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WHICH RATIONALS ARE RATIOS OF PISOT SEQUENCES? 

BY 
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ABSTRACT. A Pisot sequence is a sequence of integers defined recur
sively by the formula - a„/2 < an+2an - a2

n+, < a„/2. If 0 < a0 < ax then 
an+\/an converges to a limit 8. We ask whether any rational p/q other than 
an integer can ever occur as such a limit. For p/q > q/2, the answer is no. 
However, if p/q < q/2 then the question is shown to be equivalent to a 
stopping time problem related to the notorious 3x + 1 problem and to a 
question of Mahler concerning the powers of 3/2. Although some inter
esting statistical properties of these stopping time problems can be estab
lished, we are forced to conclude that the question raised in the title of this 
paper is perhaps more intractable than it might appear. 

1. Introduction. If x is a real number, let N(x) - [x + \] denote the "nearest" 
integer to x. Given integers 0 < a0 < ax, define the Pisot sequence E(OQ, ax) by 
an+i - N(a2

n+Jan). Pisot [11] showed that an+l/an converges to a limit 6 > 1 and if 
0 > 1 then an/Q" converges to X > 0. Furthermore, if e„ = an - \ 0 \ then 

( 1 ) l i m s u p k l " ^ J ^ -

We call 6 the ratio of E(a0, ax ). The set E of such 6 is countable and dense in [1, o°). 
If 0 > 1 is the root of a polynomial P{x) = xd + cxx

d~x + . . . + Q with integer 
coefficients, all of whose other roots lie in the unit circle then 0 is in £ [5]. Such 0 form 
the set of Pisot and Salem numbers. 

In [1], we conjectured that no other algebraic numbers lie in E. In particular, this 
conjecture would imply that the only rationals in E are the integers. 

A result of [2] implies that if p/q > q/2 thcnp/q is not in E unless/?/# is an integer. 
This also follows from Theorem 1 of this paper. Thus, for example, 3/2 is not in E. 

To illustrate the situation if p/q < q/2, consider 0 = 4/3. For any integer OQ > 1, 
define a sequence {an} by a„+1 = N(dan). That is, {an} is defined by iterating the 
mapping 3m —» Am, 3m ± 1 —» Am ± 1. Then 4/3 is in E if and only if there is an 
a0 > 1 so that in the sequence {an} no two consecutive terms are congruent modulo 3 
to either (1, -1 ) or ( - 1 , 1). 
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We believe that no such a0 exists. However, Lemma 1 shows that, given any finite 
sequence (e0,.. . ,ek-i) with et in {—1, 0, 1}, there is a unique a0 in [1, 3*] with 
(a0,... ,ak-\) = {e0,..., ^_i)(mod 3). Thus no finite set of congruence conditions 
can ever suffice to exclude all a0 from consideration. 

The situation is similar to that described by Mahler [10] who asked whether there is 
a real number X > 0 so that the fractional parts of A. (3/2)" lie in [0,1/2] for all n. Our 
problem can be formulated in terms of \(p/q)n, but note that (1) implies no restriction 
on the fractional part of \(p/q)n if p/q < 2. Mahler's problem leads to the iteration 
of the mapping n —> [3n/2], i.e. 2m —» 3m and 2m + 1 —» 3m + 1. 

One is also reminded of the "3JC + 1 problem" which asks about the ultimate 
periodicity of the mapping 2m —» m, 2m + 1 -* 3m + 2. Lagarias [9] discusses this 
and related questions. He points out the importance of the observation of Terras [12] 
and Everett [4] which is the analogue of our Lemma 1 for the 3x + 1 mapping. Terras 
[12] has established the existence of a limiting asymptotic density for a stopping time 
problem associated with the 3x + 1 problem. In our case the situation is somewhat 
simpler and we are able to show that the limiting distribution of our stopping time is 
the absorption time distribution for a certain finite transient Markov chain. 

2. A reformulation of the problem. Throughout the paper, let 0 = p/q with/? and 
q relatively prime and p > q > 1. We say that {an} is eventually a Pisot sequence if 

(2) - an/2 < an+2an ~ a\+\ ^ an/2 

holds for sufficiently large n. 

THEOREM 1. Let {an} be a sequence of positive integers. Define dn = qan+l — pan. 
Then {an} is eventually a Pisot sequence with ratio 6 = p/q if and only if, for all 
sufficiently large n, the following hold: 

(3) an > l 

2(6 - l ) 2 

(4) ~q/2<dn+] - %dn<q/2 

(5) -b<dn<b, 

where b = (q - 2)/(2(6 - 1)). 

PROOF. The definition of dn can be written as 

(6) an+l = Qan + djq 

Using (6), we obtain the identity 

(7) q2(an+2an - a2
n + l) = an(q(dn + l - Qdn) - d2Jan) 

Now suppose that {an} is a Pisot sequence with ratio 6. Then an is unbounded so (3) 
is obvious. By (1), dn is a bounded sequence of integers and (2) and (7) show that 

(8) ~q2 < 2q(dn+l - ddn) - 2d2Jan < q2. 
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In (8), all terms are integers except for 2d2Jan which is a null sequence of rationals. 
Hence (4) follows. 

To prove (5), assume that (4) holds and that dn > b. Then dn+x > ddn — q/2 > 
d„— 1. Since these are integers, this shows dn+1 > dn and hence by induction that {dn} 
is eventually increasing. Since {dn} is bounded it must be eventually constant. But then 
an satisfies the difference equation (qan+2 — pan+]) — (qan+l — pan) = 0 so an = 
A0" + B for certain constants A =£ 0 and B. Since 0 is not an integer, an cannot be 
always an integer which is a contradiction. A similar argument rules out dn < —b, 
establishing (5). 

For the converse assume (3) through (5). Then by (3), (4) and (6), an+i ^ an% — 
b/q > an so {an} is strictly increasing hence unbounded. Since q(dn+l — ftdn) is an 
integer, (4) implies that 

(9) ~(q2 ~ l)/2 < q(dn+] - 0dn) < q2/2. 

Since d2
n/an is a null sequence, eventually 0 < d2

n/an < 1/2 and then (7) and (9) imply 
(2). So {an} is eventually a Pisot sequence, and an+\/an —> 9 by (5) and (6). 

COROLLARY l.Ifd=p/q>q/2 and 0 is not an integer then 0 is not the ratio of 
a Pisot sequence. 

PROOF. If q = 2 then b = 0 so (5) has no solutions. Hence p/2 is ruled out for all 
odd p. If q > 2 but p/q > q/2 then b < 1. If {an} is a Pisot sequence with ratio 0 then 
(5) shows that dn — 0 eventually, but then an — A0" eventually, which is not possible 
as in the proof of the Theorem. 

3. A stopping time problem. Fix 0 = p/q < q/2 with q > 2. Given any integer 
ao, choose some d0 = —pa0 (mod q). Then for n > 0, define 

(10) an+ï = (pan + dn)/q 

and 

(11) dn+i = ~pan+] (mod<?), 

where dn+i is chosen to satisfy (4). Note that dn+l is uniquely determined by (4) and 
(11). Thus, any pair (a0, d0) with d0 = — paQ (mod q) determines a sequence of integers 
D(a0, d0) = (d0, d\,. . . ) satisfying the transition rule (4). We call D(a0, do) the orbit 
of (a0, d0) under p/q. 

Let J = [— b, b). It follows easily from Theorem 1 that 0 is in E if and only if there 
is an a0 > 1/(2(0 — l)2) and a d0 so that the complete orbit D(a0, d0) lies in J 

For each (a0,do), define the stopping time 

(12) t(a0, d0) = min {n : dn E J }. 

Then 0 < t(a0, d0) < o° and/?/<? E £ if and only if t(a0, d0) = oo for some pair (a0, (i0)-
We shall prove that there are almost no such pairs. 

For example, if p/q = 5/4 then J = [—4,4). To insure t(ao, do) > 0 we choose 
d0 G J so there are two such choices for each a0. For example, if a0 = 15 then 
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D(15,l) = (1 ,1 ,0 ,2 ,2 ,4 ,7 , . . . ) and f(15,1) = 5. The choice d0 = - 3 gives 
D(15, - 3 ) = ( - 3 , - 2 , - 2 , - 3 , - 5 , - 8 , - 8 , . . . ) so r(15, - 3 ) = 4. For 6 = 5/4, the 
maximum stopping time for a0 < 1000 is f(51,1) = 24. 

REMARK. If the interval J contains at most q integers, as it will when p/ q > 2 — 
\/{q— 1), then we can define a different set of sequences {d„} by iterating the mapping 
x —» 7V(6JC), as we mentioned in the introduction. Thus, given a0, we form an+l = 
N(ftan) and then define dn = — pan (mod q) with —q/2 < d„ < q/2, say. Then p/q 
is in E if and only if there is an a0 > 1/(2(6 — l)2) such that (4) and (5) hold for all 
n. Although this brings out more obviously the relation to Mahler's problem and the 
3x + 1 problem it does not seem as natural here since it fails if J contains more than 
q integers. Furthermore, if d0 E J and k ^ t(aQ, d0), then the same initial segments 
(a0,. . . , ak-1 ) and (d0,. . . ,dk- x ) are generated by either process so the stopping time 
is the same in either case. 

4. A Markov chain on the integers. Consider a Markov chain with state space the 
integers and the transition from / —» j permitted if and only if 

(13) -q/2<j-Qi<q/2. 

If c = g/(2(6 - 1)), then for each state outside of [—c, c), each successor./ satisfies 
\j | > |/| and sgnj = sgn / so all paths through / tend to ±o°. If b = (q — 2)/(2(6 -
1)) and if / is in [ —c, c) but not in [—b, b) then each successor satisfies \j\ > |/| and 
sgn j = sgn / so the only bounded paths through / are constant. Finally, if / is in J = 
[—b, b) then there are paths which leave i and eventually return to /. 

Consider the above chain restricted to J. If there are s integers in J then the transition 
matrix A has ati = 1 iff /, j E J and (13) holds. The choice of J means that A dominates 
the tridiagonal matrix B with btj = 1 iff |/ - j \ ^ 1. Since Bk is strictly positive for 
some k, so is Ak, and hence Perron's theorem, ([6], Chapter 13) shows that A has a 
strictly dominant positive eigenvalue r{A). Furthermore r(A) < q since all row sums 
of A are at most q with some strictly less than q. 

If Nk denotes the number of paths (d0,..., dk) in the chain with dn E J for all n < 
k, then Nk = exxAke where e is the vector with all entries 1, ([7], p. 991). Thus Nk = 
0(r(A)k). 

Now introduce the transition probabilities Pr{i-*j}= \/q if (13) holds. Then each 
state is transient. For, by the above discussion, if a path leaves J it never returns. 
Furthermore, the probability of a path staying in J forever is lim (Nk/sqk) = 0. More 
precisely, if we define the absorption time distribution by 

(14) P(k) = Pr{a path starting in J first leaves J at time k). 

Then 

(15) P(k) = PoQkd ~ Q)Po, 

where p0 = s~le and Q = q~]A. Clearly 
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(16) 1 P(k) = 1. 

This follows from r(Q) = r(A)/q < 1, ([8], Chapter 5). 
The matrix Q defines a finite transient Markov chain and P(k) is its absorption time 

distribution. 

5. The coding lemma. The connection between the sequences of section 3 and the 
paths of the Markov chain of section 4 is given by the following simple lemma which 
is modeled on a result of Terras [12] and Everett [4] for the 3x + 1 problem. If 
D(a0, d0) = {dn} is the orbit of (a0, d0) under p/q, we define 

(17) Dk(a0,d0) = (dQ,du... ,d*-i). 

LEMMA 1. Let ( d0,. . . , dk- \ ) be any sequence satisfying {A) for all n < k — 1. Then 
there is a unique a0 E [0, qk — 1] such thatDk(a0, d0) = (d0,. . . , dk-\). Furthermore, 
each b0 for which Dk(b0,d0) = Dk(a0,d0) is congruent modulo qk to a0. 

PROOF. Suppose that Dk(a0, d0) = Dk(b0, d0). Iterating (6), we find that 

(18) ak = eka0 + (dk~]d0 + . . . +dk.l)/q, 

and since this also holds for b0, bk we have qkak - pka0 = qkbk - pkb0. This shows that 
a0 = b0 (mod qk). Thus, given (do,..., dk-\), there is at most one a0 E [0, qk — 1] 
with Dk(a0, d0) = (d0,. . . ,dk-\) so the map (a0, d0) —> Dk(a0, d0) is one-one. Fixing 
d0, there are qk~l values of a0 E [0,g* - 1] with -pa0 = d0 (mod q) and the same 
number of sequences (d0,... ,d*-i) with first entry d0 satisfying (3). Thus the map 
(a0, d0) —» Dk(a0, d0) is onto and this completes the proof. 

REMARKS. 1. It is easy to give an inductive construction of the a0 in Lemma 1. 
2. We can extend the definition ofD(a0,do)to allow a0 to be a q-adic integer, a0 = 

T^=o ekq
k with a < ek ^ q - 1. Simply reinterpret the formulas (10) and (11). Having 

done this, Lemma 1 shows that each path {dn} in the Markov chain with transition rule 
(4) is D(a0, d0) for a unique q-adic integer a0. To expand on this remark, one can 
imitate many of the results of Lagarias [9] on the 3JC + 1 mapping. An interesting 
difference between our maps and that one is that periodic orbits cannot occur here for 
integer a0 > 1/(2(8 — l)2) whereas they are conjectured to be the general rule for the 
3x 4- 1 problem. 

THEOREM 2. Let N(x) denote the number of integers a0 ^ x which can be the initial 
term of a Pisot sequence with ratio p/q. Then N(x) = 0(xa) where a — log r(A)/log 
q < I. In particular, the set of such a0 has density zero. 

PROOF. Let k satisfy qk < x < qk+1. There are Nk sequences (d 0 , . . . , dk) satisfying 
(4) and (5) for n ^ k. Thus, by Lemma 1, there are at most Nk values of OQ < x with 
D(a0, d0) lying in J. Hence 

JV(JC) < Nk = 0(r(A)k) = 0(qak) = 0(xa). 
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THEOREM 3. Let 0 = pi q < q/2 be fixed and let t(ao, d0) be the stopping time defined 
in (12). Given x, let Sx be the set of pairs (a0, d0) with a0 < x, d0 in J and d0 = 
—pa0 (mod q). Let Tk be the set of pairs (a0, d0) with t(a0, d0) = k. Then 

card(Sx H Tk) 
(19) lim = P(Jfc), 

jr̂ oo card(5x) 
where P(k) is defined by (14). 

PROOF. In view of Lemma 1, the result is almost obvious. We point out only that, 
for fixed k and d0 in J, the set of a0 with t(a0, d0) = k forms a set of congruence classes 
modulo qk. If x is a multiple of qk then the ratio in the left member of (19) is exactly 
P(k), and when x lies between two multiples of qk the difference is 0(JC_1). 

EXAMPLE. 7/6 = 4/3 then J D Z = {-1,0,1}. We write t(a0) = t(a0, d0) for the 
unique choice of d0 in J. The matrix A is 

with r(A) = 1 + V2. We find that P(k) = Mk/3
k+] where M0 = 0, M, - 2 and Mk 

— 2Mk-\ + Mk-2 so the distribution P(k) is easily computed. 

Experiments with blocks of a0 in [2,100000] show close agreement with the 
theoretical distribution. The maximum of t(a0) in this range is f(13958) = 51. In a 
random sample of 100000 integers, the expected value of max t(a0) is about 56.02 so 
from this point of view, f(13958) is not unusually large. 

6. Conclusions. A single integer a0 with t(a0, d0) = o° would suffice to show that 
p/q is in E. Thus the results of section 5 do not really have much to say about this 
question except that it may be difficult to find such an a0. Indeed, it is hard to imagine 
how one would prove that t(a0, d0) = o° even if one were presented with the appropriate 
pair (a0, d0). In this vein, Conway [3] (see also [9]) has shown that some very similar 
iteration problems are recursively undecidable. 
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