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COMBUSTION WAVES
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Abstract

Finding critical phenomena in two-dimensional combustion is normally done numerically.
By using a centre-manifold reduction, we can find a reduced equation in one dimension.
Once we have found the reduced equation, it is simpler to find critical phenomena. We
consider two different problems. One is spontaneous ignition. We compare our results with
known critical parameters to give some validity to our reduction technique. We also look at
a combustion model with three equilibrium states. For this model, the possible transitions
can occur as travelling waves between the unstable to either of the stable equilibrium or
from one stable to the other stable state. For the latter transition, the direction of the
transition tells us whether we have an extinction or ignition wave. We find the critical
parameters when the direction of the wave changes.

1. Introduction

Fisher [3] and Kolmogorov et al. [7] initiated the study of wave-like solutions to a
single reaction-diffusion equation:

Uy = g + F(u). 1)

Suitable reaction functions, F(u#) must have multiple equilibria, with at least one
equilibrium being stable. The two classes of functions which are most studied can be
characterised as

Monostable ... e.g., Fisher, F(u) = u(1 — u), )
Bistable. .. e.g., Nagumo, F(u) = (uy — u)(uy — u)(us — u). 3)
A monostable function has one unstable and one stable equilibrium and it is expected

that waves would effect the transition from the unstable to the stable. A bistable
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function has two stable equilibria and one, unstable, intermediate equilibrium. It
would now be expected that there could be three waves;

1. those that effect a transition from stable to stable (in either direction),
2. those that effect a transition from the unstable to the lower stable,
3. those that effect a transition from the unstable to the upper stable.

It is, in general, difficult to find critical phenomena in a two-dimensional problem.
However, by using centre-manifold theory, a one-dimensional reduced approximation
can be found. In this paper we wish to investigate the speed of wave-like solutions
to a reaction-diffusion equation with two different reaction functions relevant to
combustion, one monostable and the other bistable, via the reduced approximation.

2. Alook at two specific reaction functions

Recent centre-manifold work [9] provides a way to realise the above classification
of reaction-diffusion waves in the physically interesting combustion case. Two typ-
ical reaction functions in the combustion literature are (see, for example, Gray and
Kordylewski, [5, 6])

Ry (u) = d¢*, C)]
Ry(u) = se/*ew, )
As it stands, there are no equilibrium values for u (so that R;(u) = 0 ;i = 1,2).
However, Watt et al. [9] (see Appendix A) show how a two-dimensional reaction-

diffusion problem (with a general reaction and a domain R x [0, 1]) can be systemat-
ically approximated by a one-dimensional equation

T, =Tu+YRWYT) - AT, (6)

where T is a prescribed cross-bed average temperature and we define

1
7= f £y, 1) dy, %
0
where

Y+ Ay =0,
yi=1,

A is the leading order decay rate,
y satisfies the boundary conditions of the two-dimensional problem.
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In the special case where the heat loss at the top and bottom is assumed to be small,
¥ = 1 and the reduced system becomes

T, =Tu + R(T) — AT, (®)

where this is the second-order approximation and —AT is a result of the heat loss on
the boundaries.

The accuracy of this technique for the reaction function §e* is evaluated in Appendix
B, by using it to find the critical conditions for spontaneous ignition. The technique
seems to give excellent approximate dynamics and can be systematically improved
by calculating more terms in the series expansion.

For the combustion reaction functions, R;(u), this means that equilibria are now
(conditionally) possible as

e —Au=90 9
or

Se/Ire) _qy =0 (10)

have solutions for certain parameter ranges. Analytical formula for solutions do not
exist. However sketches of R;(#) = Au soon convince one that the solutions are as
given in Figure 1a and 1b, for (9) and (10) respectively.

Figure 1a shows that §e* — Au = 0 has two solutions for §/A < 1/e, one solution
when §/A = 1/e and no solutions for §/1 > 1/e. Stability of the solution branches
(for 8/1 < 1/e) is determined by making a small alteration to the equilibrium and
studying its temporal evolution. Itis soon apparent that the lower branch is stable and
the upper branch is unstable as indicated on Figure la.

Figure 1b shows that §e*/'**) — Au = 0 can have one, two or three solutions
depending upon the value of §/A, provided 0 < € < 0.25. The exact values at the
turning points, labelled i and e, depend upon the chosen value of €.

The u values at the turning points are found by requiring the slope of R,(1) — Au
to be zero at a solution of R,(u) — Au = O:

_ (1 —-2¢) £/1—-4¢

Uer 72 an
One can then find the value of §/A by substitution:
8
(X) — ucre—ucr/(l"'ﬂ‘cr). (12)

For example if € .= 0.1, the coordinates of the lower and upper turning points are
6/r, u) = (0.412,1.27) and (0.011, 78.73) respectively (see the table in Section 4 for
more values). Studying the temporal evolution of small perturbations to the equilibria
give the stability as indicated in Figure 1b.
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FIGURE 1. Sketches of the solutions of R; (u) = Au fori = 1, 2 respectively.

3. Combustion waves

The analysis of the previous section shows that, for a given value of §/A, 8¢ — Au
is a monostable reaction function, and §e*/!*+<*) — yu is a bistable reaction function.
This classification allows one to immediately see which wave solutions are possible
in the combustion cases.

Namely, for ¢ — Au, the only possible wave effects a transition from the unstable
to the stable equilibrium. The speed of this wave is most easily found (as in all
monostable cases) by linearising about the unstable equilibrium, whence

c > 2/8e" — A, (13)

where u is the equilibrium value, at a particular §/, attained on the unstable upper
branch in Figure 1a. (Compare with Gray and Kordylewski [5] and Buonincontri and
Hagstrom [1].)

For §e/(+) — du, when 0 < € < 0.25, there are three possible waves. Denoting
the lower, intermediate and upper branches in Figure 1b as u,, u, u3 respectively,
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these waves are categorised as effecting the transitions

Uy <—rus,
Uy —> uy, 14)
Uy —> Uus,

where the arrows indicate the direction of the transition. (Compare with Gray and
Kordylewski [6].)
In each case the wave speed is determined from the nonlinear eigenvalue problem

u' +cu' + F(u) = 0, (15)
u(—oo) = u;, u(+o0)=u;, i#£je{l,2,3}. (16)
Multiplying by u’ and integrating from —oo to 400 gives an equation
[ F(u)du
=T
[o W)z
for the wave speed. As the denominator is always positive (and non-zero), the
numerator, that is, the area under the reaction function, is the crucial quantity for
determining the speed of the reaction wave. In particular we notice that for the
possibilities (14) the direction of the transitions between u, and u; are determined by
the sign of f""f F(u)du. When this integral is positive, ¥, — u3, and we refer to it as
an ignition wave. When this integral is negative, u3 — u,, and we refer to it as an
extinction wave.

Clearly, the value of this integral depends upon §/A which must be chosen for a
particular application. Furthermore, a value for §/A (as a function of ¢) exists for
which the integral is zero and no transition will occur. This border between transitions
from u, to u; or from u; to u,; will be examined in more detail in the next section.

An exact formula for the wave speed effecting transitions between u; and u3 seems
to be unavailable. However, we could try to avail ourselves of the analogy with the
bistable equation, and in particular the Nagumo example, as the reaction function
given in (3) leads to an exact travelling wave solution with speed

17

: .
c= 7§(u1 — 2uy + us). (18)

Now, we check if the formula (18) is approximately correct for the combustion wave
which effects a transition between u; and u;. In particular we can see if the following

hold:
up = uy it (w3 —uy) > (U — uy), 19)
us; —> uy if (U3 —uy) < (uy —uy), 20)
and ¢=0 if (us+u))=2u,. 20
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From the table in the next section it is clear that (18) is not a good estimate of the
speed in the combustion case.

Additionally, transitions from the intermediate unstable equilibrium u; to u; or u;
should be amenable to analysis by linearisation. By using this method, which was
successful for the monostable case, the speed for the Nagumo example in (3) is given
by

24/ (uy — uy)(us — us). (22)

Similarly the speed for the reaction function §e*/*+€) — Au is found to be

Seur/(1+euy)
2 ) — — . 23
V (1 + €u,)? =

Again we see that the Nagumo example is unsuited to deriving approximate
wavespeed formulae.

4. On the border of transitions

Consider the reduced equation

2
%% = % + §et/1te - Au (29)
where A is the heat loss coefficient, which we assume to be 1.

This can have up to three equilibrium solutions, two stable and one unstable. We
have discussed that the only physically-realisable transition is from one stable state to
the other. While it would make the analysis complete if we could find the wave speed
as a function of € and §, it would be almost as beneficial to find when the direction of
the transition changes.

As the speed is given by
“ F(u) du
_ Ly Flodu (25)
o (w)rdz
the change in direction occurs when ¢ = 0, or
u3
/ F(u)du = 0. (26)

We have found these important parameters J;,,, for selected values of €, as shown in
the following table.

https://doi.org/10.1017/50334270000000801 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000000801

470 R. O. Weber and S. D. Watt 7
€ Smin Smax 8imp Uy (8imp) u2(5imp) u3(8imp) Area

0.00 0 0.36788 - 1 1 1 -

0.05 | 0.000002 | 0.3878 | 2.3316x10~¢ | 2.3316 x1076 | 233.524 | 582.20 8409.1
0.10 | 0.011027 | 0.41153 0.011927 0.012071 51.022 125.78 330.97
0.15 | 0.12830 | 0.44086 0.13619 0.159077 19.213 46.071 33.779
0.20 | 0.35128 | 0.47953 0.36359 0.64250 8.6932 19.2316 | 3.30487
0.25 | 0.54134 | 0.54134 - 4 4 4 -

The “area” mentioned is that under each half of the bistable-reaction function when
8 = 8;mp. Naturally the total area vanishes for this value of §. Also, 8, and 8, are
the § values of the minimum and maximum turning points respectively.

Once we have these parameters, we can conclude that

1.
2.

if 8 < 8;mp then ¢ < O and then u; — u,. Thus we have an “extinction” wave.
if 8 > &;mp then ¢ > 0 and then u; — u;. Thus we have an “ignition” wave.

We have also calculated the parameters at more frequent values for €. These are
shown graphically in Figure 2. What we can see from this is that §;,, is always
close to 8,;,. This would suggest that given a travelling wave, that is § such that
Smin < 8 < 8pmay, it is most likely to be an “ignition” wave.

FIGURE 2. A graph of 6,,;,, 8imp and 8. as a function of €.
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5. Conclusion

We have analysed the waves which can be expected from a two-dimensional
reaction-diffusion equation when the reaction is relevant to combustion. Our tech-
nique was to use an approximate one-dimensional model derived systematically using
centre-manifold analysis. A range of realistic boundary conditions are suitable for
this technique.

The two combustion functions considered yield approximate models with reaction
functions which are monostable (one stable and one unstable equilibrium) or bistable
(two stable and one unstable). It is then a straightforward matter to enumerate the
possible waves which effect transitions between equilibria. In particular, the bistable
function admits the possibility of a wave effecting a stable to stable transition, making
it (potentially) a physical realisable reaction wave. The speed of this wave needs
to be determined numerically. However we were able to understand its structure by
studying the associated area under the reaction function. In particular, we give the
parameter values which delineate between an extinction wave and an ignition wave.
A complementary calculation shown in Appendix B demonstrates the impressive
accuracy of the centre-manifold reduction.

Future work could focus on numerical determination of reaction waves with the
function de*/+e) — jy.

Appendix A: A summary of the centre manifold reduction

In a previous paper [9], we have shown how to reduce a two-dimensional system
with simple heat loss boundary conditions down to one-dimension. We can extend
this to a system with more general boundary conditions.

Let us consider a two-dimensional equation

ou *u u
— = — 4+ — 4+ R(u), 27
5~ ax: Ty TRW 7
with boundary conditions

3

a1 Bu=0 at y=0, (28)
dy
3

y 2 Lsu=0 at y=1. 29)
dy

As in [9], we first assume that the horizontal diffusion and the reaction are small. Now

considering the leading-order linear system, we have
du  du
~Z_~ 30
ar  dy? (30)
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satisfying the boundary conditions (28) and (29).
This equation has a solution

= e [Accos(uy) + Besin(uy)l, 31)
k=0
where A, = —vZ, as are determined from (28) and (29).

The A,’s are the eigenvalues corresponding to each eigenmode. Thus all modes
decay exponentially, with the mode corresponding to A, being of long-lasting im-
portance. Let us base our system on this mode. As this mode has a decay rate of
—v2, which we will just call —v2, our analysis will be an invariant-manifold analysis.
This complicates our analysis, but we can get around this by modifying the original
equation, (27), to

2 2
2—': = %Jrg—y‘;ﬂl — e)v’u + R(u) (32)
and setting € = 1 atthe end. The eigenvalue spectrum changes to A, = —vZ+v2. Now
our leading-order decay rate is zero, so we can perform a centre-manifold analysis,
which is simpler than an invariant-manifold analysis.
The leading-order approximation is

u ~ Acos(vy) + Bsin(vy), 33)

which we shall call .

Assume that a centre manifold exists; that is, let u(x, y, r) be some function of
T(x,t),u = V(T), where T evolves according to 3T /9t = G(T).

We also must give a physical meaning to T. As in [9] we chose it to be a weighted
cross-bed average,

1
T =Vu= / Y Oux, y, 1) dy. (34)
0

Substituting this into (32), we get
av ’vV 3%V
—G = —+ —+ (1 -’V + R(V). 35
3770 = 537 T 3y T A=V HRW) 35)

This equation is as hard to solve as the original. However we can now use asymptotic
techniques as described in Coullet and Spiegel [2] and Roberts [8]. That is, assuming
asymptotic series for V and G of the form

V ~ iv(") G ~ Zg(n), (36)
n=0
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we get a hierarchy of equations

3y? aT ¢ " ax

m=1

with subsidiary conditions

o 2 + pv™ = at y=0,
dv™

Y +6v™” =0 at y=1,
Yy

1/’ v = 80.’1 T1

where R™ is the n'-order term in the Taylor series of the reaction

o0
R~ ; R™.

At leading order, n = 0, we assume that
VO =yT

along with the normalisation condition ¥2 = 1.
At the next order, n = 1, we have

92"
ay?

Taking the weighted average of this with respect to ¥ yields

2

2T _
0=g" — — +eV’T — Yy RWYT).
9x?

Thus to a first approximation, we have

0 T YRWT) - T
ot ax? vI) -V

32y " gy 3
+ viy® = Z (m) __ p&—b + evipy®=b _ pm

T
+ v =y — a—;w +eyv’T — R(Y T).
x

473

(37

(38)

(39

(40)

(41)

42)

43)

(44)

(45)

This equation is the foundation for our analysis of critical phenomena in this paper.
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Appendix B: Spontaneous ignition

Consider the system

ou *u
o T sen, 46
ar —ax 3y TO€ (46)

By using centre-manifold theory, as described in Appendix A, we get a reduced system
aT T

= =zt SyrevT — VT, 47)

The solutions to this will blow up exponentially if the reaction is strictly positive. So
we must find a critical §, .., such that the reaction function just touches the axis then
turns up, as shown in Figure 3. Thus we need

R(acry Tcr) = acrwewrﬁ - vacr =0, (48)
dR S
and B_T(ac” T,) = Scrwzewrr —v'=0. (49)

From these two we eliminate v? to find

Ty — YeiT =0, 50)
where
2
T,
acr = i . (51)
1/je\07}r

From (50) and (51), we have found critical 8’s for a few boundary conditions, as
shown below.

Boundary | Conditions 8- known[4] | Difference
W@ =0 u())=0 | 08773 | 0.8785 0.1%
u@0 =0 | «(1)=0 | 08773 | 0.8785 0.1%
u =01 «(1)=0 | 3.509 3.514 0.1%

Note here that the first and second critical § is the same. This is because the problems
are complementary to each other. Also the third critical § is four times the first. This
is because the problems are identical except that the third one is in a region half as
small. Also note that we took the centre-manifold analysis to the next order and found
numerically, the critical § = 0.878517 or a difference of about 0.006% of the known
value [4].
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5>3

R(M

FIGURE 3. A sketch of a typical reaction function for spontaneous combustion

As a slight variation, we consider the problem in polar coordinates

du 0*u 10u 1 0%

—=—+4+-——+ —— + 4" 52
ot ar?  rar r?o6? +oe (52)
with
d
i at  r=0, (53)
ar
u=20 at r=1. 54)
This reduces to
aT 1 T
e ;Jo(vr)zw + 8rc) Jo(vr)esotnT — 2T,
where J is the zeroth order Bessel function, v is the first zero of Jyand ¢; = 6,+§+)2JO(V—).

For these reduced equations the critical § is 1.9917, compared to 2 [4], a difference of
about 0.42%.

From these examples it seems the centre-manifold reduction gives excellent estim-
ates of the bifurcation phenomena.
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