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QUASI-MULTIPLIERS AND EMBEDDINGS 
OF HILBERT C*-BIMODULES 

LAWRENCE G. BROWN, JAMES A. MINGO AND NIEN-TSU SHEN 

ABSTRACT. This paper considers Hilbert C*-bimodules, a slight generalization of 
imprimitivity bimodules which were introduced by Rieffel [20]. Brown, Green, and 
Rieffel [7] showed that every imprimitivity bimodule X can be embedded into a cer­
tain C*-algebra L, called the linking algebra of X. We consider arbitrary embeddings 
of Hilbert C*-bimodules into C*-algebras; i.e. we describe the relative position of two 
arbitrary hereditary C*-algebras of a C*-algebra, in an analogy with Dixmier's descrip­
tion [10] of the relative position of two subspaces of a Hilbert space. 

The main result of this paper (Theorem 4.3) is taken from the doctoral disserta­
tion of the third author [22], although the proof here follows a different approach. In 
Section 1 we set out the definitions and basic properties (mostly folklore) of Hilbert 
C*-bimodules. In Section 2 we show how every quasi-multiplier gives rise to an em­
bedding of a bimodule. In Section 3 we show that C*(A*), the enveloping C*-algebra of 
the C*-algebraA with its product perturbed by a positive quasi-multiplier s: a*b — asb, 
is isomorphic to the closure ois1'2As1'1 (Proposition 3.1). Section 4 contains the main 
theorem (4.3), and in Section 5 we explain the analogy with the relative position of two 
subspaces of a Hilbert spaces and present some complements. 

1. Definitions and basic properties. Many of the definitions and results used in 
this section go back to Paschke [16] and Rieffel [20]. However we shall use the termi­
nology of Kasparov. Let us recall the notion of a Hilbert C*-module as given in Kasparov 
[14, §2]. 

DEFINITION 1.1. Let A be a C*-algebra and X a complex vector space and right A-
module with a sesqui-linear map (-|-)A '• X x X —• A which is conjugate linear in the first 
variable and linear in the second variable such that, for all £, rj E X, a £ A 

(i) (€IOA > o 

(ii) (É|OA = 0implies£ = 0 
(hi) (t\r,rA = (n\OA 
(iv) (£\ria)A = (£\ri)Aa 
(v) with the norm ||£|| = | | (£|£)A||5 > X is complete. 

Then X is a right Hilbert A-module. 

REMARK 1.2. In [14] Kasparov only considered right modules, so the object just 
defined was simply called a Hilbert A-module. We intend to consider both left and right 
modules, so we shall always indicate which it is we are considering. 
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EMBEDDINGS OFHILBERT C*-BIMODULES 1151 

DEFINITION 1.3. Let A be a C*-algebra and X a complex vector space and left A-
module with a sesqui-linear form A('\')'-X X X —• A which is linear in the first variable 
and conjugate linear in the second satisfying (i), (ii), (iii), and (v) of Definition 1 and 

(iv)' A K | T / ) = aA(Ç\ri). 

Then X is a left Hilbert A-module. 
There is an operation which converts right Hilbert A-modules into left Hilbert A-

modules and vice-versa. 

DEFINITION 1.4. Let X be a right Hilbert A-module. Let X* = {£* | £ G X}. We will 
make X* into a complex vector space as follows: 

(i) f + r/* = (£ + /?)* 
(ii) A • £* = (AO*> for C> 77* G X* and A G C. 

We give X* a left A-action and an A valued inner product: 

(iii) a • e = (£a*r 
(iv) A ( £ V ) = (£to)A. 
It is now easy to verify that X* is a left Hilbert A-module. To convert a left Hilbert 

A-module into a right Hilbert A-module we use (i) and (ii) to give X* a complex structure 
but define the action and inner product in the analgous way 

(iii)7 ?.a = (a*0* 
(iv/ « V ) A = A « | Î 7 ) . 

It is routine to verify that X** = X. 
Starting with a right Hilbert A-module X there are two C*-algebras acting as algebras 

of A-module endomorphisms of X [14, Definition 3 and Definition 4]. 

DEFINITION 1.5. Let X be a right Hilbert A-module and T a bounded linear operator 
on the Banach space X such that 

(i) T(Ça) = T(Oa Ma G A, and 
(ii) there exists a bounded operator S on X such that V£, 77 EX (T^\T])A = (£|ST7)A. 

Then T is an adjointable operator on X. It turns out that there can be at most one S 
satisfying (ii) and this unique S is called the adjoint of T and denoted T*. The set of all 
adjointable operators is denoted L{X). 

If we give L(X) the operator norm and the involution T'\—>T*, L(X) is a C*-algebra. 
Given £, 77 G X we may define an operator 6^ by 8^v(^) = £(T?|/Z)A. Proposition 2.9 of 
[20], an analogue of the Cauchy-Schwartz inequality implies that ||(TJ|/X)A|| <• IMI ||H|> 
and hence #£?7/ is bounded. 

DEFINITION 1.6. Let %{X) be the closure of the linear span of {0^ |£, 77 G X}. 
In [14, Lemma 3, Lemma 4, and Theorem 1] Kasparov shows that *KSX) is a closed 

two sided ideal in L(X) and UX) = Af(^C(X)). We will need two facts about %{X) 
(Proposition 1.7 and Proposition 1.10), which we now prove as we are unable to provide 
a reference. But first a bit of notation: if A\ and A<i are linear subspaces of a C*-algebra, 
let A1A2 be the linear span of the set of products a\d2 with a, G A,. Similarly we extend 
this to the case of three subspaces A \,Ai, andA3;AiA2A3 is the linear span of the set of 
products axCL^a^ with ai G A/. 
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PROPOSITION 1.7. Let Xbea right Hilbert B-module. Then 
(i) XB = X. 

W \\ha = MOB\\V(iex. 
PROOF. We have £ = l i m , ^ £(£|£M(£lOz? + rCxYl. This proves (i). 
To prove (ii) first notice that for £ E X 

U\\2 = I K t o l l < sup{||(€to)B|| | h\\ < i} • IICII < IICII2. 

Hence ||£|| = sup{||($|»j)fl|| | |M| < l}.Next 

l l%,f=sup{| |S(i î | / i ) i , | |2 | | |M| |<l} 

= sup{||0i|t,)B(€|Oi.(»?l/*)i»ll|lHI<l} 

= SUP{|(I/(€|0J|M)J|2 |NI<1} 

= lto(Éloill2. 

Hence | | » « | | 2 = | |{« |oJ | | 2 =J|(€|€)fl||
2. 

We can now present the main object of study. 

DEFINITION 1.8. Let A and B be C*-algebras and X a complex vector space and A-
5-bimodule. Suppose that we have sesqui-linear forms A(- | •) and (• | •)# so that X is both a 
left Hilbert A-module and a right Hilbert Z?-module and that the forms are related by the 
equation 

A(£|r/)/x = £(TJ|/Z)* 

for all £, 77, \i E X. Then X is a Hilbert A-B-bimodule. 

REMARK 1.9. It may appear from the definition that X has two norms on it, one from 
each inner product. We shall show that | |A(£ |0 | | == Il(£l0fl|| f° r a ^ £ £ X> S 0 t n e t w o 

ways of norming X agree. To do this let us introduce some notation. If X is a Hilbert 
A-module (either right or left) let IA be the closed linear span of {A(£|^/) | £, T? £ X} (here 
assuming that X is a left A-module). Note that IA is always a closed two sided ideal of A 
and that a Hilbert A-B-bimodule is by restriction a Hilbert /A-/^-bimodule. 

Recall that IA has an approximate identity {ua} where each wa is a finite sum 
£/Li A^]f\f]f) with 77" in X. In fact as indicated in Brown [4, Theorem 2.1] this fol­
lows from Dixmier's argument [11, 1.7.2]: given a = {£i,. . . ,£n} ^ X. Let r/f = 
(n~l + Ef=i A(&I&)) & and ua = £"=i A(Ï7?I*7?)- W } is an approximate identity for 
I A where a ranges over the finite subsets of X. 

An immediate consequence of this is that if a E IA and a£ = 0 for all £ in X, then 
a = 0. Secondly, if X is a Hilbert A-5-bimodule and a E A, then for all £,77, ^ G X 
£(ari\ii)B = A ( £ M ) M = A(4|T?KM = C(^|«*M)B. Hence (ar/|/x)5 = (Tj|fl*/z)*, for all 
« E A and all 77, // EX. 

The notion of a Hilbert A-5-bimodule is a generalization of the notion of an A-B-
imprimitivity bimodule as introduced by Rieffel [20, Definition 6.10]. Every A-i?-im-
primitivity bimodule is a Hilbert A-5-bimodule but a Hilbert A-5-bimodule is an A-B-
imprimitivity bimodule only when A = I A and IB = B. 
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PROPOSITION 1.10. Let X be a Hilbert A-B-module. Then %{X) ^ IA and %{X*) ^ 

h. 

PROOF. Recall that for ^ a , for all \x e X 0^Ox) = ^(I\^)B = A(£|T?)M- Hence 
left multiplication by A(£|Ï?) *S m e operator 6^v on X. Let us denote this map by Xa: i.e. 
Aa(0 = aÇ for a € I A £ 6 X. We need to show that À is an isomorphism. For this it 
suffices to show that À is isometric as A(E/A(6lr?0) = £ % ^ and so will take a dense 
set into a dense set. Now it is easy to check that À is bounded; i.e., \\\a\\ < IMI- To show 
that À is isometric we shall show that it has trivial kernel. 

Now suppose a € IA and Xa — 0. Let ua be the approximate identity constructed 
above. Then aua = E/AC^T/-* \r]f) = 0 implies a = 0 since ua is an approximate 
identity. Hence À is an isomophism. Thus IA — 9(£X). As X* is a Hilbert Z?-A-bimodule, 
we have IB ~ 3C(X*). 

COROLLARY 1.11. IfX is a Hilbert A-B-bimodule, then | |A(£ |0 | | = \\(^\OB\\ far all 
Hex. 

PROOF. 

IkClOll = l|fl«ll (by Proposition 1.10) 

= 11(60*11 (by Proposition 1.7). 

• 
Let us conclude this section by recalling some facts about hereditary C*-algebras from 

Brown [4, §1]. 

DEFINITION 1.12. Let A be a C*-algebra and B a C*-subalgebra. B is a hereditary 
subalgebra if whenever b E B,a EA, and 0 < a < b, we have that a G B. Equivalently 
B is hereditary if BAB Ç B (one implication is clear, the other can be obtained, for 
example, from Pedersen [17, Proposition 1.4.5]). 

A hereditary subalgebra B of A is called full ifB is not contained in any proper closed 
two sided ideal of A, i.e. ABA = A. 

If p is a projection in the multiplier algebra of A then B = pAp is a hereditary subal­
gebra of A, and/? is called full if pAp is full; i.e. ApA = A (see Brown [4, Lemma 1.1]). 

If X is any subset of a C*-algebra A then we define her(X) to be the intersection of all 
hereditary C*-subalgebras containing X. IfB is a C*-subalgebra of A then her(£) = BAB. 

PROPOSITION 1.13. Let A be a C'-algebra and {Ba} a family of hereditary C*-
subalgebras. Suppose her(|Ja Ba) — A. Then for every non-trivial closed two sided ideal 
I of A, inBa ^ {0}far at least one a. 

PROOF. Let B be the C*-algebra generated by \jaBa.
 T n e n her(£) = BAB = A. 

Let / be a closed two sided ideal in A. Suppose IDBa = {0}, Va. Since Ba is hered­
itary BJBa Ç / n Ba = {0}. Thus IBa = {0}, Va. Hence IB = {0}. Therefore 
/ = BABIBAB = {0}. 
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2. Embeddings of Hilbert C*-bimodules and quasi-multipliers. Let us begin by 
recalling the notion of a linking algebra from Brown, Green, and Rieffel [7]. Supposed 
and B are strongly Morita equivalent C*-algebras; i.e. there is a Hilbert A-#-bimodule X, 
such that I A — A and Is = B. Form the right Hilbert ^-module X(&B (as in Kasparov [14. 

Definition 2]) and let L = 9£(X © B). In M(L) there are two projections p = 

and q = ( ^ ^ J. Now pLp = ^C(X) = A, qhq = %{B) = B, pLq = 3C(£;X) = X 

(via 0^b y—• £/?*), and qLp = %iX,B) = X* (via 6b^ i—• /?£*)• So we may write L = 

. L is called the linking algebra of X. 

Conversely starting with a C*-algebra C and projections /?, g E M(Q with /? + q = 1 
we may let A = pCp, X = pCq, and B = qCq. In this way we obtain hereditary C*-
subalgebras A and B, and a Hilbert A-i?-bimodule X with inner products A(PC\ q\pc2q) = 
pc\qc^p and (pc\q\pc2q)B — qc\pc2q. If in addition/? and q are full then X*X = i? and 
XX* = A and C is the linking algebra of the A -5-imprimitivity bimodule X. Even when 
p and q are not full we shall say that C is the linking algebra of the Hilbert A-Z?-bimodule 
X. 

We can obtain a more general situation as follows. Suppose A and B are hereditary 
subalgebrasof a C*-algebra Cand C = her(AU£). LetX = ÂCB, then X is a Hilbert A-B-
bimodule and we say (A, X, B) is embedded into C.The first problem we wish to consider 
is: given a Hilbert A-5-bimodule X, is there an embedding of (A,X,B) into some C*-
algebra C? Secondly, given two embeddings, one into C\ and the other into C2 say, when 
are they equivalent in that there is a *-isomorphism of C\ to C2 takes one to another? 

A small adjustment to the argument of Brown, Green, and Rieffel shows that at least 
one embedding, the linking algebra, always exists. To each embedding we associate a 
quasi-multiplier and with these, one can describe the embeddings. 

DEFINITION 2.1. Let X be a Hilbert A-£-bimodule. An embedding f = (/AJXJB) of 
(A,X,£) into a C*-algebra C is a triple (fA,fxJB) of isometries of Banach spaces such 
that 

(i) /A: A —• C and fs'.B —-• C are *-homomorphisms such that/4(A) andfs(B) are 
hereditary subalgebras of C whose union hereditarily generates C; i.e., [A(A) U 
fB(B)]C\fA(A)UfB(B)] is dense in C. 

(ii) / , ( ! ) =fA(A)CfB(B) 
(iii) f:(A,X,B) —• (/A(A),/X(X),/K£)) is an isomorphism of Hilbert C*-bimodules 

( « ) / A ( U ) A ( O A ( » ) = A K » ) 
(/?)/x(0*/x(r/)=^((e|^) 

( 7 ) A ( 0 / X ( Î / ) * = / A ( A ( € | T / ) ) 

Given two embeddings of (A, X, tf),/1 : (A, X, 5) -> C\, and/2: (A, X, B) —> C2 we say 
that/1 is equivalent t o / 2 if there is an isomorphism 8: C\ —> C2 such that 

https://doi.org/10.4153/CJM-1994-065-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-065-5


EMBEDDINGS OF HILBERT C*-BIMODULES 1155 

(b) eofi=j$,!md 
(c) OofB=fl 

There is always at least one embedding of a Hilbert A-J9-bimodule. As this generalizes 
the construction of Brown, Green, and Rieffel [7] we shall call it the linking algebra of 
the bimodule. 

DEFINITION 2.2. Let X be a Hilbert A-£-bimodule. Let 

{(; 9 aeA,beB,^r! EX 

L has the linear structure coming from A, B, X, and X*. L has the same product as in [7] 
viz 

fax £Afa2 M = f a\a2 + A(€i\m) fliÊ2 + £i*2 "| 
W\ bJ\rl*2 b2j [ V\a2+bxvil (r)x\£2)B + b\b2)' 

Also we give L an involution 

fa tY_(a* »7 1 
W b) [C b*) 

L now becomes an involutive algebra. We give L a norm as follows. As before X(&B is a 
right Hilbert 5-module and A©X* is a right Hilbert A-module. We get two representations 
of L. TTA: L -+ UA © X*) and TTB: L - • UX © B). 

(a £\ (aA (aa\ + A(£\T)\)\ 
AW * J U î J V rfax+brfi ) 

nBW b)[bx) {(Tlltxh + bbx)-

In the next proposition we shall show that L is a C*-algebra. We call L the linking algebra 
ofX. 

PROPOSITION 2.3. Fore 6 L let \\c\\ = max{||7TA(c)||, ||7rfi(c)||}. Then 

«)fi>rc=[°. $ EL, 

max{||a||, ||£||, N | , ||*||} < ||c|| < 4max{||a||, ||fi||, |M|, ||6||}. 

(ii) fA(a) = f * Q J, /x(0 = f 0 Q J, /*(&) = f 0 b J <fe/we aw embedding ofX 

into the C*-algebra L. 

PROOF, (i) It is easy to check that | |a| | , | |£| |< KA U* b) . We shall show that 

7TA U* b) < 4 m a x { | M | , | | e | M | , » 

Combining this with the analogous statement for TTB we get both of the inequalities of (i). 
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For 

TTA 

eA®x*, (r) \\â*â + A so 

= \\[aa+A(Ç\ij)]*[aa + A(Ç\fj)]+A(Ti*a + brj*\ri*â + bfj*) 

<NII|5|| + ||€IINI + NINI + IMIHHI 
<4max{|H,||Ê||,|h||,|H|}||â*a + A( 

This completes the proof of (i). 

(ii) As each of ||7TA(-)||
 a nd |KB(0| |

 a r e C*-semi-norms on L, || • || is a C*-semi-norm 
on L. But by (i) it is a norm, and L is complete. Thus L is a C*-algebra with this norm. 
Moreover^4 andfB are injective. Since they are *-homomorphisms they are isometric. 
Thus 

\\fx(o\\ = immola = M^OB)^ 

= 11(̂ )4* = lie 
So all of the maps are isometric. It is easy to check that condition (iii) of Définition 2.1 
is satisfied. By Proposition 1.7(i) 

fA(A)LfB(B) = span {(: t ) aeA^ex^beB 

is dense infx(X), so condition (ii) of Definition 2.1 holds. 

Now let/7 = 1 and q = ; p and q are projections in M(L) andfA(A) = 

pLp and fB(B) = qLq so these algebras are hereditary. If {ea} is an approximate identity 
for L, then {peap + geag} Ç fA(A) +fB(B) is also an approximate identity for L. Hence 
\fA(A)UfB(B)]L\fA(A)UfB(B)] is dense in L. This proves that condition (i) of Definition 2.1 
holds and that/ = (fA,fxM is an embedding. • 

Let us recall from Pedersen [17, 3.12.1] the notion of a quasi-multiplier. Let A be a 
C*-algebra and A" its second dual as a Banach space. By definition QM(A) = {t E A" \ 

( A" X"\ 
atb E A, ^a,b E A}. From Proposition 2.3 (i) we see that L" = „* „ . So 

may identify X" with pL"q. 
we 

LEMMA 2.4. (i) Suppose t E X" and atb E XVa E A, b E B. Then Vf, r) E X, 
rft E LM(B), fri E RM(B), trf E RM(A), t]t* E LM(A) and tftÇ* E X*. 

(ii) I ( [J * J f 6 X" and atb EXVa E Ayb E B\ = {psq \ s E QM(L)}. a 

PROOF, (i) By Proposition 1.7 (i) AXB is dense in X. If r/ E AXB say r\ = a£b 
and 5 E B then (r/*0^ = b*£)*a*tb = b*(^\a*tb)B E B. By taking limits we see that 
X*t Ç LM(B). Similarly fX C RM(B), tX* E RM(A) and Xf E LM(A). If f i - a^ i e i 
£2 = cnrj2b2 then f*^ = b\r\\a\tb\T)\a*2 = b\(r)\\a\tb*2)BT]\a\ E X*. 
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(ii) It is clear thatpQM(L)q C | ( ^ M L e X"9atb E X Va E A, è 6 fil. Suppose 

r € X" and atb E XVa E A,b E B. Then by (i) and straight forward computation 

(o i)^M(L). 
DEFINITION 2.5. Let X be a Hilbert A-£-bimodule and L its linking algebra. 

<2M(X) = {t E X" \ atb E XVa E AVb E B} is the set of quasi-multipliers of X. 
By Lemma 2.4 QM(X) = pQM(L)q. 

REMARK 2.6. Now let us demonstrate how a quasi-multiplier of a Hilbert A-B-
module X gives an embedding of (A, X, 5). 

Supposer EQM(X) and ||;|| < 1. L e t s = ^ Q = l + ( ° Q ) + (o o) ' G 

QM(L), where L is the linking algebra of X. Let L, = sxl2Lsxl2. Lt is a closed self-adjoint 
subspaceof L"; but if ci,C2 G L, (s^cis1*) • (s^s2") = ^ ( c ^ c ^ s 5 E s^Ls^. So Lt is a 
C*-algebra. Next we shall construct an embedding ft: (A, X, B) —• Lf as follows: 

PROPOSITION 2.7. Suppose t E QM(X), with \\t\\ < 1, and s = ( * )• 7%en 

f = (^A'/x'/i) ^ a n embedding of{A,X,B) into Lt = sxl2Lsxl2 

PROOF. TO prove that each oifAifx,fB is isometric we shall show that/4 and/# are 
faithful *-homomorphisms of A and B into Lt respectively and/^ is a morphism of Hilbert 
C*-bimodules i.e. 

mTfx(r1)=f^\r1)B) and 

JÎŒtôO/)* =)S(A«|Î?))-

The easily checked equations 

(ai 0\ (a2 (A (axai 0) (0 ^ (0 vY = ( A^) 0\ 

[o oj vo o) { o oj 1,0 oj vo o; v o oj 
(0 0] (0 0 ^ ( 0 0 ^ fa (A (0 n (0 aO 
[0 bx)

S[0 b2) [0 bib) [0 oJHo Oj 1,0 Oj 
fo iYJo n)_(o o w o q f o o\ fo ^ 
to oj s{o oj [o (^h) [O ojs\o b) Vo oJ 

show that j ^ and/# are *-homomorphisms and that/^ is a morphism of Hilbert C*-
bimodules. To show that/j (and similarly/^) is faithful observe that if 

«"(''Co S H M » P F ( t 2) 52 
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then 
_ ( a*a 0^ _( a*a a*at \ 

V~S( 0 0JS~ (t*a*a fa*at); 

so a = 0. Thus fA,fx>fB are isometric. All that is left to check is i\\dXfA(A) and^(2?) are 
hereditary subalgebras of Lu and together hereditarily generate Lt. 

To prove that fA(A) and fB(B) are hereditary note that 

fA(A) = sipLpsi 

and 

fB(B) = slqLqsi; 

i.e., these sets are closed. Now 

s^pLps'1 - sïLs2 • sïpLps1 Ç s^pLpsî • s^LLs^ • s^pLps2 

Ç sîp(LpsL)-(LspL)psî 

ÇsïpLpsi =fA(A). 

SofA(A) is hereditary; similarly fB(B) is hereditary. 
In order to show that fA(A) UfB(B) hereditarily generates Lt it is enough to show that 

the hereditary subalgebra generated by fA(A)UfB(B) contains s^pLqsî. For then by taking 
adjoints it will also contain sïqLpsï, and it already contains sïpLpsî and sïqLqs* ; since 
the union of these four sets is total in Lt we shall be done. 

Now 
fA{A)fx{X)fB(B) = sxl2pLpsxl2 • sxl2pLqsxl2 - sxl2qLqsxl2 

= sxl2pLp-pLq'qLq-sxl2, 

and the closure of the latter contains/^ (X) = sxl2pLqsxl2. Thusf^(A)UfB(B) hereditarily 
generates Lt. 

Finally we must check condition (ii) of Definition 2.1. Now 

fx(X) = sîpLqsî = s^(pLpLqLq)s'1 

= sî (pLpspLqsqLq)sï 

sîpLpsï - sipLqsï - s2qLqsî 

= fA(A) -fx(X) >fB(B) CfiMLfâB) 

= sïpLpsî - sîLsï - sïqLqsï 

Ç S2p(LpsL) - (LsqL)qsï C s2pLqs2 

This concludes the proof that we have an embedding. 
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3. The C*-algebra generated by a quasi-multiplier. Given s E QM(A)+ we may 
define a new product on A by a\ • a^ = a\sa^. In this section we consider the C*-algebra 
so generated. 

PROPOSITION 3.1. Let Abe a C*'-algebra and s a positive quasi-muliplier of A. Let 
A* equal A as a complex vector space; but give A9 a new (but equivalent) norm and a 
new product: for a,b E A* 

(i) a^b = asb 
(ii) \\a\\s = \\s\\ \\a\\. 

Give A9 the involution coming from A. Then A* is an involutive Banach algebra and 
its enveloping C*-algebra is isomorphic to sxl2Asxl2 Ç A" via the canonical extension 
of the map 

ay—>s^as^\A —ts^As*. 

PROOF. (We are grateful to Man-Duen Choi who simplified our original proof of this 
proposition.) 

As || «Us is equivalent to ||-|| it is clear that A* is a Banach space. Fora, b E A*||<2»£||5 = 
\\s\\ \\asb\\ < IMUHIs- Also \\a*\\s = \\a\\s. So A* is an involutive Banach algebra. 

Recall that we construct C*(Am) the enveloping C*-algebra of A* as follows. For a E 
A* let ||a||* = sup(||7r(a)|| I 7r is a *-homomorphism of A* into a C*-algebra}. This 
supremum is finite as ||7r(a)|| < \\a\\s, Va E A (see Dixmier [11, Proposition 1.3.7]). 
|| • ||* is not necessarily a norm on A*, however we may mod out by the elements of 
length zero and complete to form C*(A*). 

We then see that the map a H-• sxl2asxl2 extends to surjection C*(A') —• sxl2Asxl2. 
To prove that this map is an isomorphism we must show that for every *-homomorphism 
7r: A* —> B, for some C*-algebra£, ||7r(a)|| < \\s~^as^ ||, Ma E A*. 

It suffices to check this for a = a*. Now 

||7r(a)||n = ||7r(an)|| = ||7r(tf.sa • • • asa)\\ < \\asa • • • asa\\s 

= \\s\\ \\asa- -asa\\ 

= \\s\\ \\ask^ashn~2s^a\\ < \\s\\ | | a ^ | | 2 | | s W | | n - 2 . 

Thus 
• • •• II II 1 II 1 I I 2 I I 1 I n n—2 , , 

IK(fl)|| < ||5||«||fl52||«||^fllS2||T-, V/l. 

If 1152^21| = 0 then ||7r(a)|| = 0 and we are done. If H^as* || ^ 0 then \\as^ || ^ 0 and 
so 

||7r(fl)|| < lim ll^llnll^^ll^p^^^IlT2 = \\sias$||. 
n—KX> 

PROPOSITION 3.2. Let q be the range projection of the quasi-multiplier s. The en­
veloping von Neumann algebra of (sxl2Asxl2)~ is qA"qy where A" is the enveloping 
von Neumann algebra of A. 

PROOF. By elementary spectral theory qAnq is the weak closure in A" of sxl2Asxl2. 
One must show that every representation ir of (sxl2Asxl2)~ extends to a normal repre­
sentation of qA"q. 
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So let ix be a non-degenerate representation of {sxl2Asxl2) on a Hilbert space//. As in 
the proof of the previous proposition let n9: A —• B(H) be given by 7T\a) = ir(sl/2as]/2). 
So the extension we seek, let's call it ft, will have to satisfy ft(s)xl2ft(qaq)ft{s)xl2 = 
ix(sxl2asxl2) = 7r#(a), for am A. We shall use this equation to define ft. 

Note that n9 (a\)n9 (a2) = n9(a\sa2), for all a\, ai 6 A. nm is a completely positive 
normal map and thus extends to a completely positive normal map i\9'.A" —• £(//) (see 
for example [13, 10.1.13]). By normality, this extension of 7r# will share the same prop­
erty. Let S = 7T*(1). Note that 7T9(q)'K9(a) = n9(qsa) = n9(sa) = 7T9(l)n9(a), so by the 
non-degeneracy of 7r, nm(q) = TT*(1). Alsoir*(qLa) = K9(aqL) = 0 for all a in A". Again 
by the non-degeneracy of TT we have that S is one-to-one and has dense range. 

Now by [8, Lemma 2.2] there is a completely positive map ft:A,f —• £(//) such that 
Sxl2ft(a)Sxl2 = 7r*(fl), for all a in A". By the one-to-oneness of 5 there is only one such 
map it satisfying the equation. Moreover ft is automatically normal: for if £, 77 € H then 
<3 1—• (^(a)^1/2^^1/2!/) = (7r*(û()̂ |ry) is normal and since vectors of the form S 1 / ^ are 
dense in //, we have that ft is normal. As with 7r#, 7f is supported on the corner gA"g. 
What remains to show is that ft is a homomorphism extending n. 

Since 51/2TT(1)51/2 = TT#(1) = 5, we have that TT(1) = 1. Also, 

Sxl2ît{s)Sxl2 = TT\S) = S2; 

thus 7f(̂ ) = 61. Recalling the property TC*(a\)7Tm(a2) = iT*(ci\sa2), for all a\, ai G A", we 
have ft{a\sai) — ft{a\)ft(s)ft{a2). Hence ft(as) = ft(a)ft(s). Thus 

ft(a\sna2) = it(a\sn~x)ft(s)ft(a2) = • • • = 7f(«i)7f(̂ )n7f(«2). 

So by writing ^ / " a s a limit of polynomials we have that 

7t(als
x/na2) = ft(ax)ft(s)xlnft{a2). 

Now as n tends to infinity, sxlna tends to a for a in gA"g and TTO)1/" tends to 1. Hence 
ft(a\ai) = ft(a\)ft(a2) and ft is a homomorphism as desired. For a in A we have 
n(sxl2asxl2) = 7T9(a) = Sxi2ft(a)Sxl2 = ft(sxl2asxl2); thus ft extends TT. 

COROLLARY 3.3. Let s G <2M(A)+ £>£ a positive quasi-multiplier and q its support 
projection. Then the map A* —• sx'2Asx'2 is surjective, i.e. sx'2Asx'2 is closed, if and 
only if the spectrum of s omits an interval (0, e)for some e > 0. 

PROOF. Consider the map a \—• sxl2asxl2: A —• sl/2As1/2. It has closed range if and 
—7 Tff 

only if the second adjoint map in the category of Banach spaces: A" —+ sxl2Asxl2 = 
qA"q has closed range. However it is well known {cf. [3, Lemma III.2.9]) that sxl2A"sxl2 

is closed if and only if there is e > 0 such that (0, e) avoids the spectrum of s. 

REMARK 3.4. It was shown in [6,2.44.b] that if the spectrum of s omits (0, e) the the 
kernel projection of s is open. 
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PROPOSITION 3.5. Let s E QM(A)+ be a positive quasi-multiplier and r the ker­
nel projection of s (i.e. the complement of the range projection). Then the map a i—• 
sli2as1'2'. A* —• sx'2Asx'2 is one-to-one if and only if there are no non-zero open sub-
projections of r. 

PROOF. If r\ were an open sub-projection of r then r\A"r\ DA would be a hereditary 
subalgebra of A in the kernel of a \—* sxl2asxl2. So one direction is clear. 

Suppose now that 0 / A E A and sxl2asxl2 = 0. Recall that the range projection 
of an element of A is open. So if a*sa = 0 then sx/2a = 0 and thus the range pro­
jection of a would be a non-zero open sub-projection of r. If a*sa ^ 0 then the fact 
that sxl2{a*sa)sxl2 = 0 implies that (a*sa)x/2sx/2 = 0 and thus the range projection of 
(a*sa)1/2 is a non-zero open sub-projection of r. 

4. The classification of embeddings. Suppose X is a Hilbert A-5-bimodule with 
linking algebra L. We have shown that for t in QM(X) with ||;|| < 1 there is an em­
bedding/ of (A,X,B) into Lt. When ( = 0we get the original embedding of (A,X,B) 
into its linking algebra. Our main result is that all embeddings occur this way: given an 
embedding we can find a unique quasi-multiplier, t, such that the original embedding is 
equivalent tof: (A, X, B)—*Lt. 

LEMMA 4.1. (i) Let A be a C-algebra and s in QM(A); then \\s\\ — sup{||asfr|| 

fl,*6A,||fl|| < l,||ft|| < l } . 
(ii) Suppose A is a C*-algebra and {sa} is a bounded net in A such that for all a,b E 

A, {asab} is a norm convergent net in A. Then there is a unique s in QM(A) such that 
lima asab = asb (in norm) for all a, b in A. 

(Hi) Let X be a Hilbert A-B-bimodule and t G QM(X), then \\t\\ = supl\\atb\\ I a E 

A:beB;\\al\\b\\<l}. 
(iv) Suppose X is a Hilbert A-B-bimodule and {ta} Ç X is a bounded net such that 

Ma G A, b € B {atab} is a norm convergent net. Then there is a unique t in QM(X) such 
that {atab} converges in norm to atb \fa EA,Wb£ B. 

PROOF, (i) Clearly ||s|| > sup{|)û^fe|| | ||a||, \\b\\ < l} . Let {ea} Ç A be an approx­
imate identity. Then {ea} converges to 1 s(A", A') (see Sakai [21, Definition 1.8.6]). So 
easea —> s, s(A",Af) ([21, Proposition 1.8.12]). Thus ||s|| < supa ||easea|| < 
sup{||£wfc|| | \\a\\,\\b\\ < l } . 

(ii) Let s be a a(A",Ar) cluster point of {sa}. Then for a, b in A, {asab} is norm conver­
gent, but has a cr(A", A') convergent subnet converging to asb. Hence {asab} converges 
to asb in norm, so asb E A and thus s E QM(A). Uniqueness follows from (i). 

The proofs of (iii) and (iv) are analogous to (i) and (ii). 

PROPOSITION 4.2 (cf. AKEMANN AND PEDERSEN [1, PROPOSITION 4.2]). Let X be a 
Hilbert A-B-bimodule andf: (A,X,B) —• C an embedding. Then there is a unique t in 
QM(X) such thatfxiatb) = fA(a)fB(b) Va E A, b E B. Moreover for such a t we have 
\\t\\ < 1. 
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PROOF. By property (ii) of Définition 2.1 fA(A)fB(B) C fx(X). So choose {ea} C A, 
{//?} S # approximate identities. Then {/J"1 (/À(£a)/à(//0)} is a bounded net in X such 
that for a in A and & in B 

{afxl{fA(ea)fB(f0))b} = {fxl{fA(aea)fB(fpb))} 

is norm convergent tofx~l (fA(a)fB(bf) • So by Lemma 4.1 (iv) there is a unique t in QM(X) 
such that {^/^(^(^^( / /O)^} converges in norm to atb. Hence {fA(aea)fB(fpb)} con­
verges in norm to fx{atb). But it also converges to fA(a)fB(b). Hence fxiatb) = fA(a)fB(b) 
for all a € A, b £ B. The uniqueness of t follows from Lemma 4.1 (iv). Since \\atb\\ = 
\\fx(atb)\\ = \\fA(a)fB(b)\\ < \\a\\ \\b\\, we see that \\t\\ < 1. . 

We are now in a position to formulate the main theorem. We have seen in Proposi­
tion 2.7 that given / in QM(X) with ||; || < 1 we may construct an embedding/' such that 
fA{a)fB{b) = fx(atb). Conversely given any embedding we have just shown that there 
is a unique quasi-multiplier t in QM(X) with ||r|| < 1 such that fx(atb) = fA{a)fB{b). 
Our main theorem states that the construction of Proposition 2.7 exhausts all possible 
embeddings and these two constructions are inverses of each other. 

THEOREM 4.3. Letf: (A, X, B) —• C be an embedding of the Hilbert A-B-bimodule 
X into C. Let t in QM(X) be the corresponding quasi-multiplier (constructed in Propo­
sition 4.2). Then there is an isomorphism (p:Lt —• C such that we have a commutative 
diagram 

(A,X,B) -£-+ L, 

C 

PROOF. Let / = (fAjxJBÏ (A,X,B) —> C be an embedding and let t in QM(X) be 
the quasi-multiplier associated to this embedding as in Proposition 4.2. This means that 
||;|| < 1 and fA(a)fB(b) = fx(atb) Va EA,b E B. This equation and the fact that AXB is 
dense in X can also be used to show that 

fA(a)fx(0* =fA(atO 

(*) fB(b)fx(0=fB(bt*0 

A ( 0 / X ( I ? ) = / X ( ^ * Î 7 ) . 

Let us denote the embedding/: (A,X,B) —• Lt = sxl2Lsxl2 by (ft,/*,/^) (reca11 t h a t 

s = * ). If we are to have that <p of =f then there is only one form ip can take: 

(f(s2 t ^ \ S2) = fA(a) + /x(0 +fx(T]T +fB(b). The main problem is to show that 

such a if exists. 

To accomplis 

fx(fi)*+fB(b). Recall thatL* is the involutive Banach algebra obtained by giving L the new 

To accomplish this we define (p*:Lm —> C by ipm [ [ # ^ ] ) = fA(à) + fx(0 + 
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product l\ • £2 = £\sli and the new norm \l\s = \\s\\ \\£\\ (as in Proposition 3.1). Now 
</?• is clearly well-defined, linear, and *-preserving. To show that </?* is a homomorphism; 

*•(;; t'M* D=<{* s)0 OC-1))-
we must check the equality of the sixteen terms on the left hand side with the sixteen 
terms on the right hand side. Using the relations (*) with the relations coming from the 
fact that/ is a morphism of Hilbert C*-bimodules it is a routine computation to verify 
that (/?* is multiplicative. 

Let Rep(L#) be the set of *-homomorphisms of L* into some C*-algebra. Such *-
homomorphisms are automatically norm decreasing (see Dixmier [11,1.3.7]). So ||JC||* = 
sup{||7r(jc)|| | 7T E Rep(L*)} < \\x\\s. Let/ = [x | ||JC||* = 0}. Then || • ||* is a norm 
on the pre-C*-algebra L*/I and its completion is C*(Lm), the enveloping C*-algebra of 
LV In Proposition 3.1 we showed that ||£||* = Ĥ ^ £^21| for t E L*. So if [£] denotes 
the class of I in L* jl then s^ls? \—* [£] is an isometric *-isomorphism of pre-C*-
algebras from s^Ls^ to U jl. As (p* E Rep(L*), we have ip*(I) = {0}; so ip* de­
scends to a *-homomorphism of Lm/I to C. Now sxl2£sxl2 1—» [I] \—> </?*(£) is clearly 

a well defined *-homomorphism: sxl2Lsxl2 —• C, which sends sxl2\ * ^ \sxl2 to 

</?* I * h) = fA^ +fx(& +fxOl)* +fB(b)- This is exactly the map ip we have been 

seeking; i.e. (p sxl2 * ^ s1/2 = </> [ * H . A s noted above (pof = / . So now 

we must show that </? is one-to-one and onto. 
By Proposition 1.13 ker((/?), if non-zero, must intersect either 

52 U 0J5 2 or s2[o B)SI-

But (/? restricted to 52 52 is/A which is one-to-one. So ker(</?) does not meet 

1M en 1 , , r 1 ro en 1 
52 I p 2 , and the same argument applies to 52 52. 

To show that </? is onto we must show that im(^), the image of ip, is dense. As im(</?) 
contains/\(A) and fB(B) it will be enough to show that im((/?) is hereditary (see Defini­
tion 2.1 (i)). To show that im(ip) is hereditary it will suffice to show that for the subal-

gebra of C, C0 := y [si [B£*A ^ ] ^ ] = /A(A) +fx(AXB) +fx(BTA) +fB{B\ 

CQCCQ Ç Co, as CQ is dense in im((/?). 
There are sixteen terms in CbCCo- In each case C appears in one of the four forms: 

fA(A)CfA(A) 

fB(B)CfB(B) 

fA(A)CfB(B) 

fB(B)CfA(A). 
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The first two are contained in fA(A) and fB(B) respectively SLS/A(A) andfs(B) are assumed 
to be hereditary. The second two are contained infx(X) and^(X*) respectively by Defi­
nition 2.1(ii). Hence im((p) is hereditary and thus ip is an isomorphism. 

5. Concluding Remarks: the relative position of two hereditary subalgebras. 
Let X be a Hilbert A-Z?-bimodule. In Section 2 we showed that to every quasi-multiplier 
t of X with ||r|| < 1 one could associate as C*-algebra, Lh and an embedding of (A, X, B) 
into Lt. In Section 4 we showed that, up to isomorphism, every embedding was of this 
form for an appropriate quasi-multiplier. We now want to consider what happens to this 
pairing under various equivalence relations. Let us begin by making some definitions. 

> A triple (A, C,B) of C*-algebras is a hereditary triple if A and B are hereditary 
subalgebras of C and C — her(A U B). 

t> Two triples (A\,C\,B\) and (A2, C2, B2) are isomorphic if there is an isomorphism 
1?: Cx i-> C2 such that i?(Ai) = A2 and i?(#i) = B2. 

O Given a hereditary triple (A,C,B), Xc = (ACB)~ is the Hilbert A-£-bimodule 
associated to C. 

t> For X\ a Hilbert Ai-#i-bimodule and^2 a Hilbert A2-#2-bimodule, (A\,X\, B\) 
is isomorphic to (A2,X2,B2) if there is a triple of isomorphisms (#A,#X, I?#), 

^A:A! 1—• A2, tf5:£i «-• £2, and $X\XX H-> X2, such that $A(a)MO$B(b) = 
ûx(a£,b), and fix preserves the inner products. 

> One can see that (A\,X\,B\) ~ (A2,X2,B2) if and only if there is an isomor­

phism of linking algebras $:Li = I ) 1—• L2 = v* „ such that 
1*1 B\J \X2 B2J 

Vo 0) {0 0)' 
D> Aut(A, X, B) is the set of automophisms of (A, X, B). 

We want to consider embeddings of a pair of C*-algebras (A, J5) into a third C which 
produce a hereditary triple. By an embedding we mean a pair (/A./B) of monomorphisms 
from A and Z? respectively into C such that (&(A), C,/#(2?)) is a hereditary triple. An 
embedding of (A,JB) always produces a Hilbert A-5-bimodule: Xf = (/4(A)Ç/#(i?)j 
which is a Hilbert^(A)-/^(J6)-bimobule, and then we obtain a A-5-bimodule by pulling 
back the actions and inner products via/. 

Now fix a pair of C*-algebras A and B and a Hilbert A-Z?-bimodule X. Let A%B be the 
set of hereditary triples (Ai, Ci,#i) such that (AI,(AICI2?I)~,2?I) ~ (A,X,£). 

THEOREM 5.1. Two elements, (A\,C\,B\) and (A2, C2,B2), of A%B are isomorphic 
if and only is there is # in Aut(A,X,B) such that #"(fi) = t2 where t\ and t2 are the 
quasi-multiplier s corresponding to the two embeddings of (A, X, B). 

PROOF. We have 
(AuXuBi) Ç Cx 

(A,X,B) J> 

(A2,X2,B2) Ç C2 
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sof2(at2b) =f2(a)f2(b) = #0{fi(a)f2(bj) = $Q{fx(atxb)). So pulling tf0 back (via/i and 
f2) to an automorphism # of (A, X, B) we have #(<2*ib) = ïï(a)t2'd(b), hence #"(/i ) = t2. 

Conversely given i? in Aut(A,X,Z?) with i?"0i) = t2 we get an isomorphism of L*1 

onto L*2 and hence of Lh onto L,2. By Theorem 4.3 C\ ~ Lh and C2 ^ L,2, hence 

(Ai,Ci,£i)-(A2 ,C2 ,fl2). • 
Consider now a second equivalence relation on embeddings of Hilbert A-B-

bimodules. We shall say that two embeddings/1 : (A, X, B) —> C\ and/2: (A, X, B) —> C2 

are weakly equivalent if they satisfy the two conditions (a) and (c) of Définition 2.1 that 
is 

(a) 0oXj=/A
2,and 

(c) OofB=fl 
This is exactly the equivalence relation obtained if we consider embeddings of a pair 
(A, 5) instead of a triple (A, X, B) and fix the isomorphism type of X. Reasoning just like 
that in Theorem 5.1 leads to a simular result with Aut(A, X, B) replaced by Aut(X) = {9 6 
Aut(A,X, B) I 9\A = id\ and 9\B = wfe}. It is easy to see that Aut(X)is unaffected if we 
replace A and B by /A and /#, thus obtaining an imprimitivity bimodule. Then Section 3 
of [7] implies that Aut(X) can be identified with QU(JA) the set of unitary elements in the 
centre of M(IA), or with QU{IB). Note that there is an isomorphism between $U(IA) and 
QU(IB) such that if u corresponds to v then ux = xv for all x in X. 

THEOREM 5.2. If X is a Hilbert A-B-bimodule, then weak equivalence classes of 
embeddings of(A,X,B) are in one-to-one correspondence with equivalence classes of 
elements of It € QM(X) \\t\\ < 1}; where t\ is equivalent to t2 if and only if there is u 
in QU(IA) such that t2 = ut\ if and only if there is v in $U(IB) such that t2 = t\ v. • 

To complete this discussion, we compare Theorem 5.1 with the classification of the 
relative positions of a pair (M, N) of closed subspaces of a Hilbert space H. This clas­
sification was first given by Dixmier [10] and Krein, Krasnosel'skiï, and Mil'man [15]; 
see also [9], [12], [18], and [19]. The triples (MuNuHi) and (M2,N2,H2) determine 
the same relative position if there is a unitary U: H\ 1—• H2 such that UM\ = M2 and 
UN\ = N2. It is harmless, though not completely standard, to impose the extra require­
ment that Hi = (Mi + Ni)~. We can fix the dimensions of M; and N(, which is analogous 
to fixing the isomorphism type of (A/, X;, B(). Then possible relative positions are in one-
to-one corespondence with the equivalence classes of contractions T in B(N, M), where 
T\ is equivalent to T2 if there are linear isometries U: M\ y—> M2 and V: N\ \—+ N2 such 
that T2 = UT\ V*. If p and q are the projections in B(H) corresponding to M and N, then 
the contraction T which determines the relative position of M and N is pq regarded as an 
operator from N to M. This is in very close analogy with our theory, since the operator 
t produced by our Proposition 4.2 is fx~l(Pcqc), wherepc and qc are the open projec­
tions in C'r corresponding to the hereditary subalgebras/^CA) and/B(£). We can obtain 

explicit formulas for pc and qc by using Lt = (sl/2Ls^2r, where s = ( \ f 1. Let 
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p , = sxl2 j s1/2 and q, = sxl2 p 1 / 2 ; then p, and q, are the open projec­

tions in L"t corresponding to (sxl2Asxl2)~~ and {sxl2Bsll2)~. Then 

Ptq,-s yQ Qjs _ 2 ^ _ ^ ^ r _ _ ft J 

using that 

5 2 

where r = u\t\, and 

if \/i + l'*l + /i-k*l u[^T\7\-^\i\}\ 

if (Vi-tt* o ^ 

and 

From this we have 

I f (y/l-tf 0 
* ~ 2 ^ V 0 -vT^Ff 

U »*(i + Vi - «*) tft Ï 

= (\f\2 0 
o \t\2ip' 

\t*\2 o 
:p'\ o | f 

To verify these equations we have used the following 

[fiT\F\ + sJT^\F\}2 = 2[i + vT^k¥] 
[yj\ + \f\ + yf\- \t*\)yi+ \t*\ -yj\- \f\] = 2\f\ 

[0TFî - / r^H] 2 = 2[i - y/ï^ffî] 
«*[l - /l-|'*l2]" = [1 - / H P ] . 

There is however a difference, which is that in the Hilbert space setting one can solve 
the equivalence relation on contraction operators, thus producing a more explicit clas­
sification. (The reader familar with the literature may have already noticed that our de­
scription of the relative position of two subspaces is not a usual one). As a final remark 
on the analogy, we point out that any pair (U, V) of unitaries in (M(A),M(B)sj yields an 
automorphism Ad / JJ Q \ of (A, X, B). Although such automorphisms typically do not 

[o v) 
exhaust Aut(A, X, B), they do form a natural subgroup ([7]). Moreover the description of 
the relative position of two subspaces given above actually follows from Theorem 5.1 in 
the case where A and B are elementary C*-algebras, and X is an imprimitivity bimodule. 

If X is a Hilbert A-J5-bimodule, we define LM{X) the left multipliers ofX, as {t 6 X" \ 
tb e X, Vb e £} , and (cf 2.4) we have LM(X) = pLM(L)q. RM(L) is defined similarly, 
and M(X) = LM(X) D RM(X). 
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PROPOSITION 5.3. Ift E QM(X) and \\t\\ < 1, thenfA(A) is a corner of Lt if and only 
ift E LM(X);fB(B) is a corner of Lt if and only ift E RM(X). 

PROOF. If fA(A) is a corner, there is a projection r in M(Lt) such that fA(A) = rLtr. 
Thus rfB(b) E rfB(B) C (rLtrfB(B))~ = (fA{A)fB{B))~ Cfx(X). Then as in the proof of 
Proposition 4.2, we see that there is t' in LM(X) such thalfjc(r'b) = rfB(b) for all b in B. 
It follows from this ûmtfjc(at'b) = fA{o) • r -fB(b) = fA{àfB{b) for all a in A and all b in 
B. Hence t' = t by the uniqueness in Proposition 4.2. 

Conversely, suppose that t is in LM(X), and let {ea} be an approximate identity of 
A. If {fA(ea)} is convergent in the strict topology of M(Lt), then the limit, r, will be 
a projection such that rLtr = fA(A). Since e*a = ea, it is enough to show left strict 
convergence: i.e. {f^(ea)l} is norm convergent for / in Lt\ and by the construction of Lu 

it is enough to show that {easx} is convergent in L for x in A, B, X, or X*. If x is in A or 
X, then {eo^x} = {ea-*}> which converges to x. If x is in X* or 5, then {easx} = {ea£t}. 
Now, tx is in L, since t E LM(X), and hence tx E A +X = pL. Therefore {eatx} converges 
to tx. 

The case of right multipliers follows from taking adjoints. • 
It it interesting to know about the kernel of the canonical map x i—• sl'2xs]'2 from 

L* to Lt. Clearly x is in this kernel if and only \f s{l2xsxl2 = 0, and it is not hard to see 
that sll2xsxl2 = 0 if and only if sxs = 0. In fact, sxs = 0 implies that g(s)xg(s) — 0 for 
any polynomial g such that g(0) = 0, and there is a sequence {gn} of such polynomials 
such that gn(s) —• s1/2. Note that the calculation of sxs is just an elementary matrix 
multiplication. 

For the definition and basic properties of open projections and hereditary subalgebras 
the reader may refer to Pedersen [18, §1.5 and §3.12]. Note that if A and B are hereditary 
subalgebras of a C*-algebra C and/? and q in C" are the corresponding open projections 
then 

C = her(A UB) &p V q = 1 and 

ADB = {0} ^ p A q contains no open subprojections. 

THEOREM 5.4. (i) LetaEA and b EB} then 

(ii) Letpo be the spectral projection oftffor 1, and let A\ = {a E A | fA(a) EfB(B)}. 
A\ is a hereditary C* -sub algebra of A, and ifp\ is its open projection, thenp\ < po, and 
p\ is the largest open projection in A" which is majorized by p$. 

(iii) Let qo be the spectral projection of ft for ly and let B\ = {b E B \fB(b) EfA(A)}. 
B\ is a hereditary O -subalgebra ofB, and if q\ is its open projection, then q\ < qo, and 
qx is the largest open projection in B" which is majorized by qo. 

a = wt 
fa = bt 
at = tb 
fat = h J 

> & 
b = fat 

tfa = a = atf 
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(iv)fB{B) Ç.fA{A) <& qo = q & ft = q, le. t is an 'isometry' 
fjSfi) Q/B(B) & po = p & tf = p, i.e. t is a 'co-isometry' 

fA{A) =fB{B) & lPo ~ P \ &ft = q and tf = py i.e. t is a 'unitary'. 

(v) Let t = u\t\ be the polar decomposition oft. Then uqo = pou, and the projection 

- i l 
po -p0uq0\ 

-q0u*p0 q0 J 

is the kernel projection of s. 
(vi) The following are equivalent: 
(a) The map a i—• sll2asxl2\ Lm —* Lt is one-to-one. 
(b) po contains no non-zero open subprojections. 
(c) qo contains no non-zero open subprojections. 
(d)fA{A)C\fB{B) = {0). 

PROOF, (i) is a straightforward computation. 
(ii) It is clear that A \ is hereditary asfB(B) is hereditary. To prove the claim concerning 

p\ we need only show that for a E A 

(*) tfa = a = atf = > fat E B. 

Suppose (*) holds and p' E A" is open and p' < po. Let {aa} be an increasing net 
in A+ converging to pr. Then poaa = aa = aapo. By (*) we also have faat E B so 
aa EA\. Hence aap\ = aa = aap\, sop' < p\. Now let us prove (*). For an a such that 
tfa = a = atf, we have at E LM(X) C LM(L) and (at)(at)* = aa* E A C L. Then 
an argument similar to that in Proposition 4.4 of [1] shows that at is in L; i.e. at E X. 
(Look at (at)fp(at)*, where {fp} is an approximate identity of B, and use Dini's Theorem.) 
Since X*X C B, it follows that fanait E B, and since {a E A \ tfa = a = atf} is a 
C*-algebra, this implies that fat E B. This establishes (*). 

(iii) follows from the same reasoning, and (iv) follows from (ii) and (iii). 
Let us prove (v). That upo = Pou is elementary, by direct computation r = r* = r2 

and sr = 0. So r < ker(s) the kernel projection of s. To see that r covers the kernel let 

be in the kernel of s. Then (?) 

• « ) • 

Finally let us prove (vi). By (ii), (b) and (c) are equivalent, and by (iii), (b) and (d) 
are equivalent. By Proposition 3.5, (a) is equivalent to the assertion that r contains no 

proper open subprojections. Since r < \ ? a non-zero open subprojection of r 

would produce a non-zero open subprojection of po- Hence (b) implies (a). Obviously 
(a) implies (d). • 
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We shall need to recall the notion of the angle between two subspaces or equivalently 
the angle between two projections (see [9, §3]). Let M and N be two closed subspaces of 
a Hilbert space H and/7 and q the projections onto M and N respectively. It follows from 
the open mapping theorem that M + TV is closed if and only if 

or equivalently 

infJi±4L>0 
IKII + NI 

1(61)1 . , 
IKIIIMI 

where the infimum and the supremum are taken over pairs £ and t] where 0 ^ £ G 
M 0 {M Pi N) and 0 ^ 77 e N Q (M D N). It thus makes sense to define the angle 1? 
between M and N to be such that 

cosW = sup . | ( ^ , 7 ) | 

11(11 NI 
or equivalently 

sin(^/2) = in f -"^ + ^ ' 
11*11 +NI" 

The angle can also be measured from the projections/? and q: 

û = sup{a|sin(a)||r7|| < WP^HÎ] G N Q (MON)} 

= sup{ûr I \\pt]\\ <cos(a)||r/||,ry eNQ(MDN)} 

= supla I (cos2(a), l) avoids the spectrum of pqp}. 

The equality of the last two quantities follows from Raeburn and Sinclair [19, 
Lemma 1.8]. 

THEOREM 5.5. The following are equivalent: 
(i) The map x i—• sx'2xsx'2\ L* —• Lt is surjective. 

(ii) Lt = R\ + R2, where R\ and R2 are respectively the closed right ideals of Lt 

generated by fA(A) andfB(B). 
(Hi) There is e > 0 such that (1 — e, 1) does not meet the spectrum of\t\. 
(iv) The angle between pt and qt is positive. 

PROOF. The e q u a t i o n ^ ° ) {-f ~\) ( J A) = A ( i A2 - ft) S h ° W S 

that SpO) = {1 ±/x I /x G Sp(|r|) U Sp(|/*|)}. Hence (1 - e, 1) D Sp(|*|) is empty if and 
only if (0, e) D Sp(s) is empty. Thus (i) is equivalent to (iii) by Corollary 3.3. Now we 

(\f\2 0 "\ 
know that ptqtpt = n 1 12 A s o m e angle between pt and qt is positive if and only 

if there is e > 0 such that (1 — e, 1) avoids the spectrum of \t\ (or of \f\). Thus (iii) and 
(iv) are equivalent. 
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Let us show that (i) and (ii) are equivalent. Note that 

* . = m ^ r = ( * 1 / 2 ( o o)*1/2)~ 

So if x —̂» sxl2xsxl2 is onto then clearly Lt = R\ + 7?2- Since/^A) is hereditary,/^ (A )L, 
is already closed; for if c G (f{(A)Lt)~ then cc* € (/^(A)L/j(A))~ QfA(A). So (cj1/2 € 
/((A) and by Pedersen [18, 1.4.5] there is b € Lt such that c = \c\xl2b e fA{A)Lt. 

Similarly fB{B)Lt, LJ^A), and L{fB(B) are closed. Suppose Lt = R\+ R2, then 

Lt=fA(A)Lt+fi,(B)Lt 

= LfA (A) + LjfB{B) (by taking adjoints) 

= fA{A)LfA{A) +fA{A)Ltf
t
B{B) +fB(B)LfA(A) +fB{B)LfB{B) 

= sxl2Lsx'2. 

REMARK 5.6. Let / and J be closed right ideals in a C*-algebra C, and p and q the 
corresponding open projections in C". Then / + / is closed if and only if the angle between 
p and q is positive. Since the open projections for / D her(A U B) and / n her(A U B) in 
her(A U B)" are p and q respectively, it is not hard to see that it is enough to suppose that 
/ + J is dense in C or equivalently that p V q = 1. Let A = /?C"/? f l C , 5 = gC"g Pi C, 
and X = /?C"g Pi C. Then X is a Hilbert A-5-bimodule and we have an embedding of 
(A,X,B) into C with associated quasi-multiplier t = pq E X". By Theorem 4.3 C ~ Lt 

and under this correspondence / and J get sent to the ideals R\ and #2 respectively of 
Theorem 5.5. Now (1 — e, 1) avoids the spectrum of \t\ = ^Jqpq if and only if (1 — e, 1) 
avoids the spectrum oî\f\ = yjpqp if and only if the angle between/? and q is positive. 
So we just have to apply Theorem 5.5. 

REMARK 5.7. (a) Let s be a positive quasi-multiplier of a C*-algebra A, B = 
(sll2Asxl2T, and X = (As1/2)". Then X is a Hilbert A-5-bimodule, IB = £, and IA = 
(AsA)~. It is easy to see that IA = A if and only if s is not contained in any /" C A" 
for a proper closed two sided ideal / in A, i.e. s has central support 1 in A". If lA = A 
then A is strongly Morita equivalent to B via X. If A is a-unital and s is one-to-one then 
A is isomorphic to B. To verify this last remark, let e be a strictly positive element of 
A. It was shown in [5, Theorem 4.9 and following remark] that {{ese)xl2{e2 + n~x)~x} 
converges strictly to a left multiplier / of A with /*/ = s. Moreover if s is one-to-one 
then / is one-to-one with dense range. Thus (IAI*)~ = A. By Proposition 3.1 the map 
sxl2asxl2 1—• lal*: {sxl2Asxl2)~ —•» A is bounded. Hence J5 is isomorphic to A. 
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(b) Let X be a Hilbert A-£-bimodule and t e QM(X) with ||;|| < 1. Let s = 

Clearly s is not contained in any I" for any proper closed two sided ideal of L. So Lt is 
strongly Morita equivalent to L. If A and B are a-unital and t does not achieve the norm 1 
then L is cr-unital and so Lt and L are isomorphic. 

REMARK 5.8. It is possible to generalize the basic theory to the case of n hereditary 
C*-algebras or even infinitely many hereditary C*-algebras. To explain this we first need 
a couple of definitions. If X is a Hilbert A-Z?-bimodule and Y is a Hilbert £-C-bimodule, 
then Z = X ®# Y is a Hilbert A-C-bimoddule. The construction of Z was given in [20, 
Theorem 5.9] (one can also find this in [2, §13.5]). The basic definitions are 

A(X\ ®y\,x2®y2) = A(x\B(yuy2),x2) and 

(*i ®yux2®y2)c= (yu(xux2)By2)c 

These inner products define a semi-norm on the algebraic tensor product, and one mods 
out by the elements of norm 0 and completes to obtain Z. If X and Y are Hilbert A-B-
bimodules, then a map <p: X —• Y will be called a morphism if it is a bimodule homomor-
phism which preserves the inner products. Then ip is an isomorphism of X with a closed 
sub-bimodule of Y. 

For the general embedding problem we are given C*-algebras A\,A2, A3 A4,... and 
Hilbert A/-A;-bimodules Xy such that Xa = A/ (with the obvious bimodule structure) and 
Xji = X}j for / < j . We are also given multiplications 

Pijk- %ij ®Aj Xjk —* Xik> 

which are morphisms in the sense above, such that //;# is just the left A/-module structure 
of Xft and /i/^ is just the right A^-module structure of X,*, fiyi is the A/-valued inner 
product structure on X# or Xji, the associative law holds, and [/iy*0c®y)T = M^,(j* ®x*). 
An embedding of {Xy} into a C*-algebra C is a collection/ = {///}, where fij'.Xy —• 
C, is such thai fa is a ^isomorphism of A/ onto a hereditary C*-subalgebra of C, C is 
hereditarily generated by \Jfii^dJij(Xij) = MAUCfriAj)]-,jÇ7(**) = Ky(*)]*, and/ is a 
homomorphism for the multiplications /ip (this last includes part (iii) of Definition 2.1). 

An embedding into the linking algebra always exists. One defines L (or Ln if there 
are more than n A,'s) as the set of n x n matrices whose (/-entries are in X,y. Then L 
is an involutive algebra, and it is given a C*-norm as in Definition 2.2: one uses the 
representations 717: L —• L{®jXji). If there are infinitely many A/'s, L is then defined as 
the inductive limit of the Ln's. 

Given any embedding, Proposition 4.2 yields fy in QM(Xij) such that tu = 1 = U, and 
tji = t*:. The nxn matrix (fy) is then a positive element 5, or sn, of QM(L). The proof that 
s is positive uses the fact that a matrix (//,-) in L" is positive if and only if ZyX*/^ > 0 
for each x\, #2, X3,..., xn in X^. 
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It can be shown that the embeddings are thus classified by the positive quasi-multiplier 
matrices with l's on the main diagonal. When there are infinitely many A/'s, s need not 
be bounded but each sn is bounded and positive. In this case Ls is the direct limit of the 
LSn 's. The main differences between the proof of the general result and the proof for the 
case n = 2 have been sketched, and the details are left to the reader. 

REMARK 5.9. There is a theory of the relative position of two closed submodules of 
a (right) Hilbert C*-module which closely parallels the theory of the relative position of 
two subspaces of Hilbert space and the theory of embeddings of Hilbert C*-bimodules. 
Since this theory can be easily derived from our main theorem (Theorem 4.3), we shall 
sketch the argument. If X and Y are right Hilbert A-modules, an embedding of (X, Y) into 
a Hilbert A-module Z is a pair (g, h) such that 

(i) g: X —• Z and h:Y —• Z are (isometric) isomorphisms from X and Y onto closed 
submodules of Z. 

(ii) [g(X) + h(Y)]- = Z 

In a natural way XiY.X) is a Hilbert ^C(X)-^C(y)-bimodule, and the linking algebra 
of the bimodule can be identified with %iX 0 Y). Any embedding (g, h) induces an 
embedding (fuf2&) of (X(X\ X(Y,X), <K(Y)) into %ff) by the formulas f(0XuX2) = 
0g(Xl),g(x2)j2(dx,y) = 0g(x)m,andf3(0yuy2) = ^hiy^hiyi)- Assumption (ii) above implies that 
fx (3CW) U/3(aC(y)) hereditarily generates ^C(Z) (cf [5, Theorem 2.5]). In addition to 
the conditions of Definition 2.1, we also have the compatibility conditions: fz(T)h(y) = 
g(Ty) and f2(T)*g(x) = h(T*x) for T in X(Y,X), x in X, and y in Y. By Proposition 4.2 
there is t in QM{X{Y,X)), with ||;|| < 1, such that/2(6fc) =f(b)f3(c) for all b in 0(P0 
and c in %IY). Because [3C(X)X]" = X and [%i(Y)Y]- = F, it is then routine to check 
that 

(*) (g(x)\h(y))A=x*ty9 Vx G X, y € F, 

where the multiplication on the right takes place in L", and L is the linking algebra of 

l e y . 

There is an easy extension of Proposition 3.1. If W is a right Hilbert A-module and s a 
positive quasi-multiplier in QM(%{wfj, we can define a new A-valued inner product by 
(w>i, W2)A = w^wi. The Hausdorff completion of (W, (•, -)A) is a right Hilbert A-module 

which can be identified with sxl2W. If we apply this with W = X® Y and s = 

we see that every t in QM^KSY.X)) with ||f|| < 1 arises from an embedding (g,h) so 
that (*) is satisfied, and moreover (g, h) is uniquely determined up to isomorphism. In 
other words we have the following analogue of Theorem 4.3: 

(i) If X and Y are right Hilbert A-modules, then the isomorphism classes of embed-
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dings of (X, Y) are in one-to-one correspondence with elements t of QM[%{Y,Xyj such 
that ||;|| < 1. Here (g, h) is isomorphic to (#', h') is there is an isomorphism #: Z —• Z! 
such that ïïg = g' and iïh = h'. 

We can use a weaker equivalence relation: (g, h) is equivalent to (g', /z') if there is 
an isomorphism û\Z-> Z' such that ${g{XJ) = g'(X) and $(h(Y)) = h'(Y). Since the 
automorphisms of X are in one to one correspondence with the unitaries in L(X), or in 
M(U£(X)Y we have the following analogue of Theorem 5.1. 

(ii) The equivalence classes of embeddings of (7, X) are in one-to-one correspondence 
with the equivalence classes of [t € QM{%{Y,X)) : ||;|| < 1}, where t is equivalent io 
tf if there are unitaries U, V in M(»C(X)), M(^C(F)), respectively, such that t' = UtV. 
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