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ON POINT SETS IN VECTOR SPACES OVER FINITE FIELDS
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Abstract

For three points u, v and w in the n-dimensional space Fn
q over the finite field Fq of q elements we give a

natural interpretation of an acute angle triangle defined by these points. We obtain an upper bound on the
size of a set Z such that all triples of distinct points u, v, w ∈ Z define acute angle triangles. A similar
question in the real space Rn dates back to P. Erdős and has been studied by several authors.
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1. Introduction

Recent remarkable results of Bourgain, Katz and Tao [3] on the sum–product problem
in finite fields have stimulated a series of studies of finite field analogues of classical
combinatorial and discrete geometry problems; see [2, 4–6, 8–14, 17, 19–23] and
references therein.

Here we extend the scope of such problems and consider the question of the largest
cardinality of a set of points in the n-dimensional space over a finite field such that
every triple of distinct points of this set defines an acute angle triangle. We note that a
similar question in the Euclidean space Rn dates back to P. Erdős and has been studied
by several authors; see [1].

Certainly the notion of an acute triangle (or angle) is not immediately obvious
in vector spaces over finite fields. Here we use the ‘rational’ interpretation of
trigonometry invented by Wildberger [24] to extend this notion to finite fields.

To motivate our definition, we note that in the triangle defined by three distinct
vectors u, v, w ∈ Rn , the vertex at u has an acute angle if and only if

‖u− v‖2 + ‖u− w‖2 − ‖v− w‖2 > 0,

where ‖x‖ is the Euclidean norm of x ∈ Rn .
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We now identify positive elements of a finite field Fq of q elements with quadratic
residues in Fq and say that, in the triangle defined by three distinct vectors

u= (u1, . . . , un), v= (v1, . . . , vn), w= (w1, . . . , wn) ∈ Fn
q ,

the vertex at u has an acute angle if any only if

1(u, v, w)=
n∑

i=1

((ui − vi )
2
+ (ui − wi )

2
− (vi − wi )

2)

is a quadratic residue in Fq .
Since in the field of even characteristic we always have 1(u, v, w)= 0, this

definition makes sense only if q is odd.
We also remark that

1(u, v, w) = 2
n∑

i=1

(u2
i − uivi − uiwi + viwi )

= 2(u · u− u · v− u · w+ v · w)= 2(u− v) · (u− w), (1)

where a · b denotes the inner product of a, b ∈ Fn
q . Thus, if q is odd then

1(u, v, w)= 0 if an only if (u− v) · (u− w)= 0, which corresponds to orthogonality
at u and thus to the Pythagoras theorem.

Let N (n, q) be the largest possible cardinality of a set Z ⊆ Fq such that all triples
of distinct points u, v, w ∈ Z define acute angle triangles.

We remark that [8, Theorem 1.1] immediately yields

N (n, q)= O(q(n+1)/2), (2)

where the implied constant depends only on n. In general, we do not know how to
improve this bound. However, for n = 2 we obtain a stronger estimate.

THEOREM 1. For a sufficiently large odd q,

N (2, q)≤ 2q4/3.

2. Additive character sums

Let 9 be the set of all additive characters of Fq and let 9∗ ⊂9 be the set of
all nonprincipal characters; see [15, Section 11.1] for basic properties of additive
characters. In particular, we also recall the identity

∑
ψ∈9

ψ(z)=

{
q if z = 0,

0 otherwise;
(3)

see [15, Section 11.1].
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For an additive character ψ ∈9 and α ∈ Fq , we define the Gauss sum

Gψ (α)=
∑
z∈Fq

ψ(αz2)=
∑
z∈Fq

χ(z)ψ(αz)χ(α)
∑
z∈Fq

χ(z)ψ(z)= χ(α)Gψ (1),

where χ is the quadratic character in Fq (which exists since q is odd), and recall that

|Gψ | = q1/2, (4)

for ψ ∈9∗ and α ∈ F∗q ; see [15, Proposition 11.5].
Finally, given a set Z ⊆ Fn

q , we define the triple character sum

Sψ (Z)=
∑

u,v,w∈Z
ψ(1(u, v, w)).

Although we use our result on Sψ (Z) only in the case of n = 2, here we present it in
full generality as it may have some other applications.

LEMMA 2. For any ψ ∈9∗ and a set Z ⊆ Fn
q of cardinality Z = #Z ,

|Sψ (Z)|2 ≤ Zqn
∑

v,w,x,y∈Z
v+w=x+y

ψ(2(v · w− x · y)).

PROOF. We have

|Sψ (Z)| ≤
∑
u∈Z

∣∣∣∣ ∑
v,w∈Z

ψ(1(u, v, w))
∣∣∣∣.

Hence, recalling (1), we derive

|Sψ (Z)| ≤
∑
u∈Z

∣∣∣∣ ∑
v,w∈Z

ψ(−2(u · (v+ w)− v · w))
∣∣∣∣.

Note that since ψ(−z)= ψ(z), we can replace −2 with 2. By the Cauchy inequality

|Sψ (Z)|2 ≤ Z
∑
u∈Z

∣∣∣∣ ∑
v,w∈Z

ψ(2(u · (v+ w)− v · w))
∣∣∣∣2

≤ Z
∑
u∈Fn

q

∣∣∣∣ ∑
v,w∈Z

ψ(2(u · (v+ w)− v · w))
∣∣∣∣2

= Z
∑
u∈Fn

q

∑
v,w,x,y∈Z

ψ(2(u · (v+ w− x− y)− v · w+ x · y))

= Z
∑

v,w,x,y∈Z
ψ(2(x · y− v · w))

∑
u∈Fn

q

ψ(2u · (v+ w− x− y)).
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Finally, changing the order of summation, and replacing 2u with u, we obtain

|Sψ (Z)|2 ≤ Z
∑

v,w,x,y∈Z
ψ(2(x · y− v · w))

∑
u∈Fn

q

ψ(u · (v+ w− x− y)).

By the orthogonality property of additive characters (3), we see that the inner sum
vanishes if and only if

v+ w− x− y= 0

in which case it equals qn . Now renaming the variables (v, w)↔ (x, y), we conclude
the proof. 2

3. Proof of Theorem 1

Assume that for the set Z ⊆ F2
q all triples of distinct vectors u, v, w ∈ Z define

acute angle triangles. As before, use Z = #Z to denote the cardinality of Z . Fix an
arbitrary quadratic nonresidue α ∈ Fq . Then we see that the equation

1(u, v, w)= αz2, u, v, w ∈ Z, z ∈ Fq ,

has at most
T ≤ Z2 (5)

solutions (which come only from the triples u, v, w ∈ Z with 1(u, v, w)= 0, that is,
when u= v or u= w).

On the other hand, from the orthogonality property of characters (3), we obtain

T =
∑

u,v,w∈Z

∑
z∈Fq

1
q

∑
ψ∈9

ψ(1(u, v, w)− αz2)=
1
q

∑
ψ∈9

Gψ (−α)Sψ (Z).

The term corresponding to the principal character ψ = ψ0 is equal to Z3. Thus,
recalling (4), we obtain

|T − Z3
| ≤ q−1/2 R, (6)

where
R =

∑
ψ∈9∗

|Sψ (Z)|.

Now, by the Cauchy inequality,

R2
≤ q

∑
ψ∈9∗

|Sψ (Z)|2.

Thus using Lemma 2 and then extending the summation to all ψ ∈9, we deduce that

R2
≤ Zq3

∑
ψ∈9

∑
v,w,x,y∈Z
v+w=x+y

ψ(2(v · w− x · y)).
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Changing the order of summation and using (3) again, we obtain

R2
≤ Zq3

∑
v,w,x,y∈Z
v+w=x+y

∑
ψ∈9

ψ(2(v · w− x · y))= Zq4W, (7)

where W is the number of solutions to the system of equations

v+ w= x+ y and v · w= x · y

in v, w, x, y ∈ Z , which is the same as the number of solutions to the equation

v · w= x · (v+ w− x)

in v, w, x ∈ Z . Clearly, when v, w and one component of x are fixed, we obtain a
nontrivial quadratic equation over Fq for the other component of x. Therefore

W ≤ 2Z2q.

Substituting in (7), we obtain
R2
≤ 2Z3q5.

In turn, inserting this estimate in (6) yields

|T − Z3
| ≤
√

2Z3/2q2. (8)

If Z < 2q4/3 then there is nothing to prove. Otherwise,
√

2Z3/2q2
≤

1
2 Z3

thus, by (8) we obtain
T ≥ 1

2 Z3

which contradicts (5), provided that q is large enough.

4. Remarks

Unfortunately the method of this paper, although it works for any n, leads to a
bound which is the same as (2) for n = 3 and is even weaker than (2) for n ≥ 4.

Furthermore, using the bound

|Sψ (Z)| ≤ Z2qn/2

(which is immediate from Lemma 2) in the argument of the proof of Theorem 1, one
can recover the bound (2), but it does not seem to give anything stronger that this.

An alternative way to estimate N (n, q) is via bounds of quadratic character sums

Tχ (Z)=
∑

u,v,w∈Z
χ(1(u, v, w)).
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Using the same approach (via the Cauchy inequality and extending summation over
u ∈ Z to the full space Fn

q ) as in the proof of Lemma 2, we obtain

|Tχ (Z)|2 = Z
∑

v,w,x,y∈Z

∑
u∈Fn

q

χ(1(u, v, w)1(u, x, y)).

It is natural to conjecture that the inner sum admits a square root estimate and thus
is O(qn/2) unless (v, w) is a permutation of (x, y). One can derive that N (n, q)=
O(qn/2) from such a hypothetical bound. Unfortunately the highest form of the
polynomial

Fv,w,x,y(U)=1(U, v, w)1(U, x, y) ∈ F[U]

is singular, so known analogues of the Deligne bound for multivariate character sums
(see [16, 18]) do not apply.

We recall that in Rn , the largest number of vectors such that each triple defines
an acute angle triangle is bounded by a function of n; see [1]. Although our bounds
seem to be much higher that the true order of magnitude of N (n, q), we observe that
lim supp→∞ N (n, p)=∞. Indeed, by the result of Graham and Ringrose [7], there
is an absolute constant C > 0 such that, for infinitely many primes p, all nonnegative
integers z ≤ C log p log log log p are quadratic residues modulo p. Thus, for each
such p and an appropriate constant c, for the set Z ⊆ Fp formed by vectors with
components in the interval [1, c

√
log p log log log p] we have

1≤1(u, v, w)≤ C log p log log log p

for any pairwise distinct u, v, w ∈ Z and thus 1(u, v, w) is a quadratic residue. This
implies that

lim sup
p→∞

N (n, p)

(log p log log log p)n/2
> 0.
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