A NOTE ON NET REPLACEMENT IN TRANSPOSED SPREADS

BY
N. L. JOHNSON

Abstract

Let P be a translation plane containing a net N which is replaceable by \bar{N}. Let P^{\prime} denote the transposed plane. We note that N^{\prime} is replaceable by $(\bar{N})^{\prime}$. This result shows how to relate the various constructions of the two translation planes of order 16 that admit $\operatorname{PSL}(2,7)$.

Let P denote a finite translation plane and S a spread set of matrices for P. Let S^{t} denote the spread set obtained by transposing the matrices of S. We denote the associated translation plane by P^{t} (the transposed plane). If P is a semifield plane of order q^{2}, let N be a net coordinatized by a middle nucleus M of a coordinatizing semifield. Then N^{t} may be coordinatized by a right nucleus R. Furthermore, if M is isomorphic to $\mathrm{GF}(q)$ then R is also isomorphic to $\mathrm{GF}(q)$ so that P and P^{t} are both derivable semifield planes. More generally, we may ask the following question: Let P be any finite translation plane containing a net N which is replaceable by \bar{N}. Is N^{t} replaceable by $(\bar{N})^{t}$?

In [1], Bruen discusses the connections between "indicator sets" and the spreads obtained by Ostrom's net extension techniques (via transversal functions) and shows that given a transversal function the two spreads obtained by indicator sets and net extension are related by a polarity of the associated projective space and it is implicit in Bruen's work that the two translation planes are transposes of each other (see [1], section 5, part B).

Once the polarity-transpose connection has been made, the result on net replacement is almost immediate. That is,

Theorem. Let P be a finite translation plane and V the underlying vector space of dimension $2 r$ over $\operatorname{GF}(p)$ for p a prime.
(1) Let N denote any net and $\bar{N} a$ net which replaces N. Let a be any polarity of V. Then N^{a} is replaceable by $(\bar{N})^{a}$.
(2) If N is a derivable net, let \bar{N} denote the unique replaceable net of Baer subplanes of N. Then $(\bar{N})^{a}=\overline{N^{a}}$. That is, to derive N^{a}, one may either first derive N and then apply the polarity or apply the polarity and then derive.
(C) Canadian Mathematical Society 1984.
(3) Let $x=0$, and $y=x M$ for M in S be a spread set of matrices for P where x, y denote the associated vectors. Let P^{t} denote the transposed translation plane obtained from the spread S^{t} of transposed matrices of S. If N is a derivable net, denote the derived net by \bar{N}. If $P=N \cup M$, denote P^{t} by $N^{t} \cup M^{t}$. Then $(\bar{N})^{t}=\overline{N^{t}}$ (derivetranspose $=$ transpose-derive).

Proof. (2) and (3) are immediate from Bruen's work once (1) is established.
Note, finiteness is essential by Bruen and Fisher [2]. Let $\left\{V_{i}\right.$ for $i=1$ to $\left.k\right\}$ denote the components of N and let $\left\{W_{i}\right.$ for $i=1$ to $\left.k\right\}$ denote the components of N. Then $\cup_{i=1}^{k}$ $V_{i}=\cup_{i=1}^{k} W_{i}$ and $\operatorname{dim} V_{i}=r$ for $i=1$ to k. Let the $\operatorname{dim} V_{i} \cap W_{j}=r_{i j}$. Then since V_{i} is contained in $\cup_{i=1}^{k} W_{i}$, we have $V_{i}=\biguplus_{j=1}^{k}\left(V_{i} \cap W_{j}\right)$. So, $\sum_{j=1}^{k}\left(p^{r_{i j}}-1\right)=p^{r}-1$ for each $i=1$ to k. Now, for any subspaces S, R of V we have $(S \cap R)^{a}=S^{a}+R^{a}$. So,

$$
\operatorname{dim}\left(V_{i}^{a} \cap W_{j}^{a}\right)=\operatorname{dim}\left(V_{i} \cap W_{j}\right)
$$

That is,

$$
\operatorname{dim} V_{i}^{a} \cap W_{j}^{a}=\operatorname{dim}\left(V_{i}+W_{j}\right)^{a}=2 r-\operatorname{dim}\left(V_{i}+W_{j}\right)=\operatorname{dim} V_{i} \cap W_{j}
$$

Thus, $\cup_{j=1}^{k} V_{i}^{a} \cap W_{j}^{a}$ has cardinality $\sum_{j=1}^{k}\left(p^{r i j}-1\right)=p^{r}-1$ and since $V_{i}^{a} \cap W_{j}^{a} \subseteq$ V_{i}^{a} we have $\cup_{j=1}^{k} V_{i}^{a} \cap W_{j}^{a}=V_{i}^{a}$ for $i=1$ to k. Thus, by symmetry, we have $\cup_{i=1}^{k}$ $V_{i}^{a}=\cup_{i=1}^{k} W_{i}^{a}$.

Note that net replacements are not always unique and for every replacement N^{*} for $N,\left(N^{*}\right)^{t}$ is a replacement for N^{t}.

Several authors have studied translation planes of order 16 that admit $\operatorname{PSL}(2,7)$. It turns out that there are exactly two such planes which have lately been called the Johnson-Walker and the Lorimer-Rahilly planes.

Johnson [3], has given a construction of both these planes by deriving the unique semifield plane of order 16 and kern $\mathrm{GF}(4)$. The J-W plane may be derived by replacing a net coordinatized by a right nucleus and the $\mathrm{L}-\mathrm{R}$ plane may be derived by replacing a net coordinatized by a middle nucleus.

Walker [4] constructs the Lorimer-Rahilly plane from the group $\operatorname{PSL}(2,7)$ and then observes the same construction by the dual representation on the dual space produces another plane admitting $\operatorname{PSL}(2,7)$. By Bruen [1], these two planes are transposes of each other. Thus, we have the connection between the two constructions. Generally,

(right nucleus net in a semifield plane)
$\xrightarrow{\text { derive }}$ (generalized Hall of type 2)

In particular,
middle nucleus net-semifield
$\begin{array}{lll}\begin{array}{c}\text { plane of order } 16 \\ \text { and kern GF(4) }\end{array} & \stackrel{\text { derive }}{\longleftrightarrow} & \text { Lorimer-Rahilly } \\ \qquad \text { transpose }\end{array}$
right nucleus net-semifield plane of order 16 and kern $\stackrel{\text { derive }}{\longleftrightarrow}$ Johnson-Walker $\mathrm{GF}(4)$ (same plane as above)

References

1. A. Bruen, Spreads and a conjecture of Bruck and Bose, J. Algebra, Vol. 23, No. 3 (1972), pp. 519-537.
2. A. Bruen and J. C. Fisher, Spreads which are not dual spreads, Canad. Math. Bull. 12 (1969), pp. 801-803.
3. N. L. Johnson, A note on the derived semifield planes of order 16, Aeq. Math. 18 (1978), pp. 103-111.
4. M. Walker, A note on tangentially transitive affine planes, Bull. London Math. Soc. 8 (1976), pp. 273-277.

Department of Mathematics
The University of Iowa
Iowa City, IA 52242

