 = (ρ0ρ212)6 = 1,(24)

and [1+, 6,∞] ∼= [(3,∞,∞)], with generators ρ1, ρ2, and ρ010 = ρ0ρ1ρ0, satisfying

ρ2
010 = ρ

2
1 = ρ

2
2 = (ρ010ρ1)3 = 1.(25)

The commutator subgroup of [6,∞] and [6,∞]+, of index 8 in the former and of index 4
in the latter, is [1+, 6, 1+,∞, 1+] ∼= [6,∞]+3, generated by the rotations σ2

1 and σ−1
2 σ2

1σ2,
both of period 3, and the pararotation σ2

2.
In addition to its representation as PS̄L1+1(Z[

√
2]), the group [4,∞] is isomorphic to

the (integral) projective pseudo-orthogonal group PO2,1(Z), the central quotient group of
the group O2,1(Z) of 3 × 3 pseudo-orthogonal matrices with integer entries [7, pp. 423–
424] (cf. [27, pp. 299–300]).

Connections between these groups and the subgroups of [3,∞] discussed in the last
section may be seen in the following diagram. When two groups are joined by a line, the
lower is subgroup of the upper, of index 2 unless otherwise indicated.

[4,∞]

[4, 4,∞] [∞,∞]

[∞[3]]

3

[3,∞]

[3, 3,∞]

4

[3,∞,∞]

[6,∞]

[6, 6,∞]

If d contiguous replicas of the fundamental region for a Coxeter group P can be amalga-
mated to form the fundamental region for another group Q, then Q is a subgroup of index
d in P. Thus the dissection of the Koszul triangle (∞∞∞) into two triangles (2∞∞),
four triangles (2 4∞), or six triangles (2 3∞) shows that [∞[3]] is a subgroup of index 2
in [∞,∞], of index 4 in [4,∞], and of index 6 in [3,∞].
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5 The Complex Projective Line

Each point Z of the complex projective line CP1 may be given complex homogeneous co-
ordinates (z) = (z1, z2) or associated with the single number z1/z2 if z2 = 0 or with
the extended value ∞ if z2 = 0. Any three distinct points U , V , W lie on a unique
chain R(UVW ), consisting of all points Z for which the cross ratio {UV,W Z} is real or
infinite (cf. [30, p. 165], [31, p. 222]). Points that lie on the same chain are said to be con-
catenate. A chain-preserving transformation of CP1 is a concatenation, and every concate-
nation is either a projectivity or an antiprojectivity, according as cross ratios are preserved
or replaced by their complex conjugates.

If M = [(a, b), (c, d)] is an invertible matrix over C, a projectivity CP1 → CP1 is induced
by the linear fractional transformation

·〈M〉 : C ∪ {∞} → C ∪ {∞}, with z �−→
za + c

zb + d
, ad− bc = 0,(26)

where z �−→ ∞ if zb + d = 0,∞ �−→ a/b if b = 0, and∞ �−→ ∞ if b = 0. Likewise, an
antiprojectivity CP1 → CP1 is induced by the antilinear fractional transformation

−
· 〈M〉 : C ∪ {∞} → C ∪ {∞}, with z �−→

z̄a + c

z̄b + d
, ad− bc = 0.(27)

Since a projectivity preserves all cross ratios and an antiprojectivity preserves real cross
ratios, each of these transformations takes chains into chains; they are in fact the only
transformations of CP1 that do so [31, p. 252].

The real inversive sphere I2, regarded as a one-point compactification of the Euclidean
plane E2, can be taken as a conformal model (the Riemann sphere) for the complex pro-
jective line CP1 [31, pp. 250–252], [24, chap. 17]. The chains of CP1 are the real circles of
I2. Concatenations of CP1 become circle-preserving transformations, or circularities of I2,
a projectivity (26) corresponding to a direct circularity, or homography, and an antipro-
jectivity (27) to an opposite circularity, or antihomography. Homographies are also called
Möbius transformations.

A hyperbolic antiinvolution of CP1, i.e., an involutory antiprojectivity leaving all the
points of a chain invariant, is an inversion in the corresponding circle of I2. The product
of an even number of inversions is a homography; the product of an odd number is an
antihomography. If M and N are any two invertible matrices, we have the following rules:

·〈M〉 · 〈N〉 = ·〈MN〉, ·〈M〉
−
· 〈N〉 =

−
· 〈M̄N〉,

−
· 〈M〉 · 〈N〉 =

−
· 〈MN〉,

−
· 〈M〉

−
· 〈N〉 = ·〈M̄N〉.

(28)

Monson & Weiss [22, p. 188], [23, p. 103] give analogous rules for multiplying linear and
antilinear transformations.

The set of all 2 × 2 invertible matrices over C forms the (complex) general linear group
GL2(C), whose centre GZ(C) is the group of nonzero scalar matrices. The central quotient
group PGL2(C) ∼= GL2(C)/GZ(C) is the projective general linear group. This is the group
of all projectivities of CP1, which is isomorphic to the “Möbius group” of all homogra-
phies of I2. The group of all concatenations of CP1, i.e., the group of all projectivities and
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antiprojectivities, is the complemented projective general linear group P̄ GL2(C), containing
PGL2(C) as a subgroup of index 2. The group P̄GL2(C) is isomorphic to the “inversive
group” of all circularities of I2, i.e., the group of all homographies and antihomographies.
Since I2 is the absolute sphere of hyperbolic 3-space H3, P̄GL2(C) is the group of all isome-
tries of H3, and PGL2(C) is the subgroup of direct isometries.

Complex matrices of determinant 1 form the special linear group SL2(C), whose centre
SZ2(C) consists of the two matrices ±I. Because every invertible matrix over C is a scalar
multiple of some matrix of determinant 1, the projective special linear group PSL2(C) ∼=
SL2(C)/ SZ2(C) is isomorphic to PGL2(C). Discrete subgroups of SL2(C) and PSL2(C) are
obtained by restricting matrix entries to a ring D = Z2(d) of quadratic integers in a field
Q(
√

d), where d is a square-free negative integer. The group PSL2(D) is a Bianchi group;
when d has one of the values −1, −2, −3, −7, or −11, there is a Euclidean algorithm on
the norm of D [12, p. 448], [8, pp. 71–72]. When d is −1 or −3, PSL2(D) is a subgroup of
the symmetry group of a regular honeycomb of H3.

6 The Gaussian Modular Group

The integral domain G = Z[i] = Z2(−1) of Gaussian integers comprises the complex
numbers g = g0 + g1i, where (g0, g1) ∈ Z2 and i =

√
−1 is a primitive fourth root of

unity, so that i2 + 1 = 0. This system was first described by Carl Friedrich Gauss circa
1830. Each Gaussian integer g has a norm N(g) = |g|2 = g2

0 + g2
1 . The units of G are the

four numbers with norm 1, namely±1 and±i, which form the Gaussian unit scalar group
S̄Z(G) ∼= C4

∼= 〈i〉, with the proper subgroup S2Z(G) ∼= C2
∼= 〈−1〉.

The special linear group SL2(G) of 2 × 2 Gaussian integer matrices of determinant 1 is
generated by the matrices

A =

(
0 1
−1 0

)
, B =

(
1 0
1 1

)
, C =

(
1 0
i 1

)

[2, p. 314]. The semispecial linear group S2L2(G) of 2×2 matrices S over G with (det S)2 = 1
is generated by A, B, C , and L = \ − 1, 1\. The unit linear group S̄L2(G) of matrices U
with | detU | = 1 is generated by A, B, and M = \ − i, 1\ [29, pp. 230–231]. Note that
C = MBM−1 and L = M2. The centre of SL2(G) is the special scalar group SZ2(G) ∼= 〈−I〉,
and the centre of both S̄L2(G) and S2L2(G) is the unit scalar group S̄Z(G) ∼= 〈iI〉.

The Gaussian modular group

PSL2(G) ∼= SL2(G)/ SZ2(G) ∼= S2L2(G)/S̄Z(G)

(the “Picard group”) is generated in H3 by the half-turn α = ·〈A〉 and the pararotations
β = ·〈B〉 and γ = ·〈C〉. The Gaussian extended modular group

PS̄L2(G) ∼= S̄L2(G)/S̄Z2(G)

is likewise generated by the half-turnα, the pararotation β, and the quarter-turn µ = ·〈M〉.
When the complex field C is regarded as a two-dimensional vector space over R, the

Gaussian integers constitute a two-dimensional lattice I2. The points of I2 are the vertices
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of a regular tessellation {4, 4} of the Euclidean plane E2, whose symmetry group [4, 4] is
generated by three reflections ρ1, ρ2, ρ3, satisfying the relations

ρ2
1 = ρ

2
2 = ρ

2
3 = (ρ1ρ2)4 = (ρ1ρ3)2 = (ρ2ρ3)4 = 1.(29)

The tessellation {4, 4} is the vertex figure of a regular honeycomb {3, 4, 4} of hyperbolic
3-space H3, the cell polyhedra of which are regular octahedra {3, 4} whose vertices all lie
on the absolute sphere.

The symmetry group [3, 4, 4] of the honeycomb {3, 4, 4} is generated by four reflections
ρ0, ρ1, ρ2, ρ3, satisfying (29) as well as

ρ2
0 = (ρ0ρ1)3 = (ρ0ρ2)2 = (ρ0ρ3)2 = 1.(30)

The combined relations (29) and (30) are indicated in the Coxeter diagram

���� ������������

0 1

4

2

4

3

The generators ρ0, ρ1, ρ2, ρ3 can be represented by antilinear fractional transformations
−
· 〈R0〉,

−
· 〈R1〉,

−
· 〈R2〉,

−
· 〈R3〉, determined by the matrices

R0 =

(
0 1
1 0

)
, R1 =

(
−1 0
1 1

)
, R2 =

(
i 0
0 1

)
, R3 =

(
1 0
0 1

)
.

The direct subgroup [3, 4, 4]+ is generated by three rotations σ1 = ρ0ρ1, σ2 = ρ1ρ2,
σ3 = ρ2ρ3, with the defining relations

σ3
1 = σ

4
2 = σ

4
3 = (σ1σ2)2 = (σ2σ3)2 = (σ1σ2σ3)2 = 1.(31)

The generators σ1, σ2, σ3 can be represented by linear fractional transformations ·〈S1〉,
·〈S2〉, ·〈S3〉, corresponding to the unit matrices

S1 =

(
1 1
−1 0

)
, S2 =

(
−i 0
i 1

)
, S3 =

(
−i 0
0 1

)
,

with entries in G = Z[i] and determinants in S̄Z(G) ∼= 〈i〉. Our presentation of these
groups follows that of [29, pp. 234–235], except that the order of the generators has been
reversed and, in accordance with the convention followed here that transformations are
multiplied from left to right, all matrices have been transposed.

The matrices S1, S2, S3 belong to and generate the unit linear group S̄L2(G) ∼= 〈A,B,M〉,
since

S1S2S−1
3 = A, S3S−1

2 = B, and S3 = M.

Thus the group [3, 4, 4]+, generated by σ1, σ2, and σ3 is the Gaussian extended modular
group PS̄L2(G) ∼= 〈α, β, µ〉.
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Generators and relations for the Gaussian modular (Picard) group PSL2(G) as a Eu-
clidean Bianchi group are given by Fine [8, pp. 74–84]. Schulte & Weiss [29, pp. 235–236]
have shown that PSL2(G) is a subgroup of index 2 in [3, 4, 4]+, and Monson & Weiss [22,
pp. 188–189] have exhibited it as a subgroup of index 2 in the hypercompact Coxeter group
[∞, 3, 3,∞]. In discussing the Picard group, Magnus [20, pp. 152–153] gives correct gen-
erators but incorrect relations for the parent group [3, 4, 4]. Here we obtain an explicit
geometric presentation for PSL2(G) as an ionic subgroup of each of the groups just men-
tioned.

The group [3, 4, 4] has a halving subgroup [3, 4, 1+, 4] ∼= [∞, 3, 3,∞], generated by the
reflections ρ0, ρ1, ρ3, ρ212 = ρ2ρ1ρ2, and ρ232 = ρ2ρ3ρ2, satisfying the relations indicated
in the diagram

���� �������� ��������

232

∞

1 0 212

∞

3

The five mirrors are the bounding planes of a quadrangular pyramid whose apex lies on
the absolute sphere. This group has an involutory automorphism, conjugation by ρ2, in-
terchanging generators ρ1 and ρ212, ρ3 and ρ232. The two groups [3, 4, 4]+ and [3, 4, 1+, 4]
have a common subgroup [3, 4, 1+, 4]+ ∼= [∞, 3, 3,∞]+, of index 2 in both and of index 4
in [3, 4, 4], generated by the pararotations β and γ and the rotations σ and φ, where

β = ρ232ρ1 = σ3σ
−1
2 , γ = ρ3ρ212 = σ

−1
3 σ2, σ = ρ0ρ1 = σ1, φ = ρ0ρ212 = σ1σ

2
2,

as in the embellished Coxeter diagram

β σ φ γ

232

∞

1 0 212

∞

3

In terms of these generators, defining relations for [3, 4, 1+, 4]+ are

σ3 = φ3 = (σβ−1)2 = (φγ−1)2 = (σ−1φ)2

= (βσ−1φ)2 = (γφ−1σ)2 = (βσ−1φγ−1)2 = 1.
(32)

Since the corresponding matrices

B = S3S−1
2 , C = S−1

3 S2, S = S1, and U = −iS1S2
2

all belong to the special linear group SL2(G), [3, 4, 1+, 4]+ is a subgroup of the Gaussian
modular group PSL2(G). In fact, it is that very group, as we now show.

Theorem 6.1 The Gaussian special linear group SL2(G) is generated by the matrices

B =

(
1 0
1 1

)
, C =

(
1 0
i 1

)
, S =

(
1 1
−1 0

)
.

Proof Since B, C , and S are in SL2(G) ∼= 〈A,B,C〉 and since A = SB−1, it follows that
SL2(G) ∼= 〈B,C, S〉.
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The Gaussian modular group PSL2(G) ∼= 〈α, β, γ〉 is thus generated by the correspond-
ing isometries β, γ, and σ. It can be verified that U = C−1ACA−1 = C−1SCS−1, from
which it follows that φ = γ−1αγα = γ−1σγσ−1. That is, PSL2(G) is isomorphic to the
group [3, 4, 1+, 4]+ ∼= 〈β, γ, σ, φ〉.

The identities φ = γ−1αγα = γ−1σγσ−1 can be combined with the above relations to
give a presentation for PSL2(G) in terms of generators β, γ, and σ alone or, since σ = αβ,
in terms of the generators α, β, and γ. A related presentation involves the half-turn τ =
αφγ−1 = αγ−1αγαγ−1 corresponding to the matrix T = AUC−1 = AC−1ACA−1C−1.
Fine [8, p. 81] gives defining relations for PSL2(G) satisfied by α, β, γ, and τ (his a, t , u,
and l):

α2 = τ 2 = (ατ )2 = (βτ )2 = (γτ )2 = (αβ)3 = (ατγ)3 = 1, β � γ.(33)

The group [∞, (3, 3)+,∞]+ ∼= [3+, 4, 1+, 4, 1+] ∼= [3, 4, 4]+3 ∼= PS̄L ′2(G), with Coxeter
diagram

0 1

4

2

4

3

is the commutator subgroup of [3, 4, 4] and [3, 4, 4]+ ∼= PS̄L2(G), of index 4 in PS̄L2(G)
and of index 2 in PSL2(G). It is generated by the rotations σ = ρ0ρ1 = σ1, τ = ρ232ρ3 =
σ2

3, and φ = ρ0ρ212 = σ1σ
2
2, satisfying the relations

σ3 = τ 2 = φ3 = (σ−1φ)2 = (σ−1τφτ )2 = 1.(34)

The corresponding matrices are S = S1 T = iS2
3, and U = −iS1S2

2.
The group [3, 4, 1+, 4] ∼= [∞, 3, 3,∞] and its subgroups [∞, 3, 3,∞]+ ∼=

PSL2(G) and [∞, (3, 3)+,∞]+ ∼= PS̄L ′2(G) have a common commutator subgroup
[1+,∞, (3, 3)+,∞, 1+] ∼= [∞, 3, 3,∞]+3 ∼= PSL ′2(G) ∼= PS̄L′ ′2 (G) with Coxeter diagram

232

∞

1 0 212

∞

3

This group, of index 4 in PSL2(G) and of index 2 in PS̄L ′2(G), is generated by the rotations
σ = ρ0ρ1 = σ1, φ = ρ0ρ212 = σ1σ

2
2, ψ = ρ0ρ3ρ212ρ3 = σ

−1
3 σ1σ3, and ω = ρoρ232ρ1ρ232 =

σ3σ1σ
2
2σ
−1
3 , satisfying the relations

σ3 = φ3 = ψ3 = ω3 = (σ−1φ)2 = (σ−1ψ)2 = (φ−1ω)2 = (ψ−1ω)2 = 1(35)

(cf. [9, pp. 770–771], [8, p. 139]). The corresponding matrices are S = S1, U = −iS1S2
2,

V = S−1
3 S1S3, and W = −iS3S1S2

2S−1
3 . That is,

S =

(
1 1
−1 0

)
, U =

(
1 −i
−i 0

)
, V =

(
1 i
i 0

)
, W =

(
1 −1
1 0

)
.

A 2×2 complex matrix can be converted into an equivalent 4×4 real matrix by replacing
each entry z = x + yi by a 2× 2 real duplex matrix

Z =

(
x y
−y x

)
.
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If the complex matrix has entries in G, the corresponding real matrix has entries in Z.
Thus each group of linear or linear fractional transformations defined by certain Gaussian
integer matrices has an equivalent representation as a subgroup of SL4(Z) or PSL4(Z).

Groups involving antilinear or antilinear fractional transformations can likewise be rep-
resented by subgroups of S̄L4(Z) or PS̄L4(Z). In particular, the group [3, 4, 4] is isomorphic
to PO3,1(Z), the central quotient group of the group O3,1(Z) of 4 × 4 pseudo-orthogonal
matrices with integral entries [7, pp. 428–429] (cf. [27, p. 301]).

7 Other Subgroups of [3, 4, 4]

The group [3, 4, 4] has a halving subgroup [3, 4, 4, 1+] ∼= [3, 41,1], the symmetry group
of the “half regular” honeycomb h{4, 4, 3}, generated by the reflections ρ0, ρ1, ρ2, and
ρ323 = ρ3ρ2ρ3, satisfying the relations

ρ2
0 = ρ

2
1 = ρ

2
2 = ρ

2
323 = (ρ0ρ1)3 = (ρ1ρ2)4 = (ρ1ρ323)4 = 1,

ρ0 � ρ2, ρ0 � ρ323, ρ2 � ρ323,
(36)

as indicated in the Coxeter diagram

����

��

�
�
�
�

����0

4

2

1

323

4

This group has two isomorphic halving subgroups of its own, [(42, 32)] and [(32, 42)], the
former generated by the reflections ρ0, ρ1, ρ323, and ρ212 = ρ2ρ1ρ2 and the latter by the
reflections ρ0, ρ1, ρ2, and ρ32123 = ρ323ρ1ρ323. These groups have the respective Coxeter
diagrams

��
����
����

����
��
��
��
��

��
��
��
������

��
��
��

323

4

212

0

1

4

0

1

4

2

4

32123

Likewise, the halving subgroup [3, 4, 1+, 4] ∼= [∞, 3, 3,∞], generated by the reflections
ρ0, ρ1, ρ3, ρ212 = ρ2ρ1ρ2, and ρ232 = ρ2ρ3ρ2, with Coxeter diagram

���� �������� ������

232

∞

1 0 212

∞

3
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has two isomorphic halving subgroups [1+,∞, 3, 3,∞] and [∞, 3, 3,∞, 1+], one gener-
ated by the reflections ρ0, ρ1, ρ212, ρ3, and ρ2321232 = ρ232ρ1ρ232, the other by the reflections
ρ0, ρ1, ρ212, ρ232, and ρ32123 = ρ3ρ212ρ3. The respective Coxeter diagrams are

��
��
��
��

��
��
��
��

�
�
�
�

����

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��

��
��
��
��

2321232

0 212 3

∞

1

∞
232 1 0

212

∞

32123

∞

Each of the above subgroups of [3, 4, 4] has an involutory automorphism, evident in the
bilateral symmetry of its graph. For [3, 41,1] this is conjugation by the reflection ρ3, and for
its halving subgroups it is conjugation by ρ2 or ρ323. For [∞, 3, 3,∞] the automorphism is
conjugation by ρ2, and for its halving subgroups it is conjugation by ρ232 or ρ3. Augmenting
a group by its automorphism gives the parent group as a semidirect product.

The two pairs of halving subgroups of [3, 41,1] and [∞, 3, 3,∞] have a common halving
subgroup

[(3, 3, 4, 1+, 4)] ∼= [1+,∞, 3, 3,∞, 1+] ∼= [(3, 3,∞)1,1],

of index 4 in [3, 41,1] and [∞, 3, 3,∞] and of index 8 in [3, 4, 4], generated by the reflec-
tions ρ0, ρ1, ρ212 = ρ2ρ1ρ2, ρ32123 = ρ3ρ212ρ3 = ρ323ρ1ρ323, and ρ2321232 = ρ2ρ32123ρ2 =
ρ323ρ212ρ323 = ρ232ρ1ρ232, the Coxeter diagram being

2321232

0

212

∞

321231

∞

The group [(3, 3,∞)1,1], which has an automorphism group D4 of order 8, is the radical
subgroup [3, 4, 4∗]. Its direct subgroup [(3, 3,∞)1,1]+, generated by the rotations σ =
ρ0ρ1, φ = ρ0ρ212, ψ = ρ0ρ32123, and ω = ρ0ρ2321232, satisfying the relations (35), with
Coxeter diagram

2321232

0

212

∞

321231

∞

is the common commutator subgroup [3, 41,1]+3 ∼= [∞, 3, 3,∞]+3 ∼= PSL ′2(G) of all the
above groups, of index 8 in both [3, 41,1] and [∞, 3, 3,∞] and of index 4 in their respective
halving subgroups.
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The group [3, 4, 4] also has a subgroup [4, 4, 4], of index 3, generated by the reflections
ρ0, ρ2, ρ3, and ρ121 = ρ1ρ2ρ1, satisfying the relations

ρ2
0 = ρ

2
121 = ρ

2
2 = ρ

2
3 = (ρ0ρ121)4 = (ρ121ρ3)4 = (ρ2ρ3)4 = 1,

ρ0 � ρ2, ρ0 � ρ3, ρ121 � ρ2,
(37)

as indicated in the Coxeter diagram

���� ������������

0

4

121

4

3

4

2

This is the symmetry group of a self-dual regular honeycomb {4, 4, 4}. It has two halving
subgroups,

[1+, 4, 4, 4] ∼= [41,1,1] ∼= [4, 4, 4, 1+],

of index 6 in [3, 4, 4], the first generated by the reflections ρ2, ρ3, ρ121, and ρ01210 =
ρ0ρ121ρ0, the second by the reflections ρ0, ρ121, ρ3, and ρ232 = ρ2ρ3ρ2, satisfying the re-
lations indicated in the diagrams

����

�
�
�
�

��
��
��
��

����
��
��
��

��
��
��
��

����

����

01210

4
2

4

4

121

3
0

4

232

121

3

4

4

Each of these groups has an automorphism group D3 of order 6, [1+, 4, 4, 4] being the
radical subgroup [3∗, 4, 4].

The two groups [1+, 4, 4, 4] and [4, 4, 4, 1+] have a common halving subgroup
[1+, 4, 4, 4, 1+] ∼= [1+, 4, 41,1] ∼= [4[4]], of index 4 in [4, 4, 4] and of index 12 in [3, 4, 4],
generated by the reflections ρ121, ρ232, ρ01210, and ρ3, with Coxeter diagram

��
��
��
��

����

��
��
��
��

�
�
�
�232 4 01210

4

34121

4

This group has an automorphism group D4 of order 8.
The group [4, 4, 4] has two other halving subgroups,

[4, 1+, 4, 4] ∼= [∞, 4, 4,∞] ∼= [4, 4, 1+, 4],

of index 6 in [3, 4, 4], the first generated by the reflections ρ0, ρ2, ρ3, ρ12321 = ρ121ρ3ρ121,
and ρ1210121 = ρ121ρ0ρ121, the second by the reflections ρ0, ρ2, ρ121, ρ323 = ρ3ρ2ρ3, and
ρ31213 = ρ3ρ121ρ3, satisfying the relations indicated in the diagrams
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�� ���� �� ������������

0

∞

12321

4

2

4

3

∞

1210121 323

∞

121

4

0

4

31213

∞

2

Each of these groups has an involutory automorphism, conjugation by ρ121 or ρ3.
The groups [1+, 4, 4, 4] ∼= [41,1,1] and [4, 4, 1+, 4] ∼= [∞, 4, 4,∞] share the halving

subgroup [1+, 4, 4, 1+, 4] ∼= [1+, 41,1,1] ∼= [∞, 4, 1+, 4,∞] ∼= [∞[6]], generated by the
reflections ρ121, ρ323 = ρ3ρ2ρ3, ρ01210 = ρ0ρ121ρ0, ρ31213 = ρ3ρ121ρ3, ρ2, and ρ3012103 =
ρ3ρ01210ρ3 = ρ0ρ31213ρ0.

The Coxeter diagram is

�
�
�
�

���� ��
��
��
��

����

��
��
��
��

��
01210 ∞ 31213

∞

2

∞

3012103∞121

∞

323

∞

This group has an automorphism group D6 of order 12.
The group [4, 4, 1+, 4] ∼= [∞, 4, 4,∞] has two isomorphic halving subgroups

[1+,∞, 4, 4,∞] and [∞, 4, 4,∞, 1+], the first generated by the reflections ρ0, ρ121, ρ31213,
ρ2, and ρ323121323 = ρ323ρ121ρ323 and the second by the reflections ρ0, ρ121, ρ31213, ρ323, and
ρ2312132 = ρ2ρ31213ρ2. The respective Coxeter diagrams are

���� ����

��

��
��
��
��

���� ���� ����

��

�
�
�
�

����

323121323

4
0 31213 2

∞4
4

1

∞
323 121 0

4
31213

∞

2312132

4
4∞

The groups [1+,∞, 4, 4,∞] and [∞, 4, 4,∞, 1+] have a common halving subgroup
[1+,∞, 4, 4,∞, 1+] ∼= [(4, 4,∞)1,1], of index 4 in [4, 4, 1+, 4], of index 8 in [4, 4, 4], and
of index 24 in [3, 4, 4], generated by the reflections ρ0, ρ121, ρ31213, ρ2312132, and ρ323121323.
The Coxeter diagram is

323121323

4 0 4

31213

∞

2312132

44

121

∞

This group, with an automorphism group D4 of order 8, is the radical subgroup
[4, 4, 4∗]. The group [1+, 4, 4, 4, 1+] ∼= [4[4]] has four halving subgroups [(1+, 44)] of the
same type, such as the one generated by ρ232, ρ121, ρ01210, ρ31213 = ρ3ρ121ρ3, and ρ3012103 =
ρ3ρ01210ρ3.

The groups [1+,∞, 4, 4,∞] and [∞, 4, 1+, 4,∞] ∼= [∞[6]] have a common halving
subgroup generated by the reflections ρ2, ρ121, ρ31213, ρ01210 = ρ0ρ121ρ0, ρ3012103 =
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ρ0ρ31213ρ0, ρ323121323 = ρ323ρ121ρ323 and ρ32301210323 = ρ0ρ323121323ρ0 = ρ323ρ01210ρ323.
Likewise [∞[6]] ∼= [∞, 4, 1+, 4,∞] and [∞, 4, 4,∞, 1+] have a common halving subgroup
generated by the reflections ρ323, ρ121, ρ31213, ρ01210 = ρ0ρ121ρ0, ρ3012103 = ρ0ρ312132ρ0,
ρ2312132 = ρ2ρ31213ρ2, and ρ230121032 = ρ2ρ3012103ρ2 = ρ0ρ2312132ρ0. The two halving sub-
groups,

[1+,∞, 4, 1+, 4,∞] ∼= [(1+,∞6)] ∼= [∞, 4, 1+, 4,∞, 1+],

have the respective Coxeter diagrams

�
�
�
�

�
�
�
�

����

����

���� ��
��
��
��

�
�
�
�

���� �� �
�
�
�

����

��
��
��
��

�
�
�
�

323121323 ∞ 01210

∞

32301210323∞121

∞

∞
3012103 31213

∞

∞

∞2∞

∞

230121032 ∞ 31213

∞

2312132∞3012103

∞

∞
121 01210

∞

∞
∞323∞

∞

These two groups, together with [1+,∞, 4, 4,∞, 1+] ∼= [(4, 4,∞)1,1], have their own
halving subgroup [1+,∞, 4, 1+, 4,∞, 1+], of index 4 in the groups [1+,∞, 4, 4,∞],
[∞, 4, 1+, 4,∞] ∼= [∞[6]], [∞, 4, 4,∞, 1+], and [1+, 4, 4, 4, 1+] ∼= [4[4]], of index 8 in
[1+, 4, 4, 4], [4, 1+, 4, 4], [4, 4, 1+, 4], and, [4, 4, 4, 1+], of index 16 in [4, 4, 4], and of index
48 in [3, 4, 4], being conjugate to the radical subgroup [(3, 4)∗, 4]. Generators and relations
for this group are evident in the Coxeter diagram

323121323 ∞ 01210

∞

31213

∞

2312132

∞

32301210323∞121

∞

3012103

∞

230121032

∞

∞
∞

∞
∞ ∞

∞
∞

∞

The group [(3, 3,∞)1,1] ∼= [1+,∞, 3, 3,∞, 1+] has a trionic subgroup [(1+,∞6)]+ ∼=
[1+,∞, (3, 3)�,∞, 1+], of index 6 in [(3, 3,∞)1,1] and of index 3 in [(3, 3,∞)1,1]+ ∼=
[1+,∞, (3, 3)+,∞, 1+]. This is the direct subgroup of the group [(1+,∞6)] ∼=
[∞, 4, 1+, 4,∞, 1+] defined above, as well as the commutator subgroup PSL ′ ′2 (G) of
[(3, 3,∞)1,1]+ ∼= PSL ′2(G). It is generated by the half-turns x1, x2, x3, and x4 and the
pararotations x5 and x6, where

x1 = ρ31213ρ323, x2 = ρ323ρ3012103, x3 = ρ2312132ρ323, x4 = ρ323ρ230121032,

x5 = ρ01210ρ323, x6 = ρ323ρ121.
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Defining relations for the group [(1+,∞6)]+ are

x2
1 = x2

2 = x2
3 = x2

4 = (x1x2)2 = (x3x4)2 = (x5x6)2

= (x1x6)2 = (x2x5)2 = (x3x6)2 = (x4x5)2 = 1
(38)

(cf. [9, p. 771], [8, p. 140]). Products of generators of [(1+,∞6)]+ are commutators of the
generators of [(3, 3,∞)1,1]+:

x1x2 = σ
−1ψσψ−1, x3x4 = φ

−1ωφω−1, x5x6 = σ
−1φσφ−1, x6x5 = ψ

−1ωψω−1,

x1x6x4x5 = σ
−1ωσω−1, x3x6x2x5 = φ

−1ψφψ−1.

The commutator subgroup of both [(1+,∞6)] and [(1+,∞6)]+ is an ionic sub-
group [(1+,∞6)]+7 ∼= PSL ′ ′ ′2 (G), of index 128 in [(1+,∞6)] and hence of index 64 in
[(1+,∞6)]+ ∼= PSL ′ ′2 (G). It is of index 192 in [(3, 3,∞)1,1]+ ∼= [∞, 3, 3,∞]+3 ∼= PSL ′2(G),
of index 768 in [∞, 3, 3,∞]+ ∼= [3, 4, 1+, 4]+ ∼= PSL2(G), and of index 3072 in [3, 4, 4].
All further members of the derived series for PSL2(G) have infinite index [9, p. 772], [8,
p. 141].

Respective Coxeter diagrams for the groups [(1+,∞6)]+ and [(1+,∞6)]+7 are

∞

∞

∞

∞

∞ ∞

∞
∞∞

∞

∞

∞

∞

∞

∞ ∞

∞
∞∞

∞

8 The Eisenstein Modular Group

The integral domain E = Z[ω] = Z2(−3) of Eisenstein integers comprises the complex
numbers e = e0 + e1ω, where (e0, e1) ∈ Z2 and ω = − 1

2 + 1
2

√
−3 is a primitive cube root of

unity, so that ω2 +ω + 1 = 0. Quadratic integers of this type were investigated by Gotthold
Eisenstein (1823–1852). Each Eisenstein integer e has a norm N(e) = |e|2 = e2

0 − e0e1 + e2
1.

The units of E are the six numbers with norm 1, namely ±1, ±ω, ±ω2, which form the
Eisenstein unit scalar group S̄Z(E) ∼= C6

∼= 〈−ω〉, with proper subgroups S3Z(E) ∼= C3
∼=

〈ω〉 and S2Z(E) ∼= C2
∼= 〈−1〉.

The special linear group of SL2(E) of 2× 2 Eisenstein integer matrices of determinant 1
is generated by the matrices

A =

(
0 1
−1 0

)
, B =

(
1 0
1 1

)
, C =

(
1 0
ω 1

)

[2, p. 316]. The semispecial linear group S2L2(E) of 2×2 matrices S over E with (det S)2 = 1
is generated by A, B, C , and L = \1,−1\ [29, p. 231]. The ternispecial linear group S3L2(E)
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of matrices T with (det T)3 = 1 is generated by A, B, and M = \1, ω2\. The unit linear
group S̄L2(E) of matrices U with | det U | = 1 is generated by A, B, and N = \1,−ω\. Note
that C = M−1BM, L = N3, and M = N2. The centre of both SL2(E) and S2L2(E) is the
special scalar group SZ2(E) ∼= 〈−I〉, and the centre of both S̄L2(E) and S3L2(E) is the unit
scalar group S̄Z(E) ∼= 〈−ωI〉.

The Eisenstein modular group

PSL2(E) ∼= SL2(E)/ SZ2(E) ∼= S3L2(E)/S̄Z(E),

defined as the group of cosets of SZ2(E) in SL2(E), is generated in H3 by the half-turn
α = ·〈A〉 and the pararotations β = ·〈B〉 and γ = ·〈C〉; being alternatively the groups of
cosets of S̄Z(E) in S3L2(E), it is also generated by the half-turn α, the pararotation β, and
the rotation µ = ·〈M〉 (of period 3). The Eisenstein extended modular group

PS̄L2(E) ∼= S̄L2(E)/S̄Z(E) ∼= S2L2(E)/ SZ2(E),

is similarly generated either by the half-turn α, the pararotation β, and the rotation ν =
·〈N〉 (of period 6) or by the half-turn α, the pararotations β and γ, and the half-turn
λ = ·〈L〉.

When the complex field C is regarded as a two-dimensional vector space over R, the
Eisenstein integers constitute a two-dimensional lattice A2. The points of A2 are the vertices
of a regular tessellation {3, 6} of the Euclidean plane E2, whose symmetry group [3, 6] is
generated by three reflections ρ1, ρ2, ρ3, satisfying the relations

ρ2
1 = ρ

2
2 = ρ

2
3 = (ρ1ρ2)3 = (ρ1ρ3)2 = (ρ2ρ3)6 = 1.(39)

The tessellation {3, 6} is the vertex figure of a regular honeycomb {3, 3, 6} of hyperbolic
3-space H3, the cell polyhedra of which are regular tetrahedra {3, 3} whose vertices all lie
on the abolute sphere.

The symmetry group [3, 3, 6] of the honeycomb {3, 3, 6} is generated by four reflections
ρ0, ρ1, ρ2, ρ3, satisfying (39) as well as

ρ2
0 = (ρ0ρ1)3 = (ρ0ρ2)2 = (ρ0ρ3)2 = 1.(40)

The combined relations (39) and (40) are indicated in the Coxeter diagram

���� ������������

0 1 2

6

3

The generators ρ0, ρ1, ρ2, ρ3 can be represented by antilinear fractional transformations
−
· 〈R0〉,

−
· 〈R1〉,

−
· 〈R2〉,

−
· 〈R3〉, determined by the matrices

R0 =

(
0 1
1 0

)
, R1 =

(
−1 0
1 1

)
, R2 =

(
−ω 0

0 ω2

)
, R3 =

(
−1 0
0 −1

)
.

The direct subgroup [3, 3, 6]+ is generated by three rotations σ1 = ρ0ρ1, σ2 = ρ1ρ2,
σ3 = ρ2ρ3, with the defining relations

σ3
1 = σ

3
2 = σ

6
3 = (σ1σ2)2 = (σ2σ3)2 = (σ1σ2σ3)2 = 1.(41)
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The generators σ1, σ2, σ3 can be represented by linear fractional transformation ·〈S1〉, ·〈S2〉,
·〈S3〉, corresponding to the unit matrices

S1 =

(
1 1
−1 0

)
, S2 =

(
ω 0
−ω ω2

)
, S3 =

(
ω2 0
0 −ω

)
,

with entries in E = Z[ω] and determinants in S2Z(E) ∼= 〈−1〉 [29, pp. 234, 246], [23,
pp. 102–103].

The matrices S1, S2, S3 belong to and generate the semispecial linear group S2L2(E) ∼=
〈A,B,C, L〉, since

S1S2S−2
3 = A, S2

3S−1
2 = B, S2S2

3S2 = C, and S3
3 = L.

Thus the group [3, 3, 6]+, generated by σ1, σ2, and σ3 is the Eisenstein extended modular
group PS̄L2(E) ∼= 〈α, β, γ, λ〉.

Fine [8, pp. 75–76, 81–82, 89–95] gives finite presentations for the Eisenstein modular
group PSL2(E), and Schulte & Weiss [29, p. 246] have shown that PSL2(E) is a subgroup of
index 2 in [3, 3, 6]+. We now show that PSL2(E) is the commutator subgroup of [3, 3, 6].

The group [3, 3, 6] has a halving subgroup [3, 3, 6, 1+] ∼= [3, 3[3]], generated by the
reflections ρ0, ρ1, ρ2, and ρ323 = ρ3ρ2ρ3, satisfying the relations indicated in the diagram

0 1

2

323

This group has an involutory automorphism, conjugation by ρ3, interchanging generators
ρ2 and ρ323. There is also a semidirect subgroup [(3, 3)+, 6], generated by the rotations
σ1 = ρ0ρ1 and σ2 = ρ1ρ2 and the reflection ρ3. The groups [3, 3, 6], [3, 3, 6]+, [3, 3, 6, 1+],
and [(3, 3)+, 6] have a common commutator subgroup [3, 3, 6, 1+]+ ∼= [(3, 3)+, 6, 1+] ∼=
[3, 3, 6]+2, of index 4 in [3, 3, 6] and of index 2 in the others, generated by the three rota-
tions σ1, σ2, and σ33 = σ

2
3 = (ρ2ρ3)2 = ρ2ρ323 = σ

−1
2 ρ3σ2ρ3, with Coxeter diagram

0 1

2

323

Defining relations for the group [(3, 3)+, 6, 1+] are

σ3
1 = σ

3
2 = σ

3
33 = (σ1σ2)2 = (σ2σ33)3 = (σ1σ2σ33)2 = 1.(42)
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Since the corresponding matrices S1, S2, and S33 = S2
3 belong to the special linear group

SL2(E) ∼= 〈A,B,C〉, [(3, 3)+, 6, 1+] is a subgroup of the Eisenstein modular group PSL2(E).
Indeed, we find it to be the whole group.

Theorem 8.1 The Eisenstein special linear group SL2(E) is generated by the matrices

S1 =

(
1 1
−1 0

)
, S2 =

(
ω 0
−ω ω2

)
, S3 =

(
ω 0
0 ω2

)
.

Proof Since S1, S2, and S33 each belong to SL2(E) ∼= 〈A,B,C〉, and since

S1S2S−1
33 = A, S33S−1

2 = B, S2S33S2 = C,

it follows that SL2(E) ∼= 〈S1, S2, S33〉.

The Eisenstein modular group PSL2(E) ∼= 〈α, β, γ〉 is thus generated by the correspond-
ing isometries σ1, σ2, and σ33. That is, PSL2(E) is isomorphic to the group [(3, 3)+, 6, 1+] ∼=
〈σ1, σ2, σ33〉.

If we define matrices S and T by S = S1 and T = S1S2, then it can be verified that S = AB
and that T = C−1ABCA−1C−1. Likewise, taking σ = σ1 and τ = σ1σ2, we have σ = αβ
and τ = γ−1αβγαγ−1. These identites can be combined with the above relations to give
a presentation for PSL2(E) in terms of the generators α, σ, and τ or, on replacing σ and
τ with αβ and γ−1αβγαγ−1, in terms of the generators α, β, and γ. Alperin [1, p. 2935]
gives defining relations for PSL2(E) satisfied by a = σ1, b = σ1σ2, and c = σ1σ2σ33:

a3 = b2 = c2 = (ab)3 = (a−1c)3 = (bc)3 = 1.(43)

The trionic subgroup [(3, 3)�, 6, 1+] ∼= PSL ′2(E), with Coxeter diagram

0 1
×

2

6

3

is the commutator subgroup of [(3, 3)+, 6, 1+] ∼= PSL2(E), of index 3. It is generated by the
four half-turns σ12 = σ1σ2, σ21 = σ2σ1, σ̄12 = σ1σ2σ33, and σ̄21 = σ2σ33σ1, satisying the
relations

σ2
12 = σ

2
21 = σ̄

2
12 = σ̄

2
21 = (σ12σ21)2 = (σ̄12σ̄21)2

= (σ12σ̄12)3 = (σ21σ̄21)3 = (σ12σ21σ̄12σ̄21)3 = 1.
(44)

The corresponding matrices are S12 = S1S2, S21 = S2S1, S̄12 = S1S2S33, and S̄21 = S2S33S1,
which evaluate as

S12 =

(
0 ω2

−ω 0

)
, S21 =

(
ω ω
1 −ω

)
, S̄12 =

(
0 ω
−ω2 0

)
, S̄21 =

(
ω2 ω2

1 −ω2

)
.

By combining the identities σ12 = b, σ̄12 = c, σ21 = a−1ba, and σ̄21 = a−1ca with the
above relations, we obtain a presentation for PSL ′2(E) in terms of the alternative generators
a, b, and c (cf. [1, p. 2937].
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9 Other Subgroups of [3, 3, 6]

Besides the halving subgroup [3, 3[3]] just discussed, the group [3, 3, 6] has several other
subgroups of interest. The subgroup [3, 6, 3], of index 4, is generated by the reflections
ρ0, ρ1, ρ3, and ρ232 = ρ2ρ3ρ2. The subgroup [6, 31,1], of index 5, is generated by the
reflections ρ0, ρ1, ρ232, and ρ323 = ρ3ρ2ρ3. The subgroup [6, 3, 6], of index 6, is generated
by the reflections ρ0, ρ2, ρ3, and ρ12321 = ρ1ρ232ρ1. The three groups [3, 6, 3], [6, 31,1], and
[6, 3, 6] have the respective Coxeter diagrams

���� ��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

����������
��
��
��

����

��

����

0 1

6

232 3 232

6
1

0

323

0

6

12321 3

6

2

As evidenced by the bilateral symmetry of their graphs, each of these groups has an invo-
lutory automorphism. For the group [6, 31,1] this is conjugation by a reflection ρ−1 in a
plane bisecting the fundamental region. Augmenting [6, 31,1] by this automorphism, we
get another Coxeter group [4, 3, 6], generated by the reflections ρ−1, ρ0, ρ1, and ρ232, as in
the diagram

���� ������������
−1

4

0 1

6

232

The generators ρ−1, ρ0, ρ1, ρ232 can be represented by antilinear fractional transformations
−
· 〈R−1〉,

−
· 〈R0〉,

−
· 〈R1〉,

−
· 〈R232〉, determined by the matrices

R−1 =
1
√

2

(
−ω2 1

1 ω

)
, R0 =

(
0 1
1 0

)
, R1 =

(
−1 0
1 1

)
, R232 =

(
−ω2 0

0 −ω

)
.

(Note that the entries of R−1 are not Eisenstein integers.) Another representation of this
group is given by Nostrand, Schulte & Weiss [25, p. 167].

The groups [3, 3, 6], [3, 6, 3], [6, 3, 6], and [4, 3, 6] are the symmetry groups of regu-
lar honeycombs. The group [4, 3, 6] has two halving subgroups, [1+, 4, 3, 6] ∼= [6, 31,1]
and [4, 3, 6, 1+] ∼= [4, 3[3]], the respective symmetry groups of the “half regular” hon-
eycombs h{4, 3, 6} and h{6, 3, 4}. These two groups have a common halving subgroup
[1+, 4, 3, 6, 1+] ∼= [3[ ]×[ ]], of index 4 in [4, 3, 6], the symmetry group of the “quarter
regular” honeycomb q{4, 3, 6} = q{6, 3, 4}.

Generators for [4, 3[3]] are ρ−1, ρ0, ρ1, and ρ2321232 = ρ232ρ1ρ232, and generators for
[3[ ]×[ ]] are ρ0, ρ1, ρ2321232, and ρ323 = ρ(−1)0(−1) = ρ−1ρ0ρ−1, as indicated in the Coxeter
diagrams

��

����

��
��
��
��

��
��
��
��

��

�
�
�
�

������

−1

4

0

1

2321232

0

1

323

2321232
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The groups [6, 31,1] and [3, 6, 3] have a common subgroup [(3, 6)[2]], of index 4 in
[6, 31,1], of index 5 in [3, 6, 3], of index 8 in [4, 3, 6], and of index 20 in [3, 3, 6]. The
halving subgroup of [6, 3, 6] is [6, 3, 6, 1+] ∼= [6, 3[3]], a subgroup of index 3 in [3, 6, 3]
and of index 12 in [3, 3, 6]. This group has its own halving subgroup [1+, 6, 3, 6, 1+] ∼=
[1+, 6, 3[3]] ∼= [3[3,3]], of index 4 in [6, 3, 6], of index 6 in [3, 6, 3], and of index 24 in
[3, 3, 6].

Generators for [(3, 6)[2]] are ρ0, ρ12321, ρ3, and ρ21012 = ρ2ρ1ρ0ρ1ρ2, generators for
[6, 3[3]] are ρ2, ρ3, ρ12321, and ρ0123210 = ρ0ρ12321ρ0, and generators for [3[3,3]] are ρ0123210,
ρ12321, ρ232, and ρ3, as indicated in the diagrams

�
�
�
�

��
��
��
��

����

��

�
�
�
�

�� ��
��
��
��

�
�
�
�

��

����

��

�
�
�
�

0 6 12321

3621012

2

6

3

12321

0123210

12321

0123210232

3

The group [3[3,3]] is the radical subgroup [(3, 3)∗, 6] ∼= [3∗, 6, 3].
With the exception of [3, 3, 6] and [4, 3, 6], all of the above groups have nontrivial au-

tomorphism groups, of order 2 in most cases. The generators of [3[ ]×[ ]] and [(3, 6)[2]] are
each permuted by an automorphism group D2 of order 4, and [3[3,3]] has an automorphism
group S4 of order 24. Adjoining such automorphisms to a given group yields other Coxeter
groups, subgroups, or supergroups as semidirect products.

The group [(3, 3)�, 6, 1+], which is generated by four half-turns σ12, σ21, σ̄12, and σ̄21,
satisfying the relations (44), has a subgroup [3[3,3]]+ ∼= [(3, 3)∗, 6, 1+] of index 4. The direct
subgroup of the group [3[3,3]] and the commutator subgroup PSL ′ ′2 (E) of [(3, 3)�, 6, 1+] ∼=
PSL ′2(E), it is generated by the rotations u, v, and w, where

u = ρ232ρ3 = σ12σ̄12, v = ρ12321ρ3 = σ21σ̄21, w = ρ0123210ρ3 = σ12σ21σ̄12σ̄21,

or u = bc, v = a−1bca, and w = abca−1. Defining relations for PSL ′′2 (E) are

u3 = v3 = w3 = (uv−1)3 = (vw−1)3 = (wu−1)3 = 1(45)

(cf. [1, p. 2937]). As the group [3[3,3]]+, its Coxeter diagram is

12321

0123210232

3
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The group [3[3,3]] has hypercompact subgroup [3[[3,3]]]+ of index 5, generated by six
reflections, the fundamental region being a regular hexahedron {4, 3} whose vertices all lie
on the absolute sphere. As the radical subgroup [6, (31,1)∗] ∼= [(4, 3)∗, 6], it is of index 24 in
[6, 31,1], of index 48 in [4, 3, 6], and of index 120 in [3, 3, 6]. The direct subgroup [3[[3,3]]]+

is a subgroup of index 60 in [(3, 3)+, 6, 1+] ∼= PSL2(E). If we let x = abcb = σ1σ33σ12,
[3[[3,3]]]+ is the normal subgroup of PSL2(E) generated by x2 [1, p. 2939].

The commutator subgroup of [3[3,3]]+ is a group [3[3,3]]� ∼= PSL ′ ′ ′2 (E), the normal
subgroup of PSL2(E) generated by x3. It is of index 27 in [3[3,3]]+ ∼= [(3, 3)∗, 6, 1+] ∼=
PSL ′ ′2 (E), of index 108 in [(3, 3)�, 6, 1+] ∼= PSL ′2(E), of index 324 in [(3, 3)+, 6, 1+] ∼=
PSL2(E), and of index 1296 in [3, 3, 6]. All subsequent members of the derived series for
PSL2(E) have infinite index [1, p. 2938].

10 Summary

Through the systematic application of the theory of discrete groups operating in hyper-
bolic space, we have provided a unified description of linear fractional transformations
over rings of rational or quadratic integers. The following theorems summarize the iso-
morphisms established here between real or complex linear fractional groups (and their
derived subgroups) and subgroups of hyperbolic Coxeter groups.

Theorem 10.1 The rational modular group PSL2(Z) and its commutator subgroup are iso-
morphic to subgroups of the symmetry group of the regular hyperbolic tessellation {3,∞}:

PS̄L2(Z) ∼= [3,∞],

PSL2(Z) ∼= [3,∞]+,

PSL ′2(Z) ∼= [3+,∞, 1+].

Theorem 10.2 The semiquadratic modular groups PSL1+1(Z[
√

d]), d = 2 or 3, and their
commutator subgroups are isomorphic to subgroups of the symmetry groups of the regular
hyperbolic tessellations {4,∞} and {6,∞}:

PS̄L1+1(Z[
√

2]) ∼= [4,∞], PS̄L1+1(Z[
√

3]) ∼= [6,∞],

PSL1+1(Z[
√

2]) ∼= [4,∞]+, PSL1+1(Z[
√

3]) ∼= [6,∞]+,

PSL ′1+1(Z[
√

2]) ∼= [4,∞]+3, PSL ′1+1(Z[
√

3]) ∼= [6,∞]+3.

Theorem 10.3 The Gaussian modular (Picard) group PSL2(G) and the Eisenstein modu-
lar group PSL2(E) and their derived subgroups are isomorphic to subgroups of the symmetry
groups of the regular honeycombs {3, 4, 4} and {3, 3, 6} of hyperbolic 3-space:

PS̄L2(G) ∼= [3, 4, 4]+, PS̄L2(E) ∼= [3, 3, 6]+,

PSL2(G) ∼= [3, 4, 1+, 4]+, PSL2(E) ∼= [(3, 3)+, 6, 1+],

PSL ′2(G) ∼= [∞, 3, 3,∞]+3, PSL ′2(E) ∼= [(3, 3)�, 6, 1+],

PSL ′ ′2 (G) ∼= [(1+,∞6)]+, PSL ′ ′2 (E) ∼= [3[3,3]]+,

PSL ′ ′ ′2 (G) ∼= [(1+,∞6)]+7. PSL ′′ ′2 (E) ∼= [3[3,3]]�.
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In passing we have found explicit or implicit matrix representations for every crystallo-
graphic Coxeter group whose fundamental region is the closure of a Koszul (asymptotic)
triangle or tetrahedron. Except for the mixed groups [4, 3, 6] and [4, 3[3]], the isometries
of each such paracompact group can be represented by 2 × 2 matrices over the rational
integers Z or some ring Z2(d) of quadratic integers.
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